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Abstract

We focus on the problem of wearer’s action recognition

in first person a.k.a. egocentric videos. This problem is

more challenging than third person activity recognition due

to unavailability of wearer’s pose and sharp movements in

the videos caused by the natural head motion of the wearer.

Carefully crafted features based on hands and objects cues

for the problem have been shown to be successful for lim-

ited targeted datasets. We propose convolutional neural

networks (CNNs) for end to end learning and classification

of wearer’s actions. The proposed network makes use of

egocentric cues by capturing hand pose, head motion and

saliency map. It is compact. It can also be trained from rel-

atively small number of labeled egocentric videos that are

available. We show that the proposed network can gener-

alize and give state of the art performance on various dis-

parate egocentric action datasets.

1. Introduction

With availability of cameras from GoPro [2], Google

Glass [1], Microsoft SenseCam [3] etc., the wearable cam-

eras are becoming a commodity allowing people to generate

more and more egocentric video content. By making first

person point of view available, egocentric cameras have be-

come popular in applications like extreme sports, law en-

forcement, life logging and home automation.

The egocentric community has been trying to develop

or adapt solutions to a wide variety of computer vision

problems in the new emerging context. Work done in last

few years has ranged from problems like object recognition

[10, 35, 36], activity recognition [7, 9, 27, 29, 31, 37, 41, 42]

to more applied problems like summarization [4, 22, 26],

and predicting social interactions [8]. Interesting ideas

which exploit special properties of egocentric videos have

been proposed for problems like temporal segmentation

[16, 33], frame sampling [34, 49] and hyperlapse [18].

Newer areas specific to egocentric vision such as gaze de-

tection [24] and camera wearer identification [11, 32] have

also been explored.

Figure 1: Hands and object motion pattern are important cues for

first person action recognition. The first two columns show ‘take’

action whereas last two show ‘stir’. Notice the wide difference in

appearance. Second and third row shows hand mask and saliency

map derived from dominant motion. In several cases hands are

occluded by the handled object and hence the partial hand mask is

obtained. We train a compact convolutional neural network using

such egocentric cues. We achieve state of the art accuracy for first

person action recognition. Our approach can be applied to datasets

that differ widely in appearance and actions, without requiring any

hand tuning. We further improve the performance by using pre-

trained networks for third person videos in a multi stream setting.

We focus on the recognition of wearer’s actions (or first

person actions) from egocentric videos in each frame. We

consider short term actions that typically last few seconds,

e.g., pour, take, open etc. We do not assume any prior tem-

poral segmentation. First row in Figure 1 shows the frames

corresponding to some example actions.

Recognition of wearer’s actions is a natural first step

in many egocentric video analysis problems. The prob-

lem is more challenging than third person action recogni-

tion because of unavailability of the actor’s pose. Unlike

third person actions where the camera is either static or

smoothly moving, there are large shakes present in the ego-

centric videos due to head motion of the wearer. The sharp

change in the viewpoint makes any kind of tracking impos-

sible which makes it difficult to apply third person action

recognition algorithms. Therefore, hands and handled ob-

jects become the most important cues for recognizing first

person actions. Figure 1 helps in visualizing the same.

Researchers have understood the importance of egocen-

tric cues for the first person action recognition problem. In

last few years several features based on egocentric cues such
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as gaze, motion of hands and head, and hand pose have been

suggested for first person action recognition [7, 9, 10, 25].

Object centric approaches which try to capture changing ap-

pearance of objects in the egocentric video have also been

proposed [28, 31]. However, the features have been hand

tuned in all these instances and shown to be performing rea-

sonably well for limited targeted datasets.

Convolutional neural networks (CNNs) have emerged as

a useful tool for many computer vision tasks. However,

training such deep networks require huge amount of labeled

samples. Unavailability of large amounts of data in egocen-

tric context makes their direct use non-trivial for first person

action recognition.

This paper proposes a framework for general first-person

action recognition with following specific contributions:

1. We propose and demonstrate the utility of deep learned

egocentric features for the first person action recogni-

tion. We show that these features alone can surpass the

state of the art. They are also complementary to the

popular image and flow features.

2. We provide an extensive evaluation of our deep learned

features on various datasets widely different in appear-

ance and actions. Our method performs well on four

different egocentric video datasets with no change in

the parameters.

