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Abstract

Convolutional networks are at the core of most state-

of-the-art computer vision solutions for a wide variety of

tasks. Since 2014 very deep convolutional networks started

to become mainstream, yielding substantial gains in vari-

ous benchmarks. Although increased model size and com-

putational cost tend to translate to immediate quality gains

for most tasks (as long as enough labeled data is provided

for training), computational efficiency and low parameter

count are still enabling factors for various use cases such as

mobile vision and big-data scenarios. Here we are explor-

ing ways to scale up networks in ways that aim at utilizing

the added computation as efficiently as possible by suitably

factorized convolutions and aggressive regularization. We

benchmark our methods on the ILSVRC 2012 classification

challenge validation set demonstrate substantial gains over

the state of the art: 21.2% top-1 and 5.6% top-5 error for

single frame evaluation using a network with a computa-

tional cost of 5 billion multiply-adds per inference and with

using less than 25 million parameters. With an ensemble of

4 models and multi-crop evaluation, we report 3.5% top-5
error and 17.3% top-1 error on the validation set and 3.6%
top-5 error on the official test set.

1. Introduction

Since the 2012 ImageNet competition [16] winning en-

try by Krizhevsky et al [9], their network “AlexNet” has

been successfully applied to a larger variety of computer

vision tasks, for example to object-detection [5], segmen-

tation [12], human pose estimation [22], video classifica-

tion [8], object tracking [23], and superresolution [3].

These successes spurred a new line of research that fo-

cused on finding higher performing convolutional neural

networks. Starting in 2014, the quality of network architec-

tures significantly improved by utilizing deeper and wider

networks. VGGNet [18] and GoogLeNet [20] yielded simi-

larly high performance in the 2014 ILSVRC [16] classifica-

tion challenge. One interesting observation was that gains

in the classification performance tend to transfer to signifi-

cant quality gains in a wide variety of application domains.

This means that architectural improvements in deep con-

volutional architecture can be utilized for improving perfor-

mance for most other computer vision tasks that are increas-

ingly reliant on high quality, learned visual features. Also,

improvements in the network quality resulted in new appli-

cation domains for convolutional networks in cases where

AlexNet features could not compete with hand engineered,

crafted solutions, e.g. proposal generation in detection[4].

Although VGGNet [18] has the compelling feature of

architectural simplicity, this comes at a high cost: evalu-

ating the network requires a lot of computation. On the

other hand, the Inception architecture of GoogLeNet [20]

was also designed to perform well even under strict con-

straints on memory and computational budget. For ex-

ample, GoogleNet employed around 7 million parameters,

which represented a 9× reduction with respect to its prede-

cessor AlexNet, which used 60 million parameters. Further-

more, VGGNet employed about 3x more parameters than

AlexNet.

The computational cost of Inception is also much lower

than VGGNet or its higher performing successors [6]. This

has made it feasible to utilize Inception networks in big-data

scenarios[17], [13], where huge amount of data needed to

be processed at reasonable cost or scenarios where memory

or computational capacity is inherently limited, for example

in mobile vision settings. It is certainly possible to mitigate

parts of these issues by applying specialized solutions to tar-

get memory use [2], [15] or by optimizing the execution of

certain operations via computational tricks [10]. However,

these methods add extra complexity. Furthermore, these

methods could be applied to optimize the Inception archi-

tecture as well, widening the efficiency gap again.

12818



Still, the complexity of the Inception architecture makes

it more difficult to make changes to the network. If the ar-

chitecture is scaled up naively, large parts of the computa-

tional gains can be immediately lost. Also, [20] does not

provide a clear description about the contributing factors

that lead to the various design decisions of the GoogLeNet

architecture. This makes it much harder to adapt it to new

use-cases while maintaining its efficiency. For example,

if it is deemed necessary to increase the capacity of some

Inception-style model, the simple transformation of just

doubling the number of all filter bank sizes will lead to a

4x increase in both computational cost and number of pa-

rameters. This might prove prohibitive or unreasonable in a

lot of practical scenarios, especially if the associated gains

are modest. In this paper, we start with describing a few

general principles and optimization ideas that that proved

to be useful for scaling up convolution networks in efficient

ways. Although our principles are not limited to Inception-

type networks, they are easier to observe in that context as

the generic structure of the Inception style building blocks

is flexible enough to incorporate those constraints naturally.

