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Abstract

Silhouettes provide rich information on three-

dimensional shape, since the intersection of the associated

visual cones generates the “visual hull”, which encloses

and approximates the original shape. However, not all

silhouettes can actually be projections of the same object

in space: this simple observation has implications in object

recognition and multi-view segmentation, and has been

(often implicitly) used as a basis for camera calibration.

In this paper, we investigate the conditions for multiple

silhouettes, or more generally arbitrary closed image sets,

to be geometrically “consistent”. We present this notion as

a natural generalization of traditional multi-view geometry,

which deals with consistency for points. After discussing

some general results, we present a “dual” formulation for

consistency, that gives conditions for a family of planar

sets to be sections of the same object. Finally, we introduce

a more general notion of silhouette “compatibility” under

partial knowledge of the camera projections, and point out

some possible directions for future research.

1. Introduction

When can a set of 2D silhouettes be projections of the

same object in space? This seemingly simple question is re-

lated to a variety of practical problems in computer vision,

such as multi-view segmentation [10], object recognition

[37], and multi-view stereo [12]. Geometric consistency is

sometimes taken for granted, when appearance-based fea-

tures give reasonable evidence that the silhouettes are asso-

ciated to the same object. However, it is clear that incorpo-

rating geometric constraints can be important, either in the

process of inference, or for correcting the effects of noisy

data.

In this paper, we analyze the notion of “consistency” for

silhouettes and for more general closed image sets (Fig-

ure 1). We consider opaque objects projected in different

images and assume, in our initial setting, the knowledge of

all camera parameters. The theory can be seen as a natural

extension of classical multi-view geometry, which provides
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Figure 1: Geometrically consistent silhouettes are feasible pro-

jections of a single object.

conditions for points (and sometimes lines) to be consistent

(i.e., to correspond) in terms of given camera projections

[11, 16]. This also expands an analogy initiated by the gen-

eralized epipolar constraint introduced in [1]. Throughout

our discussion, we point out several results that hold for ar-

bitrary closed image sets (or sometimes convex image sets),

that have identical counterparts in the theory of point corre-

spondences.

As consistency is clearly not a metric property of sil-

houettes, it is natural to adopt the framework of projective

geometry [7], since this eliminates various degenerate sit-

uations and allows, for example, to unify the cases of or-

thographic and perspective projections. This is also typical

in multi-view geometry.1 Another advantage of the projec-

tive language is that it provides a homogeneous formulation

of duality. In particular, we exploit the fact that perspec-

tive projections are related to planar sections in the dual

space [27], to define a very natural “dual” notion of consis-

tency, expressing conditions for a family of planar sets to be

sections of the same object.

Finally, we also consider the case of having only partial

knowledge of the camera parameters, and discuss a more

general concept of “compatibility” for silhouettes. This ex-

tends a setting first considered in [2].

1The most significant difference between the euclidean and projective

frameworks in our setting is that in the latter case visual cones are two-

sided. An alternative (but perhaps less natural) approach would have been

the use of oriented projective geometry [31].
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The overall goal of the paper is not to give the “final” an-

swer to the complex problem of silhouette consistency, but

rather to make a first formal foray in that field, with pre-

cise definitions that have been missing so far in a general

setting, spelling out rigorously what is known in this area

and adding a set of new results. For example, we do not

deal with algorithmic issues here, and we assume through-

out the presentation an ideal setting with no noise. We be-

lieve this to be a necessary first step, much in the same way

as multi-view geometry initially characterizes exact point

correspondences, and then makes use of the theory to infer

camera parameters from real world data.

Previous work.

The most widespread application of silhouette consis-

tency has been for designing alternatives to point-based

methods for camera calibration, required for dealing with

smooth and textureless surfaces. Indeed, ever since the

seminal work of Rieger [28], the problem of estimating

camera motion or calibration parameters using only sil-

houettes has received considerable attention: see, e.g.,

[4, 13, 17, 20, 25, 35]. Albeit with some variations, all these

methods exploit (more or less directly) the geometric con-

straints provided by the epipolar tangencies [1].

In addition to camera calibration, silhouette consistency

has been enforced explicitly for other tasks; for example

multi-view segmentation [5], or 3D-reconstruction [8] and

recognition [24]. Another interesting “artistic” application

is discussed in [26].