3. The specific focus of the earlier works have restricted

the standardization across various datasets and evalua-

tion methodologies. To overcome this, we annotated a

large number of publicly available egocentric first per-

son action videos. We make the annotated datasets,

network models and the source code available1.

2. Related Work

Action recognition has traditionally been from a third

person view, for example, from a static or a handheld cam-

era. A standard pipeline is to encode the actions using hand

crafted features based on keypoints and descriptors. Some

notable contributions in this area includes STIP [21], 3D-

SIFT [38], HOG3D [17], extended SURF [48], and Local Tri-

nary Patterns [50]. Recent methods [12, 19, 45, 46] have

shown promising results which leverage the appearance and

motion information around densely sampled point trajecto-

ries instead of cuboidal video volume.

Deep learned features for action recognition have also

been explored. Works like Convolutional RBMs [43], 3D

ConvNets [13], C3D ConvNet [44], Deep ConvNets [15]

take video frame as input. Recently, Two-stream ConvNets

[39] introduced spatial and flow streams for action recogni-

tion.

1http://cvit.iiit.ac.in/projects/

FirstPersonActions/

Hand-crafted descriptors along trajectories lack discrim-

inative property while deep learned features fail to capture

salient motion. The TDD features proposed by [47] try to

establish a balance by using deep convolutional descriptors

along the trajectories.

We show later that both trajectory based techniques

[45, 46] as well as deep neural network approaches [39, 47]

do not capture the egocentric features. This restricts their

performance for first person action recognition. Our ego-

centric features alone perform better than the state of the

art. The proposed features can be complemented by the fea-

tures suggested for the third person action recognition to get

a further boost in the performance.

Appearance models are hard to develop from foreground

or background objects due to quickly changing view field

in typical egocentric videos. Spriggs et al. [41] have pro-

posed to use a mix of GIST [30] features and IMU data to

recognise first person actions. Their results confirm the im-

portance of head motion in first person action recognition.

Pirsiavash and Ramanan [31] attempt to recognise the activ-

ity of daily living (ADL). Their thesis is that the first person

action recognition is “all about the objects” being interacted

with. Lee et al. [22] present a video summarization ap-

proach for egocentric videos and use region cues indicative

of high-level saliency such as the nearness to hands, gaze,

and frequency of occurrence. Fathi et al. [10] recognize the

importance of hands in the first person action recognition.

They propose a representation for egocentric actions based

on hand-object interactions and include cues such as optical

flow, pose, size and location of hands in their feature vec-

tor. In sports videos, where there are no prominent handled

objects, Kitani et al. [16] use motion based histograms re-

covered from the optical flow of the scene (background) to

learn the action categories performed by the wearer. Singh

et al. [40] proposed a generic framework which uses trajec-

tory aligned features along with simple egocentric cues for

first person action recognition. They have released a chal-

lenging ‘Extreme Sports’ dataset of egocentric videos and

showed that their method works even when there is no hand

or object present in the video. Other works [6, 33] have

focussed on recognising long term activities of the wearer

lasting several minutes such as walking, running, working

etc. Several of these methods are shown to be effective for

limited targeted datasets of interest. In this paper we pro-

pose convolutional neural networks for first person action

recognition trained using egocentric cues which can gener-

alize to variety of datasets at the same time.

3. Ego ConvNet

Hand-eye coordination is a must to accomplish any ob-

ject handling task. Whenever a wearer interacts with objects

(grasps or reaches for the object), hands first reach out for

the object, the pose of the hand is determined by the grasp
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type for the object. Assuming that the wearer is looking

straight, the head motion pattern is same as the gaze pat-

tern, which follows the hands or the handled object. Hands

often get occluded behind the handled objects. In this case,

dominantly moving parts of the scene may give useful hints

about the focus of the action. This coordination pattern is

common for a vast variety of hand-object interactions. Cap-

turing this information enables us to learn how the wearer

interacts with his surrounding in order to carry out various

actions.

We train an ‘Ego ConvNet’ to learn the coordination pat-

terns between hands, head and eye movement. There are

various challenges in this approach:

• Pixel level annotation of hand and object is very costly.

• Gaze or saliency map is usually captured with the help

of separate eye tracking sensors.To make our approach

generic we do not want to use extra sensors. We use

egocentric video as the only input.