This is enabled by the generous use of dimensional reduc-

tion and parallel structures of the Inception modules which

allows for mitigating the impact of structural changes on

nearby components. Still, one needs to be cautious about

doing so, as some guiding principles should be observed to

maintain high quality of the models.

2. General Design Principles

Here we will describe a few design principles based

on large-scale experimentation with various architectural

choices with convolutional networks. At this point, the util-

ity of the principles below are speculative and additional fu-

ture experimental evidence will be necessary to assess their

domain of validity. Still, grave deviations from these prin-

ciples tended to result in deterioration in the quality of the

networks and fixing situations where those deviations were

detected resulted in improved architectures.

1. Avoid representational bottlenecks, especially early in

the network. Feed-forward networks can be repre-

sented by an acyclic graph from the input layer(s) to

the classifier or regressor. This defines a clear direction

for the information flow. For any cut separating the in-

puts from the outputs, one can access the amount of

information passing though the cut. One should avoid

bottlenecks with extreme compression. In general the

representation size should gently decrease from the in-

puts to the outputs before reaching the final represen-

tation used for the task at hand. Theoretically, infor-

mation content can not be assessed merely by the di-

mensionality of the representation as it discards impor-

tant factors like correlation structure; the dimensional-

ity merely provides a rough estimate of information

content.

2. Higher dimensional representations are easier to pro-

cess locally within a network. Increasing the activa-

tions per tile in a convolutional network allows for

more disentangled features. The resulting networks

will train faster.

3. Spatial aggregation can be done over lower dimen-

sional embeddings without much or any loss in rep-

resentational power. For example, before performing a

more spread out (e.g. 3 × 3) convolution, one can re-

duce the dimension of the input representation before

the spatial aggregation without expecting serious ad-

verse effects. We hypothesize that the reason for that

is the strong correlation between adjacent unit results

in much less loss of information during dimension re-

duction, if the outputs are used in a spatial aggrega-

tion context. Given that these signals should be easily

compressible, the dimension reduction even promotes

faster learning.

4. Balance the width and depth of the network. Optimal

performance of the network can be reached by balanc-

ing the number of filters per stage and the depth of

the network. Increasing both the width and the depth

of the network can contribute to higher quality net-

works. However, the optimal improvement for a con-

stant amount of computation can be reached if both are

increased in parallel. The computational budget should

therefore be distributed in a balanced way between the

depth and width of the network.

Although these principles might make sense, it is not

straightforward to use them to improve the quality of net-

works out of box. The idea is to use them judiciously in

ambiguous situations only.

3. Factorizing Convolutions with Large Filter

Size

Much of the original gains of the GoogLeNet net-

work [20] arise from a very generous use of dimension re-

duction, just like in the “Network in network” architecture

by Lin et al [?]. This can be viewed as a special case of fac-

torizing convolutions in a computationally efficient manner.

Consider for example the case of a 1×1 convolutional layer

followed by a 3 × 3 convolutional layer. In a vision net-

work, it is expected that the outputs of near-by activations

are highly correlated. Therefore, we can expect that their

activations can be reduced before aggregation and that this

should result in similarly expressive local representations.

Here we explore other ways of factorizing convolutions

in various settings, especially in order to increase the com-
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Figure 1. Mini-network replacing the 5× 5 convolutions.

putational efficiency of the solution. Since Inception net-

works are fully convolutional, each weight corresponds to

one multiplication per activation. Therefore, any reduction

in computational cost results in reduced number of param-

eters. This means that with suitable factorization, we can

end up with more disentangled parameters and therefore

with faster training. Also, we can use the computational

and memory savings to increase the filter-bank sizes of our

network while maintaining our ability to train each model

replica on a single computer.

