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Abstract

We focus on the task of amodal 3D object detection in

RGB-D images, which aims to produce a 3D bounding box

of an object in metric form at its full extent. We introduce

Deep Sliding Shapes, a 3D ConvNet formulation that takes

a 3D volumetric scene from a RGB-D image as input and

outputs 3D object bounding boxes. In our approach, we

propose the first 3D Region Proposal Network (RPN) to

learn objectness from geometric shapes and the first joint

Object Recognition Network (ORN) to extract geometric

features in 3D and color features in 2D. In particular, we

handle objects of various sizes by training an amodal RPN

at two different scales and an ORN to regress 3D bounding

boxes. Experiments show that our algorithm outperforms

the state-of-the-art by 13.8 in mAP and is 200× faster than

the original Sliding Shapes.

1. Introduction

Typical object detection predicts the category of an ob-

ject along with a 2D bounding box on the image plane for

the visible part of the object. While this type of result is use-

ful for some tasks, such as object retrieval, it is rather unsat-

isfatory for doing any further reasoning grounded in the real

3D world. In this paper, we focus on the task of amodal 3D

object detection in RGB-D images, which aims to produce

an object’s 3D bounding box that gives real-world dimen-

sions at the object’s full extent, regardless of truncation or

occlusion. This kind of recognition is much more useful, for

instance, in the perception-manipulation loop for robotics

applications. But adding a new dimension for prediction

significantly enlarges the search space, and makes the task

much more challenging.

The arrival of reliable and affordable RGB-D sensors

(e.g., Microsoft Kinect) has given us an opportunity to re-

visit this critical task. However naı̈vely converting 2D de-

tection results to 3D does not work well (see Table 3 and

[10]). To make good use of the depth information, Sliding

Shapes [25] was proposed to slide a 3D detection window

in 3D space. While it is limited by the use of hand-crafted

features, this approach naturally formulates the task in 3D.
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Figure 1. 3D Amodal Region Proposal Network: Taking a 3D

volume from depth as input, our fully convolutional 3D network

extracts 3D proposals at two scales with different receptive fields.
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Figure 2. Joint Object Recognition Network: For each 3D pro-

posal, we feed the 3D volume from depth to a 3D ConvNet, and

feed the 2D color patch (2D projection of the 3D proposal) to a 2D

ConvNet, to jointly learn object category and 3D box regression.

Alternatively, Depth RCNN [10] takes a 2D approach: de-

tect objects in the 2D image plane by treating depth as ex-

tra channels of a color image, then fit a 3D model to the

points inside the 2D detected window by using ICP align-

ment. Given existing 2D and 3D approaches to the prob-

lem, it is natural to ask: which representation is better

for 3D amodal object detection, 2D or 3D? Currently, the

2D-centric Depth RCNN outperforms the 3D-centric Slid-

ing Shapes. But perhaps Depth RCNN’s strength comes

from using a well-designed deep network pre-trained with

ImageNet, rather than its 2D representation. Is it possible

to obtain an elegant but even more powerful 3D formulation

by also leveraging deep learning in 3D?

In this paper, we introduce Deep Sliding Shapes, a com-

plete 3D formulation to learn object proposals and classi-

fiers using 3D convolutional neural networks (ConvNets).
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TSDF for a scene used in Region Proposal Network TSDF for six objects used in the Object Recognition Network

Figure 3. Visualization of TSDF Encoding. We only visualize the TSDF values when close to the surface. Red indicates the voxel is in

front of surfaces; and blue indicates the voxel is behind the surface. The resolution is 208×208×100 for the Region Proposal Network,

and 30×30×30 for the Object Recognition Network.

We propose the first 3D Region Proposal Network (RPN)

that takes a 3D volumetric scene as input and outputs 3D ob-

ject proposals (Figure 1). It is designed to generate amodal

proposals for whole objects at two different scales for ob-

jects with different sizes. We also propose the first joint

Object Recognition Network (PRN) to use a 2D ConvNet

to extract image features from color, and a 3D ConvNet

to extract geometric features from depth (Figure 2). This

network is also the first to regress 3D bounding boxes for

objects directly from 3D proposals. Extensive experiments

show that our 3D ConvNets can learn a more powerful rep-

resentation for encoding geometric shapes (Table 3), than

2D representations (e.g. HHA in Depth-RCNN). Our algo-

rithm is also much faster than Depth-RCNN and the the

original Sliding Shapes, as it only requires a single forward

pass of the ConvNets in GPU at test time.