• Egocentric video analysis, being a relatively new field

in computer vision, lacks a large enough annotated

data for training a neural network.

To overcome these issues, we have used computer vision

approaches to generate egocentric cues, which can be used

for training a compact neural network with relatively small

amount of labeled training samples.

3.1. Network Input

Hand Mask Hand pose in egocentric videos provides

useful information for understanding hand-object manipu-

lation and analyzing hand-eye coordination. However, ego-

centric videos present new challenges such as rapid changes

in illuminations, significant camera motion and complex

hand-object manipulations. Without relying on manually

segmented hand mask as input for the network, we auto-

matically segment out hand regions by modelling local ap-

pearance of hand pixels and global illumination. We learn

the models from a small set of manually segmented hand

regions over a diverse set of imaging conditions.

To account for different illumination conditions, Li and

Kitani [23] have suggested to use a collection of regressors

indexed by a global color histogram. We follow their ap-

proach and use the response of a bank of 48 Gabor filters (8
orientations, 3 scales, both real and imaginary components)

to capture local textures. We create appearance descriptors

using RGB, HSV and LAB color spaces from 900 super pix-

els.

The posterior distribution of a pixel x given a local ap-

pearance feature l and a global appearance feature g , is

computed by marginalizing over different scenes c,

p (x | l , g) =
∑

c

p (x | l , c) p (x | c, g)

Figure 2: If the camera was static, salient regions in the image for

an action recognition task can be computed as parts with moving

objects. In egocentric setting, where the camera is also moving,

we first cancel the component of flow due to camera motion. We

note that the motion of the egocentric camera is 3D rotation for

the considered actions. Such motion can easily be compensated

by cancelling a 2D homography. Left and center images shows

the original and compensated flow. We use the dominant motion

direction from the compensated flow and use the component of

flow in the direction of dominant motion direction to generate a

saliency map (right image). See the text for the details.

where p (x | l , c) is the output of a discriminative global

appearance-specific regressor and p (c | g) is a conditional

distribution of a scene c given a global appearance feature

g .

We perform k-means clustering on the HSV histogram

of each training image. For each cluster we generate dif-

ferent global appearance models by learning separate ran-

dom tree regressor. Histogram allows for encoding both the

appearance as well as illumination of the scene. We train

n = 11, models in our experiments. We assume that the

hands viewed under similar global appearance share a sim-

ilar distribution in the feature space. The conditional dis-

tribution p (c | g) is approximated using a uniform distribu-

tion over the n nearest models.

Second row in Figure 1 shows the hand masks obtained

for some example actions using the described method.

Head Motion Egocentric camera is often mounted on the

wearer’s head and mimics its motion. Due to the natural

pivot of the head on the neck, the induced motion is a 3D

rotation which can be easily captured using a 2D homogra-

phy transformation of the image. We use optical flow for

correspondence (avoiding hand regions) and estimate frame

to frame homography using RANSAC. Use of optical flow

instead of feature matching using local image descriptor

such as SIFT or SURF avoids extra computation overhead.

It also ensures robustness against moving objects that may

be present in such videos. We set the bound on head mo-

tion between two consecutive frames to be between −5 pix-

els and +5 pixels.Head motion in x and y direction is then

normalized to the range [0, 255] and encoded as grayscale

image separately.

Saliency Map The background in a first person action is

often cluttered and poses serious challenges for an action

classifier. There are a variety of objects present in the scene
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Figure 3: Being a relatively new field, availability of labeled dataset for first person action recognition is limited. We propose a new

compact CNN architecture for recognizing the wearer’s actions, which takes as input egocentric cues and can be trained from limited

training samples. The first and second rows show the architecture of the proposed Ego ConvNet with 2D and 3D convolutions respectively.

We collect the information from a video segment of EL frames and generate a 3D input stack of size EN ×EM × (4×EL). The features

learnt from 2D and 3D Ego ConvNet seem to be complementary and we use the two networks together achieving state of the art accuracy

of 58.94% on GTEA dataset [10].

during the action, but usually only the objects being handled

are important. Such salient objects can easily be determined

if the gaze information is available. But this requires ex-

tra sensors. We note that there is hand-eye coordination in

any first person action, and therefore saliency map obtained

from the gaze resembles the dominantly moving parts in the

scene. If the camera was static, such objects could be easily

distinguished from others on the basis of observed optical

flow only. In egocentric videos, motion of the camera has

to be taken care of before using this approach. As described

in the last section, this motion is easily approximated using

a 2D homography. We use the homography to cancel the

component due to camera motion in the observed flow. Af-

ter camera motion compensation, the dominant motion in

the scene comes from handled objects or hands. Figure 2

shows the same for an example action.