3.1. Factorization into smaller convolutions

Convolutions with larger spatial filters (e.g. 5 × 5 or

7 × 7) tend to be disproportionally expensive in terms of

computation. For example, a 5 × 5 convolution with n fil-

ters over a grid with m filters is 25/9 = 2.78 times more

computationally expensive than a 3 × 3 convolution with

the same number of filters. Of course, a 5×5 filter can cap-

ture dependencies between signals between activations of

units further away in the earlier layers, so a reduction of the

geometric size of the filters comes at a large cost of expres-

siveness. However, we can ask whether a 5× 5 convolution

could be replaced by a multi-layer network with less pa-

rameters with the same input size and output depth. If we

zoom into the computation graph of the 5 × 5 convolution,

we see that each output looks like a small fully-connected

network sliding over 5×5 tiles over its input (see Figure 1).

Since we are constructing a vision network, it seems natural

to exploit translation invariance again and replace the fully

connected component by a two layer convolutional archi-

tecture: the first layer is a 3× 3 convolution, the second is a

fully connected layer on top of the 3 × 3 output grid of the

first layer (see Figure 1). Sliding this small network over

the input activation grid boils down to replacing the 5 × 5
convolution with two layers of 3× 3 convolution (compare

Figure 4 with 5).

This setup clearly reduces the parameter count by shar-

ing the weights between adjacent tiles. To analyze the ex-

pected computational cost savings, we will make a few sim-

plifying assumptions that apply for the typical situations:

We can assume that n = αm, that is that we want to
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Figure 2. One of several control experiments between two Incep-

tion models, one of them uses factorization into linear + ReLU

layers, the other uses two ReLU layers. After 3.86 million opera-

tions, the former settles at 76.2%, while the latter reaches 77.2%
top-1 Accuracy on the validation set.

change the number of activations/unit by a constant alpha

factor. Since the 5 × 5 convolution is aggregating, α is

typically slightly larger than one (around 1.5 in the case

of GoogLeNet). Having a two layer replacement for the

5 × 5 layer, it seems reasonable to reach this expansion in

two steps: increasing the number of filters by
√
α in both

steps. In order to simplify our estimate by choosing α = 1
(no expansion), Sliding this network can be represented by

two 3× 3 convolutional layers which reuses the activations

between adjacent tiles. This way, we end up with a net
9+9
25 × reduction with a relative gain of 28% by this fac-

torization. The exact same saving holds for the parameter

count as each parameter is used exactly once in the compu-

tation of the activation of each unit. Still, this setup raises

two general questions: Does this replacement result in any

loss of expressiveness? If our main goal is to factorize the

linear part of the computation, would it not suggest to keep

linear activations in the first layer? We have ran several con-

trol experiments (for example see figure 2) and using linear

activation was always inferior to using rectified linear units

in all stages of the factorization. We attribute this gain to

the enhanced space of variations that the network can learn

especially if we batch-normalize [7] the output activations.

One can see similar effects when using linear activations for

the dimension reduction components.

3.2. Spatial Factorization into Asymmetric Convo
lutions

The above results suggest that convolutions with filters

larger 3 × 3 a might not be generally useful as they can

always be reduced into a sequence of 3 × 3 convolutional

layers. Still we can ask the question whether one should

factorize them into smaller, for example 2×2 convolutions.

However, it turns out that one can do even better than 2× 2
by using asymmetric convolutions, e.g. n× 1. For example

using a 3 × 1 convolution followed by a 1 × 3 convolution

is equivalent to sliding a two layer network with the same
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Figure 3. Mini-network replacing the 3 × 3 convolutions. The

lower layer of this network consists of a 3× 1 convolution with 3

output units.
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Figure 4. Original Inception module as described in [20].
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Figure 5. Inception modules where each 5 × 5 convolution is re-

placed by two 3 × 3 convolution, as suggested by principle 3 of

Section 2.

receptive field as in a 3× 3 convolution (see figure 3). Still

the two-layer solution is 33% cheaper for the same number

of output filters, if the number of input and output filters is

equal. By comparison, factorizing a 3× 3 convolution into

a two 2 × 2 convolution represents only a 11% saving of

computation.