Our design fully exploits the advantage of 3D. Therefore,

our algorithm naturally benefits from the following five as-

pects: First, we can predict 3D bounding boxes without the

extra step of fitting a model from extra CAD data. This el-

egantly simplifies the pipeline, accelerates the speed, and

boosts the performance because the network can directly

optimize for the final goal. Second, amodal proposal gen-

eration and recognition is very difficult in 2D, because of

occlusion, limited field of view, and large size variation due

to projection. But in 3D, because objects from the same

category typically have similar physical sizes and the dis-

traction from occluders falls outside the window, our 3D

sliding-window proposal generation can support amodal de-

tection naturally. Third, by representing shapes in 3D, our

ConvNet can have a chance to learn meaningful 3D shape

features in a better aligned space. Fourth, in the RPN, the

receptive field is naturally represented in real world dimen-

sions, which guides our architecture design. Finally, we can

exploit simple 3D context priors by using the Manhattan

world assumption to define bounding box orientations.

While the opportunity is encouraging, there are also sev-

eral unique challenges for 3D object detection. First, a 3D

volumetric representation requires much more memory and

computation. To address this issue, we propose to sepa-

rate the 3D Region Proposal Network with a low-res whole

scene as input, and the Object Recognition Network with

high-res input for each object. Second, 3D physical ob-

ject bounding boxes vary more in size than 2D pixel-based

bounding boxes (due to photography and dataset bias) [16].

To address this issue, we propose a multi-scale Region Pro-

posal Network that predicts proposals with different sizes

using different receptive fields. Third, although the geomet-

ric shapes from depth are very useful, their signal is usually

lower in frequency than the texture signal in color images.

To address this issue, we propose a simple but principled

way to jointly incorporate color information from the 2D

image patch derived by projecting the 3D region proposal.

1.1. Related works

Deep ConvNets have revolutionized 2D image-based ob-

ject detection. RCNN [8], Fast RCNN [7], and Faster

RCNN [18] are three iterations of the most successful state-

of-the-art. Beyond predicting only the visible part of an

object, [14] further extended RCNN to estimate the amodal

box for the whole object. But their result is in 2D and only

the height of the object is estimated, while we desire an

amodal box in 3D. Inspired by the success from 2D, this pa-

per proposes an integrated 3D detection pipeline to exploit

3D geometric cues using 3D ConvNets for RGB-D images.

2D Object Detector in RGB-D Images 2D object de-

tection approaches for RGB-D images treat depth as ex-

tra channel(s) appended to the color images, using hand-

crafted features [9], sparse coding [2, 3], or recursive neu-

ral networks [23]. Depth-RCNN [11, 10] is the first object

detector using deep ConvNets on RGB-D images. They ex-

tend the RCNN framework [8] for color-based object de-

tection by encoding the depth map as three extra channels

(with Geocentric Encoding: Disparity, Height, and Angle)

appended to the color images. [10] extended Depth-RCNN

to produce 3D bounding boxes by aligning 3D CAD models

to the recognition results. [12] further improved the result

by cross model supervision transfer. For 3D CAD model

classification, [26] and [20] took a view-based deep learn-

ing approach by rendering 3D shapes as 2D image(s).

3D Object Detector Sliding Shapes [25] is a 3D object

detector that runs sliding windows in 3D to directly classify

each 3D window. However, the algorithm uses hand-crafted

features and the algorithm uses many exemplar classifiers

so it is very slow. Recently, [32] also proposed the Clouds

of Oriented Gradients feature on RGB-D images. In this

paper we hope to improve these hand-crafted feature rep-

resentations with 3D ConvNets that can learn powerful 3D

and color features from the data.
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0.6×0.2×0.4: 2 

0.5×0.5×0.2: 1 

0.3×0.3×0.5: 1 

0.95×0.95×0.9: 1 1.6×0.8×0.75: 2 1.2×0.5×0.8: 2 2×1.5×1: 2 0.5×0.25×0.7: 2

Level 1 Level 2 

0.55×0.55×0.65: 1 1.25×1.25×0.75: 1 2×2×0.95: 1 0.6×0.6×1: 1 0.7×0.3×1.1: 2

Figure 4. List of All Anchors Types. The subscripts show the

width × depth × height in meters, followed by the number of

orientations for this anchor after the colon.

3D Feature Learning HMP3D [15] introduced a hierar-

chical sparse coding technique for unsupervised learning

features from RGB-D images and 3D point cloud data. The

feature is trained on a synthetic CAD dataset, and tested on

scene labeling task in RGB-D video. In contrast, we de-

sire a supervised way to learn 3D features using the deep

learning techniques that are proven to be more effective for

image-based feature learning.

3D Deep Learning 3D ShapeNets [29] introduced 3D

deep learning for modeling 3D shapes, and demonstrated

that powerful 3D features can be learned from a large

amount of 3D data. Several recent works [17, 5, 31, 13] also

extract deep learning features for retrieval and classification

of CAD models. While these works are inspiring, none of

them focuses on 3D object detection in RGB-D images.

