
Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images

Shuran Song Jianxiong Xiao

Princeton University

http://dss.cs.princeton.edu

Abstract

We focus on the task of amodal 3D object detection in

RGB-D images, which aims to produce a 3D bounding box

of an object in metric form at its full extent. We introduce

Deep Sliding Shapes, a 3D ConvNet formulation that takes

a 3D volumetric scene from a RGB-D image as input and

outputs 3D object bounding boxes. In our approach, we

propose the first 3D Region Proposal Network (RPN) to

learn objectness from geometric shapes and the first joint

Object Recognition Network (ORN) to extract geometric

features in 3D and color features in 2D. In particular, we

handle objects of various sizes by training an amodal RPN

at two different scales and an ORN to regress 3D bounding

boxes. Experiments show that our algorithm outperforms

the state-of-the-art by 13.8 in mAP and is 200× faster than

the original Sliding Shapes.

1. Introduction

Typical object detection predicts the category of an ob-

ject along with a 2D bounding box on the image plane for

the visible part of the object. While this type of result is use-

ful for some tasks, such as object retrieval, it is rather unsat-

isfatory for doing any further reasoning grounded in the real

3D world. In this paper, we focus on the task of amodal 3D

object detection in RGB-D images, which aims to produce

an object’s 3D bounding box that gives real-world dimen-

sions at the object’s full extent, regardless of truncation or

occlusion. This kind of recognition is much more useful, for

instance, in the perception-manipulation loop for robotics

applications. But adding a new dimension for prediction

significantly enlarges the search space, and makes the task

much more challenging.

The arrival of reliable and affordable RGB-D sensors

(e.g., Microsoft Kinect) has given us an opportunity to re-

visit this critical task. However naı̈vely converting 2D de-

tection results to 3D does not work well (see Table 3 and

[10]). To make good use of the depth information, Sliding

Shapes [25] was proposed to slide a 3D detection window

in 3D space. While it is limited by the use of hand-crafted

features, this approach naturally formulates the task in 3D.
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Figure 1. 3D Amodal Region Proposal Network: Taking a 3D

volume from depth as input, our fully convolutional 3D network

extracts 3D proposals at two scales with different receptive fields.
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Figure 2. Joint Object Recognition Network: For each 3D pro-

posal, we feed the 3D volume from depth to a 3D ConvNet, and

feed the 2D color patch (2D projection of the 3D proposal) to a 2D

ConvNet, to jointly learn object category and 3D box regression.

Alternatively, Depth RCNN [10] takes a 2D approach: de-

tect objects in the 2D image plane by treating depth as ex-

tra channels of a color image, then fit a 3D model to the

points inside the 2D detected window by using ICP align-

ment. Given existing 2D and 3D approaches to the prob-

lem, it is natural to ask: which representation is better

for 3D amodal object detection, 2D or 3D? Currently, the

2D-centric Depth RCNN outperforms the 3D-centric Slid-

ing Shapes. But perhaps Depth RCNN’s strength comes

from using a well-designed deep network pre-trained with

ImageNet, rather than its 2D representation. Is it possible

to obtain an elegant but even more powerful 3D formulation

by also leveraging deep learning in 3D?

In this paper, we introduce Deep Sliding Shapes, a com-

plete 3D formulation to learn object proposals and classi-

fiers using 3D convolutional neural networks (ConvNets).
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TSDF for a scene used in Region Proposal Network TSDF for six objects used in the Object Recognition Network

Figure 3. Visualization of TSDF Encoding. We only visualize the TSDF values when close to the surface. Red indicates the voxel is in

front of surfaces; and blue indicates the voxel is behind the surface. The resolution is 208×208×100 for the Region Proposal Network,

and 30×30×30 for the Object Recognition Network.