In theory, we could go even further and argue that one
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1xn 

Pool 

1x1 

Base

Filter Concat

nx1 

1xn 

nx1 

1xn 

nx1 

1x1 

Figure 6. Inception modules after the factorization of the n × n
convolutions. In our proposed architecture, we chose n = 7 for

the 17× 17 grid. (The filter sizes are picked using principle 3)

.
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Figure 7. Inception modules with expanded the filter bank outputs.

This architecture is used on the coarsest (8 × 8) grids to promote

high dimensional representations, as suggested by principle 2 of

Section 2. We are using this solution only on the coarsest grid,

since that is the place where producing high dimensional sparse

representation is the most critical as the ratio of local processing

(by 1 × 1 convolutions) is increased compared to the spatial ag-

gregation.

can replace any n × n convolution by a 1 × n convolu-

tion followed by a n× 1 convolution and the computational

cost saving increases dramatically as n grows (see figure 6).

In practice, we have found that employing this factorization

does not work well on early layers, but it gives very good re-

sults on medium grid-sizes (On m×m feature maps, where

m ranges between 12 and 20). On that level, very good re-

sults can be achieved by using 1× 7 convolutions followed

by 7× 1 convolutions.
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5x5x768

8x8x1280

Inception

5x5x128

1x1x1024

5x5 Average pooling with stride 3
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Figure 8. Auxiliary classifier on top of the last 17×17 layer. Batch

normalization[7] of the layers in the side head results in a 0.4%
absolute gain in top-1 accuracy. The lower axis shows the number

of itertions performed, each with batch size 32.

4. Utility of Auxiliary Classifiers

[20] has introduced the notion of auxiliary classifiers to

improve the convergence of very deep networks. The origi-

nal motivation was to push useful gradients to the lower lay-

ers to make them immediately useful and improve the con-

vergence during training by combating the vanishing gra-

dient problem in very deep networks. Also Lee et al[11]

argues that auxiliary classifiers promote more stable learn-

ing and better convergence. Interestingly, we found that

auxiliary classifiers did not result in improved convergence

early in the training: the training progression of network

with and without side head looks virtually identical before

both models reach high accuracy. Near the end of training,

the network with the auxiliary branches starts to overtake

the accuracy of the network without any auxiliary branch

and reaches a slightly higher plateau.

Also [20] used two side-heads at different stages in the

network. The removal of the lower auxiliary branch did not

have any adverse effect on the final quality of the network.

Together with the earlier observation in the previous para-

graph, this means that original the hypothesis of [20] that

these branches help evolving the low-level features is most

likely misplaced. Instead, we argue that the auxiliary clas-

sifiers act as regularizer. This is supported by the fact that

the main classifier of the network performs better if the side

branch is batch-normalized [7] or has a dropout layer. This

also gives a weak supporting evidence for the conjecture

that batch normalization acts as a regularizer.

5. Efficient Grid Size Reduction

Traditionally, convolutional networks used some pooling

operation to decrease the grid size of the feature maps. In

order to avoid a representational bottleneck, before apply-

ing maximum or average pooling the activation dimension

of the network filters is expanded. For example, starting a

d×d grid with k filters, if we would like to arrive at a d
2 × d

2
grid with 2k filters, we first need to compute a stride-1 con-

35x35x320

17x17x320

17x17x640

Pooling

Inception

35x35x320

35x35x640

17x17x640

Inception

Pooling

Figure 9. Two alternative ways of reducing the grid size. The so-

lution on the left violates the principle 1 of not introducing an rep-

resentational bottleneck from Section 2. The version on the right

is 3 times more expensive computationally.