Region Proposal For 2D object proposals, previous ap-

proaches [27, 1, 11] are mostly based on merging segmenta-

tion results. Recently, Faster RCNN [18] introduces a more

efficient and effective ConvNet-based formulation, which

inspires us to learn 3D objectness using ConvNets. For 3D

object proposals, [4] introduces an MRF formulation with

hand-crafted features for a few object categories in street

scenes. We desire to learn 3D objectness for general scenes

from the data using ConvNets.

2. Encoding 3D Representation

The first question that we need to answer for 3D deep

learning is: how to encode a 3D space to present to the

ConvNets? For color images, naturally the input is a 2D

array of pixel color. For depth maps, Depth RCNN [10, 11]

proposed to encode depth as a 2D color image with three

channels. Although it has the advantage to reuse the pre-

trained ConvNets for color images [12], we desire a way

to encode the geometric shapes naturally in 3D, preserving

spatial locality. Furthermore, compared to methods using

hand-crafted 3D features [5, 31], we desire a representation

that encodes the 3D geometry as raw as possible, and let

ConvNets learn the most discriminative features from the

raw data.

To encode a 3D space for recognition, we propose to

adopt a directional Truncated Signed Distance Function

(TSDF). Given a 3D space, we divide it into an equally

table
sofa chairbed bathtub garbage bin

lamp
pillow
sinknight stand toilet

bookshelfdesk
doormonitor tvbox

Figure 5. 2D t-SNE embedding of the last layer features learned

from the 3D ConvNet. Color encodes object category.

spaced 3D voxel grid. The value in each voxel is defined

to be the shortest distance between the voxel center and the

surface from the input depth map. Figure 3 shows a few ex-

amples. To encode the direction of the surface point, instead

of a single distance value, we propose a directional TSDF to

store a three-dimensional vector [dx, dy, dz] in each voxel

to record the distance in three directions to the closest sur-

face point. The value is clipped by 2δ, where δ is the grid

size in each dimension. The sign of the value indicates

whether the cell is in front of or behind the surface.

To further speed up the TSDF computation, as an ap-

proximation, we can also use projective TSDF instead of

accurate TSDF where the nearest point is found only on the

line of sight from the camera. The projective TSDF is faster

to compute, but empirically worse in performance com-

pared to the accurate TSDF for recognition (see Table 2).

We also experiment with other encodings, and we find that

the proposed directional TSDF outperforms all the other al-

ternatives (see Table 2). Note that we can also encode col-

ors in this 3D volumetric representation, by appending RGB

values to each voxel [28].

3. Multi-scale 3D Region Proposal Network

Region proposal generation is a critical step in an object

detection pipeline [8, 7, 18]. Instead of exhaustive search

in the original Sliding Shapes, we desire a region proposal

method in 3D to provide a small set of object agnostic can-

didates and to speed up the computation, while still utilizing

the 3D information . But there are several unique challenges

in 3D. First, because of an extra dimension, the possible lo-

cations for an object increases by 30 times 1. This makes the

region proposal step much more important and challenging

as it need to be more selective. Second, we are interested

in amodal detection that aims to estimate the full 3D box

that covers the object at its full extent. Hence an algorithm

needs to infer the full box beyond the visible parts. Third,

different object categories have very different object size in

3D. In 2D, a picture typically only focuses on the object of

145 thousand windows per image in 2D [7] vs. 1.4 million in 3D.

3810



Input: Color and Depth Level 1 Proposals Level 2 Proposals Final Recognition Result

tablesofa chairbed bathtub garbage bin lamp pillow sinknight stand toilet bookshelf

Figure 6. Examples for Detection Results. For the proposal results, we show the heat map for the distribution of the top proposals (red is

the area with more concentration), and a few top boxes after NMS. For the recognition results, our amodal 3D detection can estimate the

full extent of 3D both vertically (e.g. bottom of a bed) and horizontally (e.g. full size sofa in the last row).

interest due to photography bias. Therefore, the pixel ar-

eas of object bounding boxes are all in a very limited range

[18, 16]. For example, the pixel areas of a bed and a chair

can be similar in picture while their 3D physical sizes are

very different.

To address these challenges, we propose a multi-scale

3D Region Proposal Network (RPN) to learn 3D objectness

using back-propagation (Figure 1). Our RPN takes a 3D

scene as input and output a set of 3D amodal object bound-

ing boxes with objectness scores. The network is designed

to fully utilize the information from 3D physical world such

as object size, physical size of the receptive field, and room

orientation. Instead of a bottom-up segmentation based ap-

proach (e.g. [27]) that can only identify the visible part, our

RPN looks at all the locations for the whole object, in a style

similar to sliding windows, to generate amodal object pro-

posals. To handle different object sizes, our RPN targets at

two scales with two different sizes of receptive fields.