There exists limited theoretical work on silhouette con-

sistency, and it is always restricted to special situations. In

particular, the problem of determining whether a family of

silhouettes can correspond to a real object is considered in

[2, 19, 36], but results are only given for the case of or-

thographic projections and somewhat restricted camera mo-

tion. Some theoretical facts, e.g., the fact that epipolar tan-

gency conditions do not imply global consistency, can be

found in [4, 6].

Finally, the duality between projections and planar sec-

tions is well known in both the euclidean (orthographic) set-

ting [34, 30], as well as in the projective (perspective) case

[27, 32]. However, we are not aware of work on consistency

for planar sections.

Main contributions.

• We formally introduce a notion of geometric consis-

tency for arbitrary closed sets in the case of general pro-

jective (perspective) cameras. We present some new results

(Propositions 1, 3), and collect others which are scattered in

more applied work (Propositions 2, 4).

• We investigate in detail the relationship between pairwise

consistency, epipolar tangencies, and our more general no-

tion of consistency (Sections 2.2 and 2.3). We also observe

the existence of special “tangential points”, which play an

important role in constraining the consistency for silhou-

ettes.

• We restate the notion of consistency in terms of duality,

expressing the condition for planar sets to be sections of the

same object. For convex silhouettes, we show that the dual

of the visual hull coincides with the convex hull of the dual

image of the silhouettes (Proposition 6).

• We define the notion of compatibility for silhouettes,

which characterizes silhouettes that may be geometrically

consistent for appropriate camera parameters. This setting

generalizes a viewpoint first introduced in [2].

Notation. Our analysis will be coordinate free, so we con-

sider projective cameras as linear maps M : P3\{c} → P
2,

where c is the camera pinhole or center. The action of a

camera will be indicated with M(p) = u. For any cam-

era M and set of points T in an image, we define the as-

sociated visual cone as M−1(T ), where M−1 denotes the

pre-image set (this definition excludes the pinhole from the

visual cone, however this will be irrelevant for our discus-

sion).

2. Consistency of image sets

In this section, we introduce a notion of geometric con-

sistency for arbitrary closed sets in different images. Our

definition is very natural, and similar concepts have previ-

ously been used to introduce “incoherence” measures for

silhouettes [4, 17]. Compared to these works, we focus on

analyzing some theoretical properties of consistency, rather

than finding strategies for putting it into practice. After a

general discussion, we consider the important case of two

silhouettes (Section 2.2), pointing out how the consistency

condition is basically equivalent to the popular “epipolar

tangency” constraint, but only applied to extremal tangents.

We then investigate in more detail the difference between

pairwise consistency, and general consistency, and argue the

importance of special “tangential points”, which constrain

consistent silhouettes (Section 2.3).

2.1. Basic definitions

Let M1, . . . ,Mn be n perspective cameras with distinct

centers c1, . . . , cn, and let T1, . . . , Tn be a family of closed

sets, one in each image. For example, the sets Ti could be

a finite collection of points, curves or closed regions. For

each i = 1, . . . , n, we let Ci = M−1

i (Ti) be the visual

cone associated to Ti.

Definition 1. The sets T1, . . . , Tn are said to be consistent

(relative to the cameras M1, . . . ,Mn) if there exists a non-

empty set R ⊆ P
3 \ {c1, . . . , cn} such that Mi(R) = Ti

for all i = 1, . . . , n.

When T1, . . . , Tn are consistent for M1, . . . ,Mn, the

3347



visual hull associated with T1, . . . , Tn is given by H =
⋂

i Ci, and it is the largest set that projects onto T1, . . . , Tn.

If all T1, . . . , Tn are singletons, then consistency reduces

to the classical notion of point correspondence [11, 16]; in

this case, the visual hull is simply the triangulated 3D-point.

Extending this analogy, consistent image sets can be seen

as n-tuples of projections of all possible objects in space.

Moreover, it is clear that there is a one-to-one correspon-

dence between n-tuples of consistent sets, and the (exact)

visual hulls associated with a fixed set of n cameras.

In principle, the concept of visual hull is not well defined

if the original silhouettes (or image sets) are not geomet-

rically consistent. This is rarely taken into consideration,

and it is customary to define the visual hull simply as the

intersection of the cones
⋂

i Ci for arbitrary (non necessar-

ily consistent) silhouettes: this operation can be justified by

noting that if
⋂

i Ci is not empty, then it is the visual hull

associated with the subsets T̃i = Mi(
⋂

j Cj) ⊆ Ti, which

will always be consistent. In fact, consistency is clearly

equivalent to the fact that T̃i = Mi(
⋂

j Cj) = Ti for all

i = 1, . . . , n, or to Ti ⊆ Mi(
⋂

j Cj), since the opposite

inclusion is always true. We collect a few other simple but

useful properties:

Proposition 1. Let T1, . . . , Tn be arbitrary closed image

sets.