Pool
stride 2 

Base

Filter Concat

1x1 

3x3
stride 2 

3x3
stride 1 

1x1 

3x3
stride 2 

35x35x320

17x17x320 17x17x320

17x17x640

poolconv

concat

Figure 10. Inception module that reduces the grid-size while ex-

pands the filter banks. It is both cheap and avoids the representa-

tional bottleneck as is suggested by principle 1. The diagram on

the right represents the same solution but from the perspective of

grid sizes rather than the operations.

volution with 2k filters and then apply an additional pooling

step. This means that the overall computational cost is dom-

inated by the expensive convolution on the larger grid using

2d2k2 operations. One possibility would be to switch to

pooling with convolution and therefore resulting in 2(d2 )
2k2

reducing the computational cost by a quarter. However, this

creates a representational bottlenecks as the overall dimen-

sionality of the representation drops to (d2 )
2k resulting in

less expressive networks (see Figure 9). Instead of doing so,

we suggest another variant the reduces the computational

cost even further while removing the representational bot-

tleneck. (see Figure 10). We can use two parallel stride 2

blocks: P and C. P is a pooling layer (either average or

maximum pooling) the activation, both of them are stride 2
the filter banks of which are concatenated as in figure 10.

6. Inception-v3

Here we are connecting the dots from above and pro-

pose a new architecture with improved performance on the

ILSVRC 2012 classification benchmark. The layout of our
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type
patch size/stride

or remarks
input size

conv 3×3/2 299×299×3

conv 3×3/1 149×149×32

conv padded 3×3/1 147×147×32

pool 3×3/2 147×147×64

conv 3×3/1 73×73×64

conv 3×3/2 71×71×80

conv 3×3/1 35×35×192

3×Inception As in figure 5 35×35×288

5×Inception As in figure 6 17×17×768

2×Inception As in figure 7 8×8×1280

pool 8× 8 8× 8× 2048

linear logits 1× 1× 2048

softmax classifier 1× 1× 1000

Table 1. The outline of the proposed network architecture. The

output size of each module is the input size of the next one. We

are using variations of reduction technique depicted Figure 10 to

reduce the grid sizes between the Inception blocks whenever ap-

plicable. We have marked the convolution with 0-padding, which

is used to maintain the grid size. 0-padding is also used inside

those Inception modules that do not reduce the grid size. All other

layers do not use padding. The various filter bank sizes are chosen

to observe principle 4 from Section 2.

network is given in table 1. Note that we have factorized

the traditional 7 × 7 convolution into three 3 × 3 convolu-

tions based on the same ideas as described in section 3.1.

For the Inception part of the network, we have 3 traditional

inception modules at the 35× 35 with 288 filters each. This

is reduced to a 17 × 17 grid with 768 filters using the grid

reduction technique described in section 5. This is is fol-

lowed by 5 instances of the factorized inception modules as

depicted in figure 5. This is reduced to a 8× 8× 1280 grid

with the grid reduction technique depicted in figure 10. At

the coarsest 8× 8 level, we have two Inception modules as

depicted in figure 6, with a concatenated output filter bank

size of 2048 for each tile. The detailed structure of the net-

work, including the sizes of filter banks inside the Inception

modules, is given in the supplementary material, given in

the model.txt that is in the tar-file of this submission.

However, we have observed that the quality of the network

is relatively stable to variations as long as the principles

from Section 2 are observed. Although our network is 42
layers deep, our computation cost is only about 2.5 higher

than that of GoogLeNet and it is still much more efficient

than VGGNet.

7. Model Regularization via Label Smoothing

Here we propose a mechanism to regularize the classifier

layer by estimating the marginalized effect of label-dropout

during training.

For each training example x, our model computes the

probability of each label k ∈ {1 . . .K}: p(k|x) =
exp(zk)∑
K

i=1
exp(zi)

. Here, zi are the logits or unnormalized log-

probabilities. Consider the ground-truth distribution over

labels q(k|x) for this training example, normalized so that∑
k q(k|x) = 1. For brevity, let us omit the dependence

of p and q on example x. We define the loss for the ex-

ample as the cross entropy: ℓ = −∑K
k=1 log(p(k))q(k).