Range and resolution For any given 3D scene, we rotate

it to align with gravity direction as our camera coordinate

system. Based on the specs. for most RGB-D cameras, we

target at the effective range of the 3D space [−2.6, 2.6] me-

ters horizontally, [−1.5, 1] meters vertically, and [0.4, 5.6]
meters in depth. In this range we encoded the 3D scene by

volumetric TSDF with grid size 0.025 meters, resulting in a

208× 208× 100 volume as the input to the 3D RPN.

Orientation We desire a small set of proposals to cover

all objects with different aspect ratios. Therefore, as a

heuristic, we propose to use the major directions of the

room for the orientations of all proposals. Under the Man-

hattan world assumption, we use RANSAC plane fitting to

get the room orientations. This method can give us pretty

accurate bounding box orientations for most object cate-

gories. For objects that do not follow the room orientations,

such as chairs, their horizontal aspect ratios tend to be a

square, and therefore the orientation doesn’t matter much

in terms of Intersection-Over-Union.

Anchor For each sliding window (i.e. convolution) loca-

tion, the algorithm will predict N region proposals. Each

of the proposal corresponds to one of the N anchor boxes.

In our case, based on statistics of object sizes, we define a

set of N = 19 anchors shown in Figure 4. For the anchors

with non-square horizontal aspect ratios, we define another

anchor with the same size but rotated 90 degrees.

Multi-scale RPN The physical sizes of anchor boxes vary

a lot, from 0.3 meters (e.g. trash bin) to 2 meters (e.g. bed).

If we use a single-scale RPN, the network would have to

predict all the boxes using the same receptive fields. This

means that the effective feature map will contain many dis-

tractions for small object proposals. To address this issue,

we propose a multi-scale RPN to output proposals at small

and big scales, the big one has a pooling layer to increase
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Figure 7. Top True Positives.

(1) chair (2) tv (3) bookshelf (4) sofa (5) bed (6) monitor (7) desk (8) night stand (9) garbage bin (10) box

Figure 8. Top False Positives. (1)-(2) show detections with inaccurate locations. (3)-(6) show detections with wrong box size for the big

bookshelf, L-shape sofa, bunk bed, and monitor. (7)-(10) show detections with wrong categories.

bookshelf chair dresser garbage bin sofa box lamp door door tv

Figure 9. Misses. Reasons: heavy occlusion, outside field of view, atypical size object, or missing depth.

receptive field for bigger objects. We group the list of an-

chors into two levels based on their physical sizes, and use

different branches of the network to predict them.

Fully 3D convolutional architecture To implement a 3D

sliding window style search, we choose a fully 3D convo-

lutional architecture. Figure 1 shows our network architec-

ture. The stride for the last convolution layer to predict ob-

jectness score and bounding box regression is 1, which is

0.1 meter in 3D. The filter size is 2× 2× 2 for Level 1 and

5×5×5 for Level 2, which corresponds to 0.4 m3 receptive

field for Level 1 anchors and 1 m3 for Level 2 anchors.

Empty box removal Given the range, resolution, and net-

work architecture, the total number of anchors for any im-

age is 1,387,646 (19×53×53×26). On average, 92.2% of

these anchor boxes are empty, with point density less than

0.005 points per cm3. To avoid distraction, we automati-

cally remove these anchors during training and testing.

Training sampling For the remaining anchors, we label

them as positive if their 3D IOU scores with ground truth are

larger than 0.35, and negative if their IOU are smaller than

0.15. In our implementation, each mini-batch contains two

images. We randomly sample 256 anchors in each image

with positive and negative ratio 1:1. If there are fewer than

128 positive samples we pad the mini-batch with negative

samples from the same image. We select them by specifying

the weights for each anchor in the final convolution layers.

We also try to use all the positives and negatives with proper

weighting, but the training cannot converge.

3D box regression We represent each 3D box by its cen-

ter [cx, cy, cz] and the size of the box [s1, s2, s3] in three

major directions of the box (the anchor orientation for an-

chors, and the human annotation for ground truth). To train

the 3D box regressor, we will predict the difference of cen-

ters and sizes between an anchor box and its ground truth

box. For simplicity, we do not do regression on the ori-

entations. For each positive anchor and its corresponding

ground truth, we represent the offset of box centers by their

difference [∆cx,∆cy,∆cz] in the camera coordinate sys-

tem. For the size difference, we first find the closest match-

ing of major directions between the two boxes, and then

calculate the offset of box size [∆s1,∆s2,∆s3] in each

matched direction. Similarly to [18], we normalize the

size difference by its anchor size. Our target for 3D box

regression is a 6-element vector for each positive anchor

t = [∆cx,∆cy,∆cz,∆s1,∆s2,∆s3].