1. T1, . . . , Tn are consistent if and only if for each i =
1, . . . , n, and for all ui ∈ Ti, the visual ray M−1(ui)
intersects

⋂

j 6=i Cj .

2. T1, . . . , Tn are consistent if and only if

Ti ⊆ Mi





⋂

j 6=i

Cj



 , ∀i ∈ {1, . . . , n}. (1)

See Figure 2.

3. If T1, . . . , Tn are consistent, then any subfamily

Ti1 , . . . , Tis is consistent (for the associated cameras

Mi1 , . . . ,Mis ).

Proof. The first property follows from the fact that Ti ⊆
Mi(

⋂

j Cj) can be expressed as M−1

i (ui) ∩
⋂

j Cj 6= ∅

for all ui ∈ Ti, which in turn is equivalent to M−1

i (ui) ∩
⋂

j 6=i Cj 6= ∅, since M−1

i (ui) ⊆ Ci. The second and third

properties are consequences of the first one.

This might be a good moment to point out that the notion

of geometric consistency discussed in this paper is some-

what independent from a more intuitive (but less formal)

concept of “similarity” of appearance. Indeed, consistent

silhouettes may actually look completely different (as in the

Figure 2: The silhouettes from Figure 1 are geometrically

consistent (relative to three orthogonal orthographic projec-

tions), since each silhouette is contained in the reprojection

(in gray) of the intersected visual cones associated to the

other views. See Proposition 1.

example in Figure 1), while, on the other hand, almost iden-

tical silhouettes may be geometrically inconsistent. Thus,

the concept might be well suited for being used alongside

more traditional feature-based methods for recognition.

Finally, for the rest of the paper we will make the fol-

lowing assumption for all n-tuples of closed image sets

T1, . . . , Tn and cameras M1, . . . ,Mn:

(A) For each camera center ci and visual cone Cj , with

i 6= j, ci does not belong to Cj .

This condition is useful for excluding various degenerate

situations; for example, it guarantees that the visual hulls as-

sociated with all subfamilies of T1, . . . , Tn are closed sets.2

2.2. Pairwise consistency

Let us assume that we are given only two image sets

T1, T2 and two cameras M1,M2. According to Proposi-

tion 1, we know that T1, T2 are consistent for M1,M2 if

and only if

T1 ⊆ M1 (C2) , and T2 ⊆ M2 (C1) (2)

In other words, we require for each set to be contained in

the projection of the visual cone associated to the other one.

Pairwise consistency is closely related to the popular epipo-

lar tangency constraint [1, 35]. Indeed, we can restate the

condition (2) in terms of epipolar geometry as follows.

Proposition 2. Two image sets T1, T2 are consistent if and

only if the set of epipolar lines in the first image which inter-

sect T1 is in epipolar correspondence with the set of epipo-

lar lines in the second image which intersect T2.

Proof. The statement can be seen as a consequence of the

first property in Proposition 1. In fact, the epipolar corre-

spondence condition guarantees that for all i = 1, 2, and for

every point ui ∈ Ti there exists at least one corresponding

point uj ∈ Tj (j 6= i), so that triangulating all pairs of asso-

ciated points (i.e., intersecting the cones C1, C2) we obtain

a set R ⊆ P
3 \ {c1, c2} that projects exactly onto T1 and

T2. Note that assumption (A) is equivalent to the fact that,

in each image, the epipole lies outside of the given set.

2This condition is not actually necessary for all of our results, and

weaker assumptions may often be considered. However, for the sake of

simplicity, we give a single condition that is valid throughout the paper.
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Figure 3: Parwise consistency: the sets of epipolar lines inter-

secting each silhouette must be in epipolar correspondence. In

particular, the extremal lines lines ℓA1 , ℓ
A
2 and ℓB1 , ℓ

B
2 must corre-

spond.

This result can also be stated in terms of visual cones:

if we consider the pencil of planes passing through the two

camera centers, then pairwise consistency is equivalent to

the fact that each visual cone meets the same set of planes

in the pencil.