Minimizing this is equivalent to maximizing the expected

log-likelihood of a label, where the label is selected accord-

ing to its ground-truth distribution q(k). Cross-entropy loss

is differentiable with respect to the logits zk and thus can be

used for gradient training of deep models. The gradient has

a rather simple form: ∂ℓ
∂zk

= p(k)− q(k), which is bounded

between −1 and 1.

Consider the case of a single ground-truth label y, so

that q(y) = 1 and q(k) = 0 for all k 6= y. In this case,

minimizing the cross entropy is equivalent to maximizing

the log-likelihood of the correct label. For a particular ex-

ample x with label y, the log-likelihood is maximized for

q(k) = δk,y , where δk,y is Dirac delta, which equals 1 for

k = y and 0 otherwise. This maximum is not achievable

for finite zk but is approached if zy ≫ zk for all k 6= y
– that is, if the logit corresponding to the ground-truth la-

bel is much great than all other logits. This, however, can

cause two problems. First, it may result in over-fitting: if

the model learns to assign full probability to the ground-

truth label for each training example, it is not guaranteed to

generalize. Second, it encourages the differences between

the largest logit and all others to become large, and this,

combined with the bounded gradient ∂ℓ
∂zk

, reduces the abil-

ity of the model to adapt. Intuitively, this happens because

the model becomes too confident about its predictions.

We propose a mechanism for encouraging the model to

be less confident. While this may not be desired if the goal

is to maximize the log-likelihood of training labels, it does

regularize the model and makes it more adaptable. The

method is very simple. Consider a distribution over labels

u(k), independent of the training example x, and a smooth-

ing parameter ǫ. For a training example with ground-truth

label y, we replace the label distribution q(k|x) = δk,y with

q′(k|x) = (1− ǫ)δk,y + ǫu(k)

which is a mixture of the original ground-truth distribution

q(k|x) and the fixed distribution u(k), with weights 1 − ǫ
and ǫ, respectively. This can be seen as the distribution of

the label k obtained as follows: first, set it to the ground-

truth label k = y; then, with probability ǫ, replace k with

a sample drawn from the distribution u(k). We propose to

use the prior distribution over labels as u(k). In our exper-

iments, we used the uniform distribution u(k) = 1/K, so

that

q′(k) = (1− ǫ)δk,y +
ǫ

K
.
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We refer to this change in ground-truth label distribution as

label-smoothing regularization, or LSR.

Note that LSR achieves the desired goal of preventing

the largest logit from becoming much larger than all others.

Indeed, if this were to happen, then a single q(k) would

approach 1 while all others would approach 0. This would

result in a large cross-entropy with q′(k) because, unlike

q(k) = δk,y , all q′(k) have a positive lower bound.

Another interpretation of LSR can be obtained by con-

sidering the cross entropy:

H(q′, p) = −
K∑

k=1

log p(k)q′(k) = (1−ǫ)H(q, p)+ǫH(u, p)

Thus, LSR is equivalent to replacing a single cross-entropy

loss H(q, p) with a pair of such losses H(q, p) and H(u, p).
The second loss penalizes the deviation of predicted label

distribution p from the prior u, with the relative weight ǫ
1−ǫ

.

Note that this deviation could be equivalently captured by

the KL divergence, since H(u, p) = DKL(u‖p) + H(u)
and H(u) is fixed. When u is the uniform distribution,

H(u, p) is a measure of how dissimilar the predicted dis-

tribution p is to uniform, which could also be measured (but

not equivalently) by negative entropy −H(p); we have not

experimented with this approach.

In our ImageNet experiments with K = 1000 classes,

we used u(k) = 1/1000 and ǫ = 0.1. For ILSVRC 2012,

we have found a consistent improvement of about 0.2% ab-

solute both for top-1 error and the top-5 error (cf. Table 3).