We use dominant flow regions to generate a saliency map

per frame. We take orientation/direction of compensated

optical flow and quantize it into 9 bins over an interval of

0− 360◦. Each flow vector votes proportional to its magni-

tude. The bin with the highest number of votes is declared

the dominant motion direction. Saliency value for a pixel is

evaluated as the magnitude of flow in the direction of dom-

inant motion direction. The saliency values are normalized

to the range [0, 255] and encoded as grayscale image for in-

put to the network.

3.2. Architecture

We use a convolutional neural network to learn the coor-

dination patterns between hands, head motion and saliency

map while the wearer performs an action. We encode hand

mask as a binary image. Camera motion (x and y direc-

tions separately) and saliency map are encoded as grayscale

images. These are used as input to the network. We scale

the input images to EN × EM pixels. We collect the in-

formation from a video segment of EL frames generating

a 3D input stack of size EN × EM × (4 × EL). For each

frame we use 4 different egocentric features. Hence, for EL

frames the input dimension depth becomes 4×EL. We pre-

serve the original video aspect ratio while setting EN and

EM .

Our Ego ConvNet architecture (Figure 3) consists of 2

convolution layers each followed by MAX pooling, RELU

non-linearity, and local response normalization (LRN) lay-

ers and 2 fully connected layers. We use infogain multi-

nomial logistic loss instead of popular multinomial logistic

loss during training to handle class imbalance.

E =
−1

N

N
∑

n=1

Hln
log(pn) =

−1

N

N
∑

n=1

K
∑

k=1

Hln,klog(pn,k)

Hm,p =











1−
|Lm|

∑K

k=1
|Lk|

, if p = m

0, otherwise

where E is infogain multinomial logistic loss, N is train-

ing batch size, K is number of classes, ln is ground truth

label for sample n , pn,k is probability of sample n being

classified as class k and |Lm| is number of training sam-

ples belonging to class m. We also use dropout ratio of 0.5
with fully connected layer to avoid overfitting during train-

ing phase. During test phase, we estimate the class label by

applying SOFTMAX on fc2 layer output. Without any ap-

pearance and motion cues, i.e., using egocentric cues alone,
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Figure 4: We extend our Ego ConvNet by adding two more

streams corresponding to spatial and temporal streams in two-

stream architecture [39]. Intuitively spatial and temporal streams

capture the generic appearance and flow based features whereas

the egocentric stream captures the coordination between wearer’s

hands, head and eyes, which is not captured by appearance and

flow features. Using multiple stream architecture improves the

accuracy of proposed method from 58.94% to 68.5% on GTEA

dataset [10].

our Ego ConvNet is able to outperform state of the art by

a large margin. This outlines the importance of egocentric

cues for first person action recognition task.

3D Convolution Tran et al. [44] extended 2D convolu-

tion to allow 3D convolution and 3D pooling, which has

been shown to capture the temporal structure of an action.

C3D [44] performs 3D convolutions and 3D pooling, propa-

gating temporal information across all the layers in the net-

work. We have also experimented with 3D convolutions

in the proposed network. The architecture for the 3D Ego

ConvNet is slightly different from that of 2D Ego ConvNet.

We use filters of size 5 × 5 × 4, temporal pooling of size

5×5×1 for first convolution layer and 5×5×2 for second

convolution layer where last dimension represents depth of

the filter. The first pooling layer has kernel of depth 1 with

the intention of avoiding the merge of the temporal signal

too early. Figure 3 shows the architecture.

The performance of 2D and 3D Ego ConvNet are sim-

ilar. However, the features learnt seem to be complemen-

tary. Therefore, we combine the two networks by using

two-streams architecture (similar to the one proposed by Si-

monyan and Zisserman [39]) by adding a new SVM classi-

fier at the end. While the accuracy for Ego ConvNet us-

ing 2D and 3D convolutions is 57.61% and 55.79% re-

spectively, the accuracy when the two networks are used

together is 58.94%.