If we assume that T1, T2 are connected regions bounded

by smooth curves, then pairwise consistency basically re-

duces to the fact that extremal epipolar tangents (i.e., “out-

ermost” epipolar lines that are tangent to the contours) are in

epipolar correspondence [4] (Figure 3). On the other hand,

pairwise consistency does not require non-extremal epipo-

lar tangents to be matched. In fact, perhaps somewhat un-

intuitively, the visual hull generated by two silhouettes with

non-extremal epipolar tangencies (matched or unmatched)

will always present a complicated topology because it must

take into account for all possible self-occlusions (Figure 4).

The difference between the two examples shown is just that

in the case (top) of unmatched internal epipolar tangencies,

any object which is consistent with the silhouettes must

project with occlusions (i.e., the inconsistent “branches” are

necessarily projections of different parts of the observed ob-

ject); on the other hand, in the case (bottom) where internal

epipolar tangencies are matched, there exists an object (dif-

ferent from the visual hull) that has a simple topology and

that projects onto the silhouettes without occlusions.

Returning to the case of an arbitrary number of sets, we

will say that T1, . . . , Tn are pairwise consistent if each pair

Ti, Tj , i 6= j is consistent. From Proposition 1, we know

that this holds whenever T1, . . . , Tn are consistent. The

converse is not true, as pointed out in [4, 6] (see also Fig-

ure 6). However, it would be useful to clarify the practical

distinction between these two notions: much of our discus-

sion in the following will be aimed at a better understanding

of this issue. For example, in the case of three sets, pairwise

consistency often implies that there is at least an “approx-

imate” consistency: this property directly generalizes the

fact that three non-coplanar visual rays that converge pair-

wise will always converge [16].

Proposition 3. Let T1, T2, T3 be connected closed sets that

are pairwise consistent. If the centers of the cameras

c1, c2, c3 are not collinear, and if each visual cone Ci does

Figure 4: The visual hull generated by two “hook-shaped” silhou-

ettes always presents self-occlusions, whether the internal epipolar

tangents are unmatched (top) or matched (bottom). In these exam-

ples we considered orthogonal orthographic projections, but the

behavior is completely general.

Figure 5: Proof of Proposition 3. The set T1 (dark gray) and

M1(C2∩C3) are both “inscribed” in the quadrilateral M1(C2)∩
M1(C3) (light gray), and must thus intersect.

not intersect the plane spanned by c1, c2, c3, then
⋂

i Ci is

not empty.

Proof. It is sufficient to prove that, say, T1∩M1(C2∩C3) is

not empty. Let R = M1(C2)∩M1(C3). The assumptions

on the centers guarantee that R is a quadrilateral (it is the in-

tersection of two connected projected cones; see Figure 5).

From pairwise consistency (2), we know that T1 is tightly

“inscribed” in R, meaning that T1 ⊆ R and T1 intersects

of the four edges of R. The same holds for M1(C2 ∩ C3):
indeed M1(C2 ∩ C3) ⊆ M1(C2) ∩ M1(C3) holds, and

M1(C2 ∩ C3) intersects all edges of R since C2, C3 are

themselves pairwise consistent (an extremal epipolar line in

M1(C2) is the projection of a line in C2 which must in-

tersect C2 ∩ C3). The claim follows from continuity argu-

ments: for example, consider paths in T1 and M1(C2∩C3)
connecting different pairs of opposite edges.

2.3. From pairwise to general consistency

We have already noted that pairwise consistency does not

imply general consistency [4, 6]: in fact, as shown in the ex-

ample in Figure 6, the two notions are not equivalent even in
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Figure 6: Using orthogonal orthographic projections (that may be

thought as “side”, “top”, and “front” views), we observe that two

appropriately “clipped” squares and one full square are pairwise

consistent but not globally consistent: indeed, the reprojection of

the visual hull associated to the first two silhouettes into the third

view does not contain the corresponding silhouette (cf. Proposi-

tion 1), since the top right corner is missing. In fact, the volume

intersection of the three visual cones (shown on the right) does not

project onto the third silhouette.

the restricted case of convex image sets (contrary to a claim

in [4]). Interestingly, however, we can show that for convex

sets (i.e., sets that are convex in an affine chart: we refer to

the next section for a discussion on convexity in the projec-

tive setting) general consistency is actually guaranteed by

“triplet-wise” consistency. A similar fact has been pointed

out in [36].