We propose the first 3D Region Proposal Network (RPN)

that takes a 3D volumetric scene as input and outputs 3D ob-

ject proposals (Figure 1). It is designed to generate amodal

proposals for whole objects at two different scales for ob-

jects with different sizes. We also propose the first joint

Object Recognition Network (PRN) to use a 2D ConvNet

to extract image features from color, and a 3D ConvNet

to extract geometric features from depth (Figure 2). This

network is also the first to regress 3D bounding boxes for

objects directly from 3D proposals. Extensive experiments

show that our 3D ConvNets can learn a more powerful rep-

resentation for encoding geometric shapes (Table 3), than

2D representations (e.g. HHA in Depth-RCNN). Our algo-

rithm is also much faster than Depth-RCNN and the the

original Sliding Shapes, as it only requires a single forward

pass of the ConvNets in GPU at test time.

Our design fully exploits the advantage of 3D. Therefore,

our algorithm naturally benefits from the following five as-

pects: First, we can predict 3D bounding boxes without the

extra step of fitting a model from extra CAD data. This el-

egantly simplifies the pipeline, accelerates the speed, and

boosts the performance because the network can directly

optimize for the final goal. Second, amodal proposal gen-

eration and recognition is very difficult in 2D, because of

occlusion, limited field of view, and large size variation due

to projection. But in 3D, because objects from the same

category typically have similar physical sizes and the dis-

traction from occluders falls outside the window, our 3D

sliding-window proposal generation can support amodal de-

tection naturally. Third, by representing shapes in 3D, our

ConvNet can have a chance to learn meaningful 3D shape

features in a better aligned space. Fourth, in the RPN, the

receptive field is naturally represented in real world dimen-

sions, which guides our architecture design. Finally, we can

exploit simple 3D context priors by using the Manhattan

world assumption to define bounding box orientations.

While the opportunity is encouraging, there are also sev-

eral unique challenges for 3D object detection. First, a 3D

volumetric representation requires much more memory and

computation. To address this issue, we propose to sepa-

rate the 3D Region Proposal Network with a low-res whole

scene as input, and the Object Recognition Network with

high-res input for each object. Second, 3D physical ob-

ject bounding boxes vary more in size than 2D pixel-based

bounding boxes (due to photography and dataset bias) [16].

To address this issue, we propose a multi-scale Region Pro-

posal Network that predicts proposals with different sizes

using different receptive fields. Third, although the geomet-

ric shapes from depth are very useful, their signal is usually

lower in frequency than the texture signal in color images.

To address this issue, we propose a simple but principled

way to jointly incorporate color information from the 2D

image patch derived by projecting the 3D region proposal.

1.1. Related works

Deep ConvNets have revolutionized 2D image-based ob-

ject detection. RCNN [8], Fast RCNN [7], and Faster

RCNN [18] are three iterations of the most successful state-

of-the-art. Beyond predicting only the visible part of an

object, [14] further extended RCNN to estimate the amodal

box for the whole object. But their result is in 2D and only

the height of the object is estimated, while we desire an

amodal box in 3D. Inspired by the success from 2D, this pa-

per proposes an integrated 3D detection pipeline to exploit

3D geometric cues using 3D ConvNets for RGB-D images.

2D Object Detector in RGB-D Images 2D object de-

tection approaches for RGB-D images treat depth as ex-

tra channel(s) appended to the color images, using hand-

crafted features [9], sparse coding [2, 3], or recursive neu-

ral networks [23]. Depth-RCNN [11, 10] is the first object

detector using deep ConvNets on RGB-D images. They ex-

tend the RCNN framework [8] for color-based object de-

tection by encoding the depth map as three extra channels

(with Geocentric Encoding: Disparity, Height, and Angle)

appended to the color images. [10] extended Depth-RCNN

to produce 3D bounding boxes by aligning 3D CAD models

to the recognition results. [12] further improved the result

by cross model supervision transfer. For 3D CAD model

classification, [26] and [20] took a view-based deep learn-

ing approach by rendering 3D shapes as 2D image(s).

3D Object Detector Sliding Shapes [25] is a 3D object

detector that runs sliding windows in 3D to directly classify

each 3D window. However, the algorithm uses hand-crafted

features and the algorithm uses many exemplar classifiers

so it is very slow. Recently, [32] also proposed the Clouds

of Oriented Gradients feature on RGB-D images. In this

paper we hope to improve these hand-crafted feature rep-

resentations with 3D ConvNets that can learn powerful 3D

and color features from the data.