4. Three-Stream Architecture

Dense Trajectory [45] and its variants [12, 19, 46] con-

stitute a popular approach for third person action recogni-

tion. These techniques track interest points across time and

compute hand designed flow and appearance based descrip-

tors (HOG, HOF, and MBH) along the trajectories. Recently

Wang et al. [47] have proposed to replace hand designed

features with ‘Deep Convolution’ descriptors. They use

two-stream architecture proposed by Simoyan and Zisser-

man [39] for computing deep convolution descriptors. The

first ‘Spatial Stream’ uses individual video frame as input,

effectively performing action recognition from still images

using ImageNet [20] architecture. The spatial stream takes

a single RGB video frame as input. The second ‘Temporal

Stream’ uses stacked optical flow as input to capture mo-

tion information. The temporal stream takes the stacked

dense optical flow displacement fields between L consecu-

tive frames as input. The x and y components of flow fields

are encoded as grayscale image separately after normalising

to [0, 255]. The temporal convnet has the same architecture

as the spatial stream.

We extend our Ego ConvNet by adding two more streams

corresponding to spatial and temporal streams in the TDD

or two-stream architecture. Intuitively, spatial and tempo-

ral streams capture the generic appearance and flow based

features whereas the egocentric stream captures the coordi-

nation between the wearer’s hands, head and eyes, which

is not captured by appearance and flow features. Fusion of

these cues results in a more meaningful feature to describe

first person actions.

We perform fusion of the three streams: spatial, tempo-

ral and egocentric, by combining weighted classifier scores.

The weights are learnt using cross validation. For egocen-

tric features we use softmax score as the classifier score.

For the spatial and temporal streams we use SVM classi-

fication score. We learn a multiclass SVM classifier using

improved Fisher Vector representation of trajectory pooled

features from appearance and flow features.

The architecture of our convnet can be seen in Figure 4.

Using multiple stream architecture with pre-trained spatial

and temporal streams improves the accuracy of proposed

method from 58.94% to 68.5%.

5. Experiments and Results

5.1. Datasets and Evaluation Protocol

We consider short term actions performed by different

subjects while performing different activities. In our work,

we use four different publicly available datasets of egocen-

tric videos: GTEA [10], Kitchen [41], ADL [31] and UTE

[22]. Out of these, only GTEA and Kitchen datasets have

frame level annotations for the first person actions. For ADL

and UTE datasets, where similar action level labelling was

not available, we selected a subset of the original dataset

and manually annotated the short term actions in the parts

where a wearer is manipulating some object. Other kinds

of actions, such as walking, watching television etc. are la-

belled as ‘background’. The speed and nature of actions

vary across subjects and activities (e.g., consider the ac-
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Figure 5: Examples of wearer’s action categories we propose to recognize in this paper from different datasets: GTEA[10] (top row),

Kitchen[41] (middle row) and ADL[31] (bottom row). The columns represent the actions ‘pour’, ‘take’, ‘put’, ‘stir’ and ‘open’. The

actions vary widely across datasets in terms of appearance and speed of action. Features and technique we suggest in this paper is able to

successfully recognize the wearer’s actions across different presented scenarios, showing the robustness of our method.

Dataset Subjects Frames Classes
State of the art

Accuracy
Ours

Ours

(cross validated)

GTEA [10] 4 31,253 11 47.70 [7] 68.50 64.41

Kitchen [41] 7 48,117 29 48.64 [41] 66.23 66.23

ADL [31] 5 93,293 21 N.A. 37.58 31.62

UTE [22] 2 208,230 21 N.A. 60.17 55.97

Table 1: Statistics of egocentric videos datasets used for experi-

mentation. The proposed approach uses deep learned appearance,

motion and egocentric features and improves the state of the art

on all the datasets we tested. Results are reported in terms of per-

centage of accuracy. The datasets vary widely in appearance, sub-

jects and actions being performed, and the improvement on these

datasets validates the generality of suggested descriptor for ego-

centric action recognition task. Note that originally ADL dataset

has been used for activity recognition and UTE for video summa-

rization and not for action recognition as in this paper. Therefore,

comparative results are not available for these datasets.

tion ‘open’ in two scenarios, ‘open’ water bottle and ‘open’

cheese packet). Statistics related to the datasets are shown

in Table 1.