Proposition 4. Let T1, . . . , Tn be closed convex sets. If

Ti, Tj , Tk are consistent for every {i, j, k} ⊆ {1, . . . , n}
then T1, . . . , Tn are consistent.

Proof. From Proposition 1, it is sufficient to prove that

for every i = 1, . . . , n, and for all ui ∈ Ti, we have

M−1(ui) ∩
(

⋂

j 6=i Cj

)

6= ∅. Because of convexity, the

sets U i
j = M−1

i (ui) ∩ Cj are intervals; moreover, they in-

tersect pairwise because of the assumption of “triplet-wise”

consistency: this implies that they all intersect.3 See Fig-

ure 7.

This statement closely resembles “Helly-type” theorems

in computational geometry [33], and is a generalization of

the fact that point correspondence is always implied by

triplet-wise point correspondence. An inspection of the

proof also shows that it is not actually necessary for the

sets Ti to be convex, but only for their intersections with

epipolar lines (rather than all lines) to be intervals.

Returning to the case of arbitrary image sets, we see from

(2) that pairwise consistency is equivalent to

Ti ⊆
⋂

j 6=i

Mi(Cj), i = 1, . . . , n. (3)

Moreover, if the sets Ti are consistent there is a chain of

inclusions Ti ⊆ Mi

(

⋂

j 6=i Cj

)

⊆
⋂

j 6=i Mi(Cj). In fact,

as pointed out in [4], pairwise and general consistency can

3To be precise, it should be noted that, although in projective space,

none of the cones Cj contain ci (because of our assumption (A)), so we

may treat the sets U i
j as intervals on a real line.

Figure 7: Proof of Proposition 4: the visual ray corresponding to

p meets the other visual cones in intervals that intersect pairwise,

and thus must all intersect.

be seen as the same formal condition except for the inverted

order of the projection and intersection of the visual cones.

It is also natural to ask ourselves how the consistency

condition actually constrains the shape of the image sets.

In this regard, we observe that if T1, . . . , Tn are consistent

for M1, . . . ,Mn, then a set, say T1, may be replaced by

any strictly larger one T̃1 without affecting consistency, pro-

vided that T̃1 ⊆ M1

(

⋂

j 6=1
Cj

)

, because this guarantees

that condition (1) remains satisfied in each image. For ex-

ample, as shown in Figure 8, we are allowed to modify the

shape of a set Ti with a small protrusion, in the neighbor-

hood of any point that does not belong to the boundary of

Mi

(

⋂

j 6=i Cj

)

. On the other hands, points belonging to

the intersection of Ti with the boundary of Mi

(

⋂

j 6=i Cj

)

are more constrained: we will refer to these points as “tan-

gential points”, since the associated visual rays are “tan-

gent” to the visual hull associated with the remaining sil-

houettes
⋂

j 6=i Cj . Tangential points play a crucial role

in characterizing consistency, and we intend to investigate

their properties in more detail in the future. For the mo-

ment, we simply point out that the visual ray corresponding

to a tangential point will typically graze the surface of one

of the remaining visual cones, so that the ray will corre-

spond to an epipolar tangent (not necessarily extremal) for

the associated image (Figure 9, left). In general, it is also

possible for the ray to intersect the set
⋂

j 6=i Cj only at an

“intersection curve” [23], so that it is not tangent to any

cone, and gives rise to a “tangential triple point” on the vi-

sual hull surface (Figure 9, right): however, it is not hard to

realize that this case will not occur for generic projections

of smooth solids, essentially because points on a smooth

surface are never visible from three generic viewing direc-

tions (one also has to note tangential triple points are “hard

points” [22], i.e., points of the visual hull that are guaran-

teed to belong to the actual object being observed).
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Figure 8: If we modify the second silhouette from Example 1 so

that the new silhouette is still contained in the reprojection of the

visuall hull associated to the other views, consistency is preserved.

Note that the reprojection onto the third view is not the same as in

the previous case, however condition (1) remains satisfied since

the new reprojected set is larger.

3. A dual view of consistency

In this section we revisit the notion of consistency from

the viewpoint of duality. In particular, we discuss the rela-

tionship between consistency for projections, as presented

in the previous section, and a different notion of consistency

for planar sections of solids. We focus in our presentation

on the case of convex sets, since the duality is much simpler

in this setting. We defer a more general analysis to future

work.