Multi-task loss Following the multi-task loss in [7, 18],

for each anchor, our loss function is defined as:

L(p, p∗, t, t∗) = Lcls(p, p
∗) + λp∗Lreg(t, t

∗), (1)

where the first term is for objectness score, and the second

term is for the box regression. p is the predicted probability

of this anchor being an object and p∗ is the ground truth (1 if

the anchor is positive, and 0 if the anchor is negative). Lcls

is log loss over two categories (object vs. non object). The

second term formulates the 3D bounding box regression for

the positive anchors (when p∗ = 1). Lreg is smooth L1 loss

used for 2D box regression by Fast-RCNN [7].

3D NMS The RPN network produces an objectness score

for each of the non-empty proposal boxes (anchors offset by

regression results). To remove redundant proposals, we ap-

ply 3D Non-Maximum Suppression (NMS) on these boxes

with IOU threshold 0.35 in 3D, and only pick the top 2000

boxes to input to the object recognition network. These

2000 boxes are only 0.14% of all sliding windows, and it is

one of the key factor that makes our algorithm much faster

than the original Sliding Shapes [25].
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2D To 3D 41.7 53.5 37.9 22.0 26.9 46.2 42.2 11.8 47.3 33.9 41.8 12.5 45.8 20.7 49.4 55.8 54.1 15.2 50.0 34.4 0.210 2000

3D Selective Search 79.2 80.6 74.7 66.0 66.5 92.3 80.9 53.9 89.1 89.8 83.6 45.8 85.4 75.9 83.1 85.5 80.9 69.7 83.3 74.2 0.409 2000

RPN Single 87.5 98.7 70.1 15.6 95.0 100.0 93.0 20.6 94.5 49.2 49.1 12.5 100.0 34.2 81.8 94.9 93.3 57.6 96.7 75.2 0.425 2000

RPN Multi 100.0 98.7 73.6 42.6 94.7 100.0 92.5 21.6 96.4 78.0 69.1 37.5 100.0 75.2 97.4 97.1 96.4 66.7 100.0 84.4 0.460 2000

RPN Multi Color 100.0 98.1 72.4 42.6 95.0 100.0 93.0 19.6 96.4 79.7 76.4 37.5 100.0 79.0 97.4 97.1 95.4 57.6 100.0 84.9 0.461 2000

All Anchors 100.0 98.7 75.9 50.4 97.2 100.0 97.0 45.1 100.0 94.9 96.4 83.3 100.0 91.2 100.0 97.8 96.9 84.8 100.0 91.0 0.511 107674

Table 1. Evaluation for Amodal 3D Object Proposal. [All Anchors] shows the performance upper bound when using all anchors.

4. Joint Amodal Object Recognition Network

Given the 3D proposal boxes, we feed the 3D space

within each box to the Object Recognition Network (ORN).

In this way, the final proposal feed to ORN could be the ac-

tual bounding box for the object, which allows the ORN

to look at the full object to increase recognition perfor-

mance, while still being computationally efficient. Further-

more, because our proposals are amodal boxes containing

the whole objects at their full extent, the ORN can align ob-

jects in 3D meaningfully to be more invariant to occlusion

or missing data for recognition.

3D object recognition network For each proposal box,

we pad the proposal bounding box by 12.5% of the sizes

in each direction to encode some contextual information.

Then, we divide the space into a 30 × 30 × 30 voxel grid

and use TSDF (Section 2) to encode the geometric shape

of the object. The network architecture is shown in Figure

2. All the max pooling layers are 23 with stride 2. For the

three convolution layers, the window sizes are 53, 33, and

33, all with stride 1. Between the fully connected layers

are ReLU and dropout layers (dropout ratio 0.5). Figure

5 visualizes the 2D t-SNE embedding of 5,000 foreground

volumes using their the last layer features learned from the

3D ConvNet. Color encodes object category.

2D object recognition network The 3D network only

makes use of the depth map, but not the color. For cer-

tain object categories, color is a very discriminative feature,

and existing ConvNets provide very powerful features for

image-based recognition that could be useful. For each of

the 3D proposal box, we project the 3D points inside the

proposal box to 2D image plane, and get the 2D box that

contains all these 2D point projections. We use the state-of-

the-art VGGnet [22] pre-trained on ImageNet [19] (without

fine-tuning) to extract color features from the image. We

use a Region-of-Interest Pooling Layer from Fast RCNN

[7] to uniformly sample 7×7 points from conv5 3 layer us-

ing the 2D window with one more fully connected layer to

generate 4096-dimensional features as the feature from 2D

images.