The GTEA dataset consists of 7 long term activities cap-

tured using head mounted cameras. Each activity is approx-

imately 1 minute long. We follow ‘leave–one–subject–out’

experimental setup of [7] for all datasets.

Kitchen dataset [41] is captured using head mounted

camera and IMUs. Camera point of view is from top, and

severe camera motion is quite common. Similar to [41], we

select 7 subjects from ‘Brownie’ activity. We use videos

of 6 subjects for training and test on the video of the re-

maining subject. ADL dataset consists of videos of sub-

jects performing daily life activities, captured using chest

mounted cameras with 170 degrees of viewing angle. UTE

dataset [22] contains 3 to 5 hours long videos captured from

head-mounted cameras in a natural and uncontrolled set-

ting. The annotated datasets and the source code along

with the pre-trained CNN models for the paper are avail-

able at the project page: http://cvit.iiit.ac.in/

projects/FirstPersonActions/.

Evaluation Protocol For systematic evaluation, we use

leave–one–subject–out policy for training and validation

and report classification accuracy on the unseen test sub-

ject. Formally, classification accuracy for first person ac-

tion recognition task is defined as the number of frames (or

video segments) classified correctly divided by total number

of frames (or video segments) in the videos used for testing.

Frame level action recognition is important for continuous

video understanding. This is also crucial for many other

applications (e.g., step-by-step guidance based on wearer’s

current actions). We also evaluate our method at the video

segment level. In this case, there is only one action in each

video segment. However, length of the segment is not fixed.

In this setting, we have an approximate knowledge of action

boundaries which naturally improves action recognition re-

sults.

Unlike [25], we are interested in classification of first

person action in different settings and not the specific ob-

ject which is involved in the action. For example, the action

where the wearer is ‘pouring’ ‘water’ from the ‘bottle’ into

the ‘cup’ and where the wearer is ‘pouring’ ‘mayonnaise’

on to the ‘bread’. In our experiments we consider both ac-

tions as ‘pouring’ despite different objects being involved.

We believe that such evaluation is more challenging and re-

moves the bias of object instance specific appearance while

learning action models.
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Features Frame level Accuracy

GTEA [10] Kitchen [41] ADL [31] UTE [22]

S+T 59.47 58.92 34.20 55.67

H+C+M (2D) 57.61 51.33 30.78 53.32

H+C+M (3D) 55.79 50.06 28.85 53.10

H+C+M (2D+3D) 58.94 54.35 32.12 53.42

Combined 68.50 66.23 37.58 60.17

Table 2: Detailed analysis of spatial, temporal and egocentric fea-

tures used in our work. H: Hand masks, C: Camera/Head motion,

M: Saliency Map, S: Deep learned Spatial descriptors, T: Deep

learned Temporal descriptors. Results are reported in terms of

percentage of accuracy.

5.2. Implementation Details

We use Caffe’s CNN implementation [14] due to its speed

and efficiency. In all experiments, we normalise data to

the range [0, 1] and use infogain multinomial logistic loss

to counter imbalanced class population in the datasets.

Pre-training Ego ConvNet We use 343 pre-segmented

hand masks and implementation for hand segmentation pro-

vided by [23]. Since GTEA dataset is too small to properly

train a convnet, we add more data by using videos from the

Interactive Museum dataset [5], consisting of 700 videos at

800×450 resolution and 25 frames per second, all shot with

a wearable camera mounted on the head. We manually seg-

ment hands from randomly selected 60 frames in order to

train the hand models.

We chose Interactive Museum dataset for pre-training

due to its similarity to GTEA dataset in which same actions

are performed by various subjects. Further, the hand ges-

ture videos emphasize on actions using hands under similar

camera or head movement.

Prior to training on GTEA dataset, we pre-train the net-

work on [5]. This takes care of the small dataset size avail-

able for training. Pre-training is done in leave-one-subject-

out manner. Videos from subjects 1-4 are used for training

and validation is done on videos from subject 5. We se-

lect non-overlapping windows of EL frames (depending on

architecture) as input to the network. Pre-training is done

for 20 epochs in all experiments. For Kitchen, ADL and

UTE datasets, we fine-tune Ego Convnet which has been

pre-trained on Interactive Museum and GTEA datasets, to

avoid training from scratch.