3.1. Duality

The basis of many similar notions of duality is the fact

that points and hyperplanes in some n-dimensional space

can play symmetric roles. For example, in R
n any hyper-

plane through the origin can be represented with its orthog-

onal vector. In projective space P
n, all hyperplanes corre-

spond to points of the dual projective space (Pn)∗: in fact,

any k-dimensional linear subspace H in P
n, can be asso-

ciated with an (n − k)-dimensional linear subspace H∗ in

(Pn)∗, and this duality interchanges the role of “join” and

“meet” [7].

This identification of hyperplanes in P
n with points in

(Pn)∗ can be used to introduce notions of “duality” for more

general objects in P
n. For example, if S is a smooth or al-

gebraic hypersurface in P
n, (the closure of) the set of tan-

gent hyperplanes at points of S forms a dual hypersurface

in (Pn)∗ [32]. However, dual hypersurfaces will typically

have self-intersections (e.g., in the case of curves, crossings

correspond to bitangents of the original curve). For this rea-

son, we will consider instead duality for (properly) convex

sets in projective space [15]. In the following, we will say

that a set K in P
n is convex when there exists an affine

chart (i.e., an appropriate dehomogenization of projective

coordinates) so that K is compact and convex in the usual

affine sense. This is equivalent to a more analytical defini-

tion, for which K is convex if it is the projectivization of a

cone K̂ in R
n+1 that is convex, closed, and pointed (i.e., it

does not contain any line) [3]. To any convex set K in P
n,

we can now associate a dual set K◦ in (Pn)∗, that can be

Figure 9: Tangential points are the intersections of a silhouette

Ti with the boundary of Mi

(

⋂

j 6=i Cj

)

. Left: the silhouette of

a torus and the reprojection of the visual hull generated by three

different views. The six tangential points are epipolar tangencies

(colors indicate projections of cone surfaces and the associated

epipolar tangency points). Right: a tangential point may also be

the projection of a “tangential triple point”: in this case, the asso-

ciated viewing ray is not tangent to any visual cone.

characterized geometrically as the closure of the set of all

hyperplanes H such that H∩K is empty. Alternatively, the

same set K◦ is the projectivization of the polar cone (K̂)◦

of a convex cone K̂ in R
n+1 that corresponds to K.

For an appropriate choice of coordinates, convex dual-

ity in projective space essentially coincides with the usual

concept of polarity for affine sets [3]. However, while many

properties of affine polarity only apply for convex sets con-

taining the origin (e.g., biduality: K◦◦ = K), the projective

framework is completely “homogeneous”, and does not re-

quire similar conditions. Moreover, this setting is useful for

dealing with general perspective projections.

All the results in the next section can be understood geo-

metrically (and proven using purely synthetic arguments),

by exploiting the characterization of duality as the set

of “complementary” hyperplanes. More formal analytical

proofs can be given using cones in R
n+1: see the supple-

mentary material for details.

3.2. Duality and visual hulls

A perspective projection M : P3\{c} → P
2 with center

c also defines a dual map M∗ : (P2)∗ → (P3)∗ that asso-

ciates lines in P
2 with planes in P

3 through c. In particular,

the image of M∗ is a plane in the dual space (P3)∗, namely

the dual of the center c∗ (i.e., the set of planes containing

c). The following important result holds:

Proposition 5. Let M be a perspective projection with

center c, and let K ⊆ P
3 \ {c} be a convex set. Then

M(K) = L is equivalent to

M∗(L◦) = K◦ ∩ c
∗. (4)

Indeed, the geometric intuition for condition (4) is that

a line does not meet L if and only if its preimage does not

meet K. This result basically states fact that projecting a

convex object is equivalent to taking a planar section of its
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Figure 10: Dual-pairwise-consistency. The dual images of the

silhouettes M∗
1(T

◦
1 ) and M

∗
2(T

◦
2 ) are sectionally consistent if and

only if they have the same intersection with the “dual baseline”

(c1 ∧ c2)
∗.

dual. We also refer to [27], where a similar idea is used in

a “smooth” setting to investigate the qualitative relationship

between image contours and projective shapes.

Motivated by Proposition 5, we introduce a notion of

“sectional consistency”. We assume that we are given pro-

jective maps P1, . . . ,Pn where each Pi : P2 → P
3 iden-

tifies P
2 with a plane πi in P

3. The planes π1, . . . , πn are

distinct.