8. Training Methodology

We have trained our networks with stochastic gradient

utilizing the TensorFlow [1] distributed machine learning

system using 50 replicas running each on a NVidia Kepler

GPU with batch size 32 for 100 epochs. Our earlier experi-

ments used momentum [19] with a decay of 0.9, while our

best models were achieved using RMSProp [21] with de-

cay of 0.9 and ǫ = 1.0. We used a learning rate of 0.045,

decayed every two epoch using an exponential rate of 0.94.

In addition, gradient clipping [14] with threshold 2.0 was

found to be useful to stabilize the training. Model evalua-

tions are performed using a running average of the parame-

ters computed over time.

9. Performance on Lower Resolution Input

A typical use-case of vision networks is for the the post-

classification of detection, for example in the Multibox [4]

context. This includes the analysis of a relative small patch

of the image containing a single object with some context.

The tasks is to decide whether the center part of the patch

corresponds to some object and determine the class of the

object if it does. The challenge is that objects tend to be

relatively small and low-resolution. This raises the question

of how to properly deal with lower resolution input.

The common wisdom is that models employing higher

resolution receptive fields tend to result in significantly im-

proved recognition performance. However it is important to

distinguish between the effect of the increased resolution of

the first layer receptive field and the effects of larger model

capacitance and computation. If we just change the reso-

lution of the input without further adjustment to the model,

then we end up using computationally much cheaper mod-

els to solve more difficult tasks. Of course, it is natural,

that these solutions loose out already because of the reduced

computational effort. In order to make an accurate assess-

ment, the model needs to analyze vague hints in order to

be able to “hallucinate” the fine details. This is computa-

tionally costly. The question remains therefore: how much

does higher input resolution helps if the computational ef-

fort is kept constant. One simple way to ensure constant

effort is to reduce the strides of the first two layer in the

case of lower resolution input, or by simply removing the

first pooling layer of the network.

For this purpose we have performed the following three

experiments:

1. 299 × 299 receptive field with stride 2 and maximum

pooling after the first layer.

2. 151 × 151 receptive field with stride 1 and maximum

pooling after the first layer.

3. 79× 79 receptive field with stride 1 and without pool-

ing after the first layer.

All three networks have almost identical computational

cost. Although the third network is slightly cheaper, the

cost of the pooling layer is marginal and (within 1% of the

total cost of the)network. In each case, the networks were

trained until convergence and their quality was measured on

the validation set of the ImageNet ILSVRC 2012 classifica-

tion benchmark. The results can be seen in table 2. Al-

though the lower-resolution networks take longer to train,

the quality of the final result is quite close to that of their

higher resolution counterparts.

However, if one would just naively reduce the network

size according to the input resolution, then network would

perform much more poorly. However this would an unfair

comparison as we would are comparing a 16 times cheaper

model on a more difficult task.

Also these results of table 2 suggest, one might con-

sider using dedicated high-cost low resolution networks for

smaller objects in the R-CNN [5] context.

10. Experimental Results and Comparisons

Table 3 shows the experimental results about the recog-

nition performance of our proposed architecture (Inception-
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Receptive Field Size Top-1 Accuracy (single frame)

79× 79 75.2%

151× 151 76.4%

299× 299 76.6%

Table 2. Comparison of recognition performance when the size of

the receptive field varies, but the computational cost is constant.