Training Similar to pre-training, training is done in leave-

one-subject-out manner as well. We use video segments

from subject 1 and 3 for training, subject 4 for validation

and subject 2 for testing. A video segment is an overlap-

ping sliding window of EL frames (depending on architec-

ture) as input to the network. Since the input is overlap-

Algorithm Features Accuracy

DT [45] trajectory+HOG+HOF+MBH 45.15

iDT [46] trajectory+HOG+HOF+MBH 52.37

TDD [47] Spatial 58.61

TDD [47] Temporal 57.12

TDD [47] Spatial + Temporal 59.47

Table 3: Performance of trajectory based methods when used with

various features for GTEA dataset. Accuracy in terms of percent-

age is reported for frame level action recognition.

ping frames, the training set is shuffled at random to avoid

all samples belonging to the same class for batch training.

Frames are resized while maintaining the original aspect ra-

tio, as we found warping to square size input reduces the

performance. Training is done by SGD with minibatch size

of 64 examples. Initial learning rate is 0.001, and is divided

by 10 every 10K iterations. The optimization is stopped at

25K iterations (about 60 epochs).

Varying Network Architecture We trained a compact

network with 2 convolution layers and 2 fully connected

layers. Such a compact network has been shown to work

fairly well despite having limited training data. To search

for a good Ego ConvNet architecture, we varied both spa-

tial, EN×EM , (64×36, 32×18 and 16×9 pixels) and tem-

poral, EL, (28, 16, 10 and 5 frames) input dimensions and

found 32× 18× 5 to be the best. This size is small enough

to keep number of parameters low without losing relevant

information. We also tried skipping frames (by selecting

every third or sixth frames) from deeper input volume (15
frames or 30 frames) keeping input depth to 5. However,

this approach did not improve recognition performance. We

also investigated with different filter sizes (3× 3, 5× 5 and

7× 7 ) and number of filters (32, 64, 128, 256 for convolu-

tion layers and 256, 512, 1024 and 2048 for fully connected

layer) and found 5 × 5 filter with 32 filters in first convo-

lution layer, 128 filters in second convolution layer and 512
channel output for fc1 layer to be the best performer. For

3D Ego ConvNet, keeping all other parameters same, we

use filters having depth-4.

5.3. Results and Discussion

We first present our experiments and analysis of the pro-

posed action descriptor on GTEA dataset to bring out salient

aspects of the suggested approach. Experiments with other

datasets have been described later.

We follow experimental setup of Fathi et. al. [7] for

GTEA dataset. They perform joint modelling of actions, ac-

tivities and objects, on activities of three subjects and pre-

dict actions on activities of one subject. They report an ac-

curacy of 47.70%. Table 2 shows performance of our Ego

ConvNet and Table 3 for trajectory based approaches on
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Figure 6: Confusion matrix for different deep learned descriptors

on GTEA dataset. Classification using Ego ConvNet descriptors

(left) and TDD descriptors (right). The Ego ConvNet and TDD fea-

tures are clearly complementary and improve overall action recog-

nition accuracy when used together.

Method Features Accuracy

Ego ConvNet (2D) H 51.76

Ego ConvNet (2D) H+C 54.13

Ego ConvNet (2D) H+C+M 57.61

Ego ConvNet (3D) H 50.82

Ego ConvNet (3D) H+C 53.15

Ego ConvNet (3D) H+C+M 55.79

Ego ConvNet (2D) + TDD H+C+M+S+T 65.29

Ego ConvNet (3D) + TDD H+C+M+S+T 66.96

Combined H+C+M+S+T 68.50

Table 4: Effect of various CNN features on first person action

recognition. The experiments are done on GTEA dataset. Accuracy

reported is for frame level action recognition. H: Hand masks, C:

Camera/Head motion, M: Saliency Map, S: Deep learned Spatial

descriptors, T: Deep learned Temporal descriptors.

GTEA dataset. Although, the standalone performance for

two types of features is similar, we found the learnt features

to be complementary. Figure 6 shows confusion matrices

for the two sets of features to support our claim. There-

fore, we fuse the trajectory pooled and egocentric features

in a three-stream architecture. Table 4 gives the effect of

different features on the performance of our algorithm on

the dataset. Experimental protocol leaving subject 2 is what

is done by Fathi et. al. in [7] and is followed by us to do

a fair comparison. We also show cross-validated results in

leave–one–subject–out manner (see Table 1).