Definition 2. A family L1, . . . , Ln of sets in P
2 is said

to be sectionally consistent (relative to the embeddings

P1, . . . ,Pn) if there exists K ⊆ P
3 such that K ∩ πi =

Pi(Li) for all i = 1, . . . , n.

This notion of sectional consistency is “dual” to geomet-

ric consistency from Definition 1. Indeed:

Proposition 6. A family L1, . . . , Ln of convex sets in P
2 is

consistent for a set of projections M1, . . . ,Mn if and only

if L◦
1, . . . , L

◦
n are sectionally consistent for the embeddings

M∗
1, . . . ,M

∗
n. Moreover, if consistency holds, and H is

the visual hull associated with L1, . . . , Ln, then H = K◦,

where K is the convex hull of M∗
1(L

◦
1), . . . ,M

∗
n(L

◦
n).

4

Proof. The first claim is a direct consequence of (4). For

the second part, we can use the fact that for arbitrary closed

convex cones K1, . . . ,Kn in R
N :

[Conv(K1 ∪ . . . ∪Kn)]
◦
= K◦

1 ∩ . . . ∩K◦
n. (5)

See for example [30]. In fact, it is sufficient to take Ki =
M∗

i (L
◦
i ), and observe that (M∗

i (L
◦
i ))

◦ is in fact the visual

cone Ci (see the supplementary material for details).

4The convex hull of a closed set contained in an affine chart in P
n is

independent of the choice of projective coordinates only when the set is

connected: this is true for M∗
1
(L◦

1
) ∪ . . . ∪ M∗

n(L
◦
n) since assumption

(A) guarantees that M∗
i (L

◦
i ) ∪M∗

j (L
◦
j ) is connected for all i, j.

Figure 11: Structure of the “dual visual hull”. The boundary of

the dual visual hull is composed of planar curves, ruled surface

patches and planar triangular patches: each of these are associated

to specific components of the visual hull. See text for details.

Consistency is arguably more intuitive in its dual formu-

lation, since planar sets in space are conceptually easier to

grasp than families of cones. For example, the pairwise con-

sistency constraint for two convex silhouettes T1, T2 dual-

izes to the fact that M∗
1(T

◦
1 ) and M∗

2(T
◦
2 ) have the same

intersection with the “dual baseline” (c1 ∧ c2)
∗ (here ∧ de-

notes the “join” of two points): see Figure 10.

We also point out a duality between the “combinatorial”

structure of the visual hull H and of its dual K = H◦. In-

deed, by interpreting the supporting planes of H as points

on the boundary of K, we see that a plane π supports a

cone (patch) Ci if and and only if, in the dual space, it

represents a point belonging to the planar curve that is the

boundary of M∗
i (L

◦
i ); on the other hand, if a supporting

plane π meets the visual hull at the intersection of two cones

Ci, Cj (i.e., at an intersection curve [23]), then it is dual

to a point on a ruled patch, joining the two boundaries of

M∗
i (L

◦
i ) and M∗

j (L
◦
j ); finally, if π supports H at the in-

tersection of three cones Ci, Cj , Ck (i.e., a triple point),

then it represents a point of the dual hull K that belongs

to a planar patch, spanning across the three boundaries

of M∗
i (L

◦
i ),M

∗
j (L

◦
j ),M

∗
k(L

◦
k) (note that ruled and planar

patches are typical for convex hulls of curves in space [21]).

See Figure 11.

The notion of sectional consistency given in Definition 2

is reminiscent of questions in geometric tomography [14],

or stereology [18]. In tomography, for example, the duality

between projections and sections is well studied, but typ-

ically in an affine setting that considers only orthographic

projections. Nevertheless, it is quite possible that tools from

these related fields could provide interesting new insight for

problems in computer vision.

4. Compatible silhouettes

Throughout the paper, we have always considered fami-

lies of silhouettes (or image sets) T1, . . . , Tn together with

known camera projections M1, . . . ,Mn. However, we can

introduce a more general notion of “geometric compatibil-

ity”, that can be applied in the case of incomplete knowl-
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edge of the camera parameters. More precisely, we define

an arbitrary family of silhouettes (or image sets) T1, . . . , Tn

to be compatible with some partial knowledge P of the cam-

era parameters when there exist projections M1, . . . ,Mn

that agree with P and for which T1, . . . , Tn are consistent

according to Definition 1.