We also tried the alternative to encode color on 3D vox-

els, but it performs much worse than the pre-trained VG-

Gnet (Table 2 [dxdydz+rgb] vs. [dxdydz+img]). This might

be because encoding color in 3D voxel grid significantly

lowers the resolution compared to the original image, and

hence high frequency signal in the image get lost. In addi-

tion, by using the pre-trained model of VGG, we are able to

leverage the large amount of training data from ImageNet,

and the well engineered network architecture.

2D and 3D joint recognition We construct a joint 2D and

3D network to make use of both color and depth. The fea-

ture from both 2D VGG Net and our 3D ORN (each has

4096 dimensions) are concatenated into one feature vector,

and fed into a fully connected layer , which reduces the di-

mension to 1000. Another two fully connected layer take

this feature as input and predict the object label and 3D box.

Multi-task loss Similarly to RPN, the loss function con-

sists of a classification loss and a 3D box regression loss:

L(p, p∗, t, t∗) = Lcls(p, p
∗) + λ′[p∗ > 0]Lreg(t, t

∗), (2)

where the p is the predicted probability over 20 object cate-

gories (negative non-objects is labeled as class 0). For each

mini-batch, we sample 384 examples from different images,

with a positive to negative ratio of 1:3. For the box regres-

sion, each target offset t∗ is normalized element-wise with

the object category specific mean and standard deviation.

During testing, we 0.1 asthe 3D NMS threshold. For box

regressions, we directly use the results from the network.

Object size pruning When we use amodal bounding

boxes to represent objects, the bounding box sizes provide

useful information about the object categories. To make use

of this information, for each of the detected box, we check

the box size in each direction, aspect ratio of each pair of

box edge. We then compare these numbers with the distri-

bution collected from training examples of the same cate-

gory. If any of these values falls outside 1st to 99th per-

centile of the distribution, which indicates this box has a

very different size, we decrease its score by 2.

5. Experiments

The training of RPN and ORN takes around 10 and 17

hours respectively on a NVIDIA K40 GPU. During testing,

RPN takes 5.62s and ORN takes 13.93s per image, which

is much faster than Depth RCNN (40s CPU + 30s GPU +

expensive post alignment) and Sliding Shapes (25 mins ×

number of object categories). We implement our network

architecture in Marvin [30], a deep learning framework that

supports N-dimensionalconvolutional neural networks. For

the VGG network [22], we use the weights from [12] with-

out fine tuning.

We evaluate our 3D region proposal and object detection

algorithm on the standard NYUv2 dataset [21] and SUN

RGB-D [24] dataset. The amodal 3D bounding box are ob-

tained from SUN RGB-D dataset. We modified the rotation

matrix from SUN RGB-D dataset to eliminate the rotation

on x,y plane and only contains camera tilt angle. Following
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poposal algorithm mAP

3D SS
dxdydz no bbreg 43.3 55.0 16.2 23.1 3.4 10.4 17.1 30.7 10.9 35.4 20.3 41.2 47.2 25.2 43.9 1.9 1.6 0.1 9.9 23.0

dxdydz 52.1 60.5 19.0 30.9 2.2 15.4 23.1 36.4 19.7 36.2 18.9 52.5 53.7 32.7 56.9 1.9 0.5 0.3 8.1 27.4

RPN

dxdydz no bbreg 51.4 74.8 7.1 51.5 15.5 22.8 24.9 11.4 12.5 39.6 15.4 43.4 58.0 40.7 61.6 0.2 0.0 1.5 2.8 28.2

dxdydz no size 59.9 78.9 12.0 51.5 15.6 24.6 27.7 12.5 18.6 42.3 15.1 59.4 59.6 44.7 62.5 0.3 0.0 1.1 12.9 31.5

dxdydz 59.0 80.7 12.0 59.3 15.7 25.5 28.6 12.6 18.6 42.5 15.3 59.5 59.9 45.3 64.8 0.3 0.0 1.4 13.0 32.3

tsdf dis 61.2 78.6 10.3 61.1 2.7 23.8 21.1 25.9 12.1 34.8 13.9 49.5 61.2 45.6 70.8 0.3 0.0 0.1 1.7 30.2

dxdydz+rgb 58.3 79.3 9.9 57.2 8.3 27.0 22.7 4.8 18.8 46.5 14.4 51.6 56.7 45.3 65.1 0.2 0.0 4.2 0.9 30.1

proj dxdydz+img 58.4 81.4 20.6 53.4 1.3 32.2 36.5 18.3 17.5 40.8 19.2 51.0 58.7 47.9 71.4 0.5 0.2 0.3 1.8 32.2

dxdydz+img+hha 55.9 83.0 18.8 63.0 17.0 33.4 43.0 33.8 16.5 54.7 22.6 53.5 58.0 49.7 75.0 2.6 0.0 1.6 6.2 36.2

dxdydz+img 62.8 82.5 20.1 60.1 11.9 29.2 38.6 31.4 23.7 49.6 21.9 58.5 60.3 49.7 76.1 4.2 0.0 0.5 9.7 36.4

Table 2. Control Experiments on NYUv2 Test Set. Not working: box (too much variance), door (planar), monitor and tv (no depth).

the evaluation metric in [25], we assume the all predictions

and ground truth boxes are aligned in the gravity direction.