We extend our experiments to other publicly available

egocentric video datasets. Results on these datasets are

shown in Table 2 and 5. We follow the same experimental

setup as [41] and perform frame level action recognition for

‘Brownie’ activity for 7 subjects. Spriggs et al. [41] reports

an accuracy of 48.64% accuracy when using first person

data alone and 57.80% when combined with IMU data. We

achieve 54.35% accuracy using our method with egocentric

stream alone and 66.23% with our three-streams approach.

The ADL dataset has been used for long term activity

recognition by [31] in the past. We annotated the dataset

Dataset
Accuracy

Frame level Segment level Chance level

GTEA [10] 68.50 82.40 11%

Kitchen [41] 66.23 71.88 3.4%

ADL [31] 37.58 39.02 4.7%

UTE [22] 60.17 65.30 4.7%

Table 5: Our results for first person action recognition on differ-

ent egocentric videos datasets. Sliding window based approach

for classification used in our algorithm performs poorly at action

boundaries. Therefore, the accuracy for segment level classifica-

tion, when the action boundaries are clearly defined, comes out

higher.

with the short term actions and tested our method on it.

Similar to our experiment on GTEA, we test our model

on one subject while using other for training. We achieve

37.58% accuracy at frame level and 39.02% at video seg-

ment level using the proposed method.

The UTE dataset has been used for video summariza-

tion by [22] in the past. Motion blur and low image qual-

ity is fairly common in this dataset. For action recognition

we achieve 60.17% accuracy at frame level and 65.30% at

video segment level using the proposed method.

The proposed action descriptor improves upon the state

of the art on all four datasets (see Table 1 for the details

about dataset and comparison). Figure 5 shows some sam-

ple actions correctly classified by our approach. Note the

difference in appearance between the datasets. The experi-

ments show that the proposed approach consistently outper-

forms state of the art accuracy for each of the datasets.

6. Conclusion

Previous approaches for first person action recognition

have explored various hand tuned features based on ego-

centric cues such as hand pose, head motion and objects

present in the scene. These approaches do not leverage ex-

isting work in third person video analysis and do not gener-

alize beyond the dataset considered.

We have proposed a new convolutional neural network

based framework for first person action recognition. We

propose a three-stream architecture which uses egocentric

cues in the first stream and complements it with pre trained

spatial and temporal streams from third person video analy-

sis. We show that with the egocentric stream alone, we can

achieve state of the art accuracy. The performance improves

further after using complementary features from spatial and

temporal streams. The generality of the approach is vali-

dated by achieving state of the art accuracy on all available

public datasets at the same time.

Acknowledgement The authors would like to thank

Kohli Center on Intelligent Systems (KCIS) for the partial

financial support.

2627



References

[1] Google glass. https://www.google.com/glass/start/.

1
[2] Gopro. http://gopro.com/. 1
[3] Microsoft sensecam. http://research.microsoft.com/

en-us/um/cambridge/projects/sensecam/. 1
[4] O. Aghazadeh, J. Sullivan, and S. Carlsson. Novelty detection from

an ego-centric perspective. In CVPR, 2011. 1
[5] L. Baraldi, F. Paci, G. Serra, L. Benini, and R. Cucchiara. Gesture

recognition in ego-centric videos using dense trajectories and hand

segmentation. In CVPRW, 2014. 7
[6] D. Castro, S. Hickson, V. Bettadapura, E. Thomaz, G. Abowd,

H. Christensen, and I. Essa. Predicting daily activities from ego-

centric images using deep learning. In ISWC, 2015. 2
[7] A. Fathi, A. Farhadi, and J. M. Rehg. Understanding egocentric ac-

tivities. In ICCV, 2011. 1, 2, 6, 7, 8
[8] A. Fathi, J. K. Hodgins, and J. M. Rehg. Social interactions: A first-

person perspective. In CVPR, 2012. 1
[9] A. Fathi, Y. Li, and J. M. Rehg. Learning to recognize daily actions

using gaze. In ECCV, 2012. 1, 2
[10] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize objects in

egocentric activities. In CVPR, 2011. 1, 2, 4, 5, 6, 7, 8
[11] Y. Hoshen and S. Peleg. Egocentric