Simply put, this notion characterizes the most general

condition for a family of silhouettes (or sets) to be feasible

projections of a single object. The study of similar issues

was initiated in [2], where the authors assume the external

parameters of the cameras to be unknown, and analyze in

detail the geometric constraints for compatibility in a par-

ticular case (orthographic viewing directions parallel to the

same plane).

The first problem raised by the definition of compatibil-

ity is to understand whether it actually constrains the sil-

houettes and the camera parameters, or if instead it is just a

vacuous condition. For example, in [2] it is pointed out that

if one considers internal as well as external parameters to be

unknown, then any family of silhouettes will be compatible

(they note that considering a convex object, and applying

local protrusions with appropriate shapes, one is able to pro-

duce arbitrary silhouettes by placing cameras near the sur-

face). This interesting observation, however, would seem to

imply that SfM methods can never exploit the geometry of

the silhouettes in order to recover camera parameters, since

a particular family of silhouettes would provide no informa-

tion on the viewing conditions. On the other hand, we note

that the construction proposed in [2] violates our assump-

tion (A) for all pairs of cameras and silhouettes (viewing

cones must be extremely “wide”, and thus contain all other

centers which lie near the surface of the convex object).

We argue instead that by considering only certain regions

in the space of parameters, the compatibility of silhouettes

does provide constraints on the camera projections, even

without knowledge of internal parameters. For example,

consider two pictures with two arbitrary silhouettes (closed

connected regions with non empty interior) T1, T2, one in

each image: in this case, it is easy to realize that the fun-

damental matrices for which T1, T2 are consistent and such

that each epipole lies outside the corresponding silhouette

(as in condition (A)), form a space that always has 5 de-

grees of freedom, compared to 7 in the unconstrained case.

Indeed, for any choice of epipoles e1 /∈ T1 and e2 /∈ T2,

there is one-parameter family of feasible fundamental ma-

trices, corresponding to the homographies between the pen-

cil of lines through e1 and e2 that associate the projections

of T1 and T2 (as segments of the pencil). On the other hand,

assuming e1 ∈ Int(T1) and e2 ∈ Int(T2), the space of

fundamental matrices for which T1, T2 are consistent has 7
degrees of freedom, since the homography of epipolar lines

is unconstrained. The fact that a pair of silhouettes imposes

(with certain assumptions) two conditions on the epipolar

geometry, justifies methods that have exploited two silhou-

ettes to recover camera parameters when the ambiguity of

camera motion had only two degrees of freedom, namely in

the case of pure translation motion [29], or when a visible

plane provides a homography between the views [9].

In our opinion, a better understanding of the theory of

“silhouette compatibility” can be important for several prac-

tical reasons, such as spelling out conditions for when sil-

houettes may or may not be used to determine camera ge-

ometry (and possibly help design better algorithms), or sim-

ilarly to give conditions for a family of silhouettes alone to

provide a unique representation of (the visual hull of) an

object. Duality might also prove to be a useful tool for in-

vestigating these kinds of questions: much in the same way

as in Section 3, we realize that the notion of compatibility of

silhouettes can be expressed in terms of the compatibility of

planar regions, which need to be “assembled” consistently

in order to be feasible sections of a single object.

5. Conclusions

We have analyzed in detail the notion of “geometric con-

sistency” for arbitrary image sets, in a setting that can be

seen as an extension of traditional multi-view geometry.

In the case of convex silhouettes we have also discussed a

“dual” interpretation of consistency, expressing conditions

for planar sets to be sections of a single object. These con-

cepts lead to a more general notion of silhouette “compat-

ibility”, that does not require (complete) knowledge of the

camera parameters.

We plan to extend this work in various directions. On

the practical side, our results need to be revisited for dealing

with noisy data, and the theory may be used for comparing

different measures of “inconsistency” such as the ones con-

sidered in [4, 17, 25]. On the theoretical side, in addition to

the questions on “compatibility” discussed above, there re-

mains to gain a better understanding of dual consistency for

non-convex silhouettes. In geometric tomography, for ex-

ample, it is typical to study sections of convex bodies [14];

however, for applications in vision, this assumption is prob-

ably restrictive. Solutions to all of these problems would be

useful in many practical settings, and would help us clar-

ify the fundamental relationship between two-dimensional

projections, and the natural concept of “shape”.
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