We use 3D volume intersection over union between ground

truth and prediction boxes, and use 0.25 as the threshold

to calculate the average recall for proposal generation and

average precision for detection.

5.1. Object Proposal Evaluation

Evaluation of object proposal on NYU dataset is shown

in Table 1. On the left, we show the average recall over

different IOUs. On the right, we show the recall for each

object category with IOU threshold 0.25, as well as the aver-

age best overlap ratio (ABO) across all ground truth boxes.

Table shows the evaluation on SUNRGB-D dataset.

Naı̈ve 2D To 3D Our first baseline is to directly lift 2D ob-

ject proposal to 3D. We take the 2D object proposals from

[10]. For each of them, we get the 3D points inside the

bounding box (without any background removal), remove

those outside 2 percentiles along all three directions, and

obtain a tight fitting box around these inlier points. Ob-

viously this method cannot predict amodal bounding box

when the object is occluded or truncated, since 3D points

only exist for the visible part of an object.

3D Selective Search For 2D regoin proposal, Selective

Search [27] is one of the most popular state-of-the-arts. It

starts with a 2D segmentation and uses hierarchical group-

ing to obtain the object proposals at different scales. We

study how well a similar method based on bottom-up group-

ing can work in 3D (3D SS). We first use plane fitting on the

3D point cloud to get an initial segmentation. For each big

plane that covers more than 10% of the total image area,

we use the RGB-D UCM segmentation from [11] (with

threshold 0.2) to further split it. Starting with on this over-

segmentation, we hierarchically group [27] different seg-

mentation regions, with the following similarity measures:

· scolor(ri, rj) measures color similarity between region rt and rj

using histogram intersection on RGB color histograms;

· s#pixels(ri, rj) = 1−
#pixels(ri)+#pixels(rj)

#pixels(im)
, where #pixels(·) is num-

ber of pixels in this region;

· svolume(ri, rj) = 1−
volume(ri)+volume(rj)

volume(room)
, where volume(·) is the

volume of 3D bounding boxes of the points in this region;

· sfill(ri, rj) = 1−
volume(ri)+volume(rj)

volume(ri∪rj)
measures how well region

ri and rj fit into each other to fill in gaps.

Algorithm input mAP

Sliding Shapes [25] d 33.5 29 34.5 33.8 67.3 39.6

[10] on instance seg d 71.0 18.2 30.4 49.6 63.4 46.5

[10] on instance seg rgbd 74.7 18.6 28.6 50.3 69.7 48.4

[10] on estimated model d 72.7 47.5 40.6 54.6 72.7 57.6

[10] on estimated model rgbd 73.4 44.2 33.4 57.2 84.5 58.5

ours [depth only] d 83.0 58.8 68.6 49.5 79.2 67.8

ours [depth + img] rgbd 84.7 61.1 70.5 55.4 89.9 72.3

Table 3. Comparison on 3D Object Detection.

The final similarity measure is a weighted sum of these

four terms. To diversify our strategies, we run the group-

ing 5 times with different weights: [1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1]. For each of the grouped

region, we will obtain two proposal boxes: one tight box

and one box with height extended to the floor. We also use

the room orientation as the box orientation. After that we

will remove the redundant proposals with 3D IOU greater

than 0.9 by arbitrary selection. Using both 3D and color,

this very strong baseline achieves an average recall 74.2%.

But it is slow because of its many steps, and the handcrafted

segmentation and similarity might be difficult to tune.

Our 3D RPN Row 3 to 5 in Table 1 shows the perfor-

mance of our 3D region proposal network. Row 3 shows the

performance of single-scale RPN. Note that the recalls for

small objects like lamp, pillow, garbage bin are very low.

When one more scale is added, the performance for those

small objects boosts significantly. Adding RGB color to

the 3D TSDF encoding slightly improves the performance,

and we use this as our final region proposal result. From

the comparisons we can see that mostly planar objects (e.g.

door) are easier to locate using segmentation-based selec-

tive search. Some categories (e.g. lamp) have a lower recall

mostly because of lack of training examples. Table 2 shows

the detection AP when using the same ORN architecture but

different proposals (Row [3D SS: dxdydz] and Row [RPN:

dxdydz]). We can see that the proposals provided by RPN

helps to improve the detection performance by a large mar-

gin (mAP from 27.4 to 32.3).