2809



0.6×0.2×0.4: 2 

0.5×0.5×0.2: 1 

0.3×0.3×0.5: 1 

0.95×0.95×0.9: 1 1.6×0.8×0.75: 2 1.2×0.5×0.8: 2 2×1.5×1: 2 0.5×0.25×0.7: 2

Level 1 Level 2 

0.55×0.55×0.65: 1 1.25×1.25×0.75: 1 2×2×0.95: 1 0.6×0.6×1: 1 0.7×0.3×1.1: 2

Figure 4. List of All Anchors Types. The subscripts show the

width × depth × height in meters, followed by the number of

orientations for this anchor after the colon.

3D Feature Learning HMP3D [15] introduced a hierar-

chical sparse coding technique for unsupervised learning

features from RGB-D images and 3D point cloud data. The

feature is trained on a synthetic CAD dataset, and tested on

scene labeling task in RGB-D video. In contrast, we de-

sire a supervised way to learn 3D features using the deep

learning techniques that are proven to be more effective for

image-based feature learning.

3D Deep Learning 3D ShapeNets [29] introduced 3D

deep learning for modeling 3D shapes, and demonstrated

that powerful 3D features can be learned from a large

amount of 3D data. Several recent works [17, 5, 31, 13] also

extract deep learning features for retrieval and classification

of CAD models. While these works are inspiring, none of

them focuses on 3D object detection in RGB-D images.

Region Proposal For 2D object proposals, previous ap-

proaches [27, 1, 11] are mostly based on merging segmenta-

tion results. Recently, Faster RCNN [18] introduces a more

efficient and effective ConvNet-based formulation, which

inspires us to learn 3D objectness using ConvNets. For 3D

object proposals, [4] introduces an MRF formulation with

hand-crafted features for a few object categories in street

scenes. We desire to learn 3D objectness for general scenes

from the data using ConvNets.

2. Encoding 3D Representation

The first question that we need to answer for 3D deep

learning is: how to encode a 3D space to present to the

ConvNets? For color images, naturally the input is a 2D

array of pixel color. For depth maps, Depth RCNN [10, 11]

proposed to encode depth as a 2D color image with three

channels. Although it has the advantage to reuse the pre-

trained ConvNets for color images [12], we desire a way

to encode the geometric shapes naturally in 3D, preserving

spatial locality. Furthermore, compared to methods using

hand-crafted 3D features [5, 31], we desire a representation

that encodes the 3D geometry as raw as possible, and let

ConvNets learn the most discriminative features from the

raw data.

To encode a 3D space for recognition, we propose to

adopt a directional Truncated Signed Distance Function

(TSDF). Given a 3D space, we divide it into an equally

table
sofa chairbed bathtub garbage bin

lamp
pillow
sinknight stand toilet

bookshelfdesk
doormonitor tvbox

Figure 5. 2D t-SNE embedding of the last layer features learned

from the 3D ConvNet. Color encodes object category.

spaced 3D voxel grid. The value in each voxel is defined

to be the shortest distance between the voxel center and the

surface from the input depth map. Figure 3 shows a few ex-

amples. To encode the direction of the surface point, instead

of a single distance value, we propose a directional TSDF to

store a three-dimensional vector [dx, dy, dz] in each voxel

to record the distance in three directions to the closest sur-

face point. The value is clipped by 2δ, where δ is the grid

size in each dimension. The sign of the value indicates

whether the cell is in front of or behind the surface.

To further speed up the TSDF computation, as an ap-

proximation, we can also use projective TSDF instead of

accurate TSDF where the nearest point is found only on the

line of sight from the camera. The projective TSDF is faster

to compute, but empirically worse in performance com-

pared to the accurate TSDF for recognition (see Table 2).

We also experiment with other encodings, and we find that

the proposed directional TSDF outperforms all the other al-

ternatives (see Table 2). Note that we can also encode col-

ors in this 3D volumetric representation, by appending RGB

values to each voxel [28].