Network
Top-1

Error

Top-5

Error
Cost

Bn Ops

GoogLeNet [20] 29% 9.2% 1.5

BN-GoogLeNet 26.8% - 1.5

BN-Inception [7] 25.2% 7.8 2.0

Inception-v3-basic 23.4% - 3.8
Inception-v3-rmsprop

RMSProp 23.1% 6.3 3.8
Inception-v3-smooth

Label Smoothing 22.8% 6.1 3.8
Inception-v3-fact

Factorized 7× 7 21.6% 5.8 4.8
Inception-v3

BN-auxiliary
21.2% 5.6% 4.8

Table 3. Single crop experimental results comparing the cumula-

tive effects on the various contributing factors. We compare our

numbers with the best published single-crop inference for Ioffe at

al [7]. For the “Inception-v3-” lines, the changes are cumulative

and each subsequent line includes the new change in addition to

the previous ones. The last line is referring to all the changes is

what we refer to as “Inception-v3” below. Unfortunately, He et

al [6] reports the only 10-crop evaluation results, but not single

crop results, which is reported in the Table 4 below.

v2) as described in Section 6. Each Inception-v2 line shows

the result of the cumulative changes including the high-

lighted new modification plus all the earlier ones. Label

Smoothing refers to method described in Section 7. Fac-

torized 7 × 7 includes a change that factorizes the first

7 × 7 convolutional layer into a sequence of 3 × 3 convo-

lutional layers. BN-auxiliary refers to the version in which

the fully connected layer of the auxiliary classifier is also

batch-normalized, not just the convolutions. We are refer-

ring to the model in last row of Table 3 as Inception-v3 and

evaluate its performance in the multi-crop and ensemble set-

tings.

All our evaluations are done on the 48238 non-

blacklisted examples on the ILSVRC-2012 validation set,

as suggested by [16]. We have evaluated all the 50000 ex-

amples as well and the results were roughly 0.1% worse in

top-5 error and around 0.2% in top-1 error. In the upcom-

ing version of this paper, we will verify our ensemble result

on the test set, but at the time of our last evaluation of BN-

Inception in spring [7] indicates that the test and validation

set error tends to correlate very well.

Network
Crops

Evaluated

Top-1

Error

Top-5

Error

GoogLeNet [20] 10 - 9.15%

GoogLeNet [20] 144 - 7.89%

VGG [18] - 24.4% 6.8%

BN-Inception [7] 144 22% 5.82%

PReLU [6] 10 24.27% 7.38%

PReLU [6] - 21.59% 5.71%

Inception-v3 12 19.47% 4.48%

Inception-v3 144 18.77% 4.2%

Table 4. Single-model, multi-crop experimental results compar-

ing the cumulative effects on the various contributing factors. We

compare our numbers with the best published single-model infer-

ence results on the ILSVRC 2012 classification benchmark.

Network Models
Evaluated

Crops

Evaluated

Top-1

Error

Top-5

Error

VGGNet [18] 2 - 23.7% 6.8%

GoogLeNet [20] 7 144 - 6.67%

PReLU [6] - - - 4.94%

BN-Inception [7] 6 144 20.1% 4.9%

Inception-v3 4 144 17.2% 3.58%∗

Table 5. Ensemble evaluation results comparing multi-model,

multi-crop reported results. Our numbers are compared with the

best published ensemble inference results on the ILSVRC 2012

classification benchmark. ∗All results, but the top-5 ensemble

result reported are on the validation set. The ensemble yielded

3.46% top-5 error on the validation set.

11. Conclusions

We have provided several design principles to scale up

convolutional networks and studied them in the context of

the Inception architecture. This guidance can lead to high

performance vision networks that have a relatively mod-

est computation cost compared to simpler, more monolithic

architectures. Our highest quality version of Inception-v2

reaches 21.2%, top-1 and 5.6% top-5 error for single crop

evaluation on the ILSVR 2012 classification, setting a new

state of the art. This is achieved with relatively modest

(2.5×) increase in computational cost compared to the net-

work described in Ioffe et al [7]. Still our solution uses

much less computation than the best published results based

on denser networks: our model outperforms the results of

He et al [6] – cutting the top-5 (top-1) error by 25% (14%)

relative, respectively – while being six times cheaper com-

putationally and using at least five times less parameters

(estimated). The combination of lower parameter count

and additional regularization with batch-normalized auxil-

iary classifiers and label-smoothing allows for training high

quality networks on relatively modest sized training sets.

2825



References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
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