5.2. Object Detection Evaluation

We conducted several control experiments to understand

the importance of each component.

Feature encoding From Row [RPN: dxdydz] to Row

[RPN: dxdydz+img] in Table 2, we compare different fea-
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3D SS 78.8 87.2 72.8 72.2 65.5 86.1 75.1 65.0 70.0 87.1 67.5 53.1 68.1 82.8 86.8 84.4 85.0 69.2 94.0 72.0 0.394 2000

RPN 98.1 99.1 79.5 51.5 93.3 89.2 94.9 24.0 87.0 79.6 62.0 41.2 96.2 77.9 96.7 97.3 96.7 63.3 100.0 88.7 0.485 2000

Table 4. Evaluation for regoin proposal generation on SUN RGB-D test set.

mAP

Sliding Shapes [25] - 42.09 - 33.42 - - - - - - - - - - 23.28 25.78 - 61.86 -

Deep Sliding Shapes 44.2 78.8 11.9 1.5 61.2 4.1 20.5 0.0 6.4 20.4 18.4 0.2 15.4 13.3 32.3 53.5 50.3 0.5 78.9 26.9

Table 5. Evaluation for 3D amodal object detection on SUN RGB-D test set.

ture encodings and reach the following conclusions. (1)

TSDF with directions encoded is better than single TSDF

distance ([dxdydz] vs. [tsdf dis]). (2) Accurate TSDF

is better than projective TSDF ([dxdydz+img] vs. [proj

dxdydz+img]). (3) Directly encoding color on 3D voxels

is not as good as using 2D image VGGnet ([dxdydz+rgb]

vs. [dxdydz+img]), probably because the latter one can

preserve high frequency signal from images. (4) Adding

HHA does not help, which indicates the depth information

from HHA is already exploited by our 3D representation

([dxdydz+img+hha] vs. [dxdydz+img]).

Does bounding box regression help? Previous works

have shown that box regression can significantly improve

2D object detection [7]. For our task, although we have

depth, there is more freedom on 3D localization, which

makes regression harder. We turn the 3D box regression

on ([3DSS dxdydz], [RPN dxdydz]) and off ([3DSS dxdydz

no bbreg], [RPN dxdydz no bbreg]). Whether we use 3D

Selective Search or RPN for proposal generation, the 3D

box regression always helps significantly.

Does size pruning help? Compared with and without

the post-processing ([dxdydz] vs. [dxdydz no size]), we ob-

serve that for most categories, size pruning reduces false

positives and improves the AP by the amount from 0.1 to

7.8, showing a consistent positive effect.

Is external training data necessary? Comparing to

Sliding Shapes that uses extra CAD models, and Depth-

RCNN that uses Image-Net for pre-training and CAD mod-

els for 3D fitting, our [depth only] 3D ConvNet does not re-

quire any external training data outside NYUv2 training set,

and still outperforms the previous methods, which shows

the power of 3D deep representation.

Comparison to the state-of-the-arts We evaluate our al-

gorithm on the same test set as [10] (The intersection of the

NYUv2 test set and Sliding Shapes test set for the five cate-

gories being studied under “3D all” setting). Table 3 shows

the comparison with the two state-of-the-arts for amodal 3D

detection: 3D Sliding Shapes [25] with hand-crafted fea-

tures, and 2D Depth-RCNN [10] with ConvNets features.

Our algorithm outperforms by large margins with or without

colors. Different from Depth-RCNN that requires fitting a

3D CAD model as post-processing, our method outputs the

3D amodal bounding box directly, and it is much faster. Ta-

ble 5 shows the amodal 3D object detection results on SUN

RGB-D dataset compared with Sliding Shapes [25].

Figure 10 shows side-by-side comparisons to Sliding

Shapes. First, the object proposal network and box regres-

sion provide more flexibility to detect objects with atypical

sizes. For example, the small child’s chairs and table in the

last row are missed by Sliding Shapes but detected by Deep

Sliding Shape. Second, color helps to distinguish objects

with similar shapes (e.g. bed vs. table). Third, the proposed

algorithm can extend to many more object categories easily.

Depth Sliding Shapes [25] Ours

tablesofa chairbed bathtub garbage bin

Figure 10. Comparision with Sliding Shapes [25]. Our algorithm

is able to better use shape, color and contextual information to

handle more object categories, resolve the ambiguous cases, and

detect objects with atypical size.

6. Conclusion

We present a 3D ConvNet pipeline for amodal 3D object

detection, including a Region Proposal Network and a joint

2D+3D Object Recognition Network. Experiments show

our algorithm significantly outperforms the state-of-the-art

approaches, demonstrating the great potential of 3D deep

learning to learn 3D shape representation. Beyond recog-

nition, future works include extending this discriminative

learned represention to enable shape completion [29, 6].
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