3. Multi-scale 3D Region Proposal Network

Region proposal generation is a critical step in an object

detection pipeline [8, 7, 18]. Instead of exhaustive search

in the original Sliding Shapes, we desire a region proposal

method in 3D to provide a small set of object agnostic can-

didates and to speed up the computation, while still utilizing

the 3D information . But there are several unique challenges

in 3D. First, because of an extra dimension, the possible lo-

cations for an object increases by 30 times 1. This makes the

region proposal step much more important and challenging

as it need to be more selective. Second, we are interested

in amodal detection that aims to estimate the full 3D box

that covers the object at its full extent. Hence an algorithm

needs to infer the full box beyond the visible parts. Third,

different object categories have very different object size in

3D. In 2D, a picture typically only focuses on the object of

145 thousand windows per image in 2D [7] vs. 1.4 million in 3D.
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Input: Color and Depth Level 1 Proposals Level 2 Proposals Final Recognition Result

tablesofa chairbed bathtub garbage bin lamp pillow sinknight stand toilet bookshelf

Figure 6. Examples for Detection Results. For the proposal results, we show the heat map for the distribution of the top proposals (red is

the area with more concentration), and a few top boxes after NMS. For the recognition results, our amodal 3D detection can estimate the

full extent of 3D both vertically (e.g. bottom of a bed) and horizontally (e.g. full size sofa in the last row).

interest due to photography bias. Therefore, the pixel ar-

eas of object bounding boxes are all in a very limited range

[18, 16]. For example, the pixel areas of a bed and a chair

can be similar in picture while their 3D physical sizes are

very different.

To address these challenges, we propose a multi-scale

3D Region Proposal Network (RPN) to learn 3D objectness

using back-propagation (Figure 1). Our RPN takes a 3D

scene as input and output a set of 3D amodal object bound-

ing boxes with objectness scores. The network is designed

to fully utilize the information from 3D physical world such

as object size, physical size of the receptive field, and room

orientation. Instead of a bottom-up segmentation based ap-

proach (e.g. [27]) that can only identify the visible part, our

RPN looks at all the locations for the whole object, in a style

similar to sliding windows, to generate amodal object pro-

posals. To handle different object sizes, our RPN targets at

two scales with two different sizes of receptive fields.

Range and resolution For any given 3D scene, we rotate

it to align with gravity direction as our camera coordinate

system. Based on the specs. for most RGB-D cameras, we

target at the effective range of the 3D space [−2.6, 2.6] me-

ters horizontally, [−1.5, 1] meters vertically, and [0.4, 5.6]
meters in depth. In this range we encoded the 3D scene by

volumetric TSDF with grid size 0.025 meters, resulting in a

208× 208× 100 volume as the input to the 3D RPN.

Orientation We desire a small set of proposals to cover

all objects with different aspect ratios. Therefore, as a

heuristic, we propose to use the major directions of the

room for the orientations of all proposals. Under the Man-

hattan world assumption, we use RANSAC plane fitting to

get the room orientations. This method can give us pretty

accurate bounding box orientations for most object cate-

gories. For objects that do not follow the room orientations,

such as chairs, their horizontal aspect ratios tend to be a

square, and therefore the orientation doesn’t matter much

in terms of Intersection-Over-Union.

Anchor For each sliding window (i.e. convolution) loca-

tion, the algorithm will predict N region proposals. Each

of the proposal corresponds to one of the N anchor boxes.

In our case, based on statistics of object sizes, we define a

set of N = 19 anchors shown in Figure 4. For the anchors

with non-square horizontal aspect ratios, we define another

anchor with the same size but rotated 90 degrees.

Multi-scale RPN The physical sizes of anchor boxes vary

a lot, from 0.3 meters (e.g. trash bin) to 2 meters (e.g. bed).

If we use a single-scale RPN, the network would have to

predict all the boxes using the same receptive fields. This

means that the effective feature map will contain many dis-

tractions for small object proposals. To address this issue,

we propose a multi-scale RPN to output proposals at small

and big scales, the big one has a pooling layer to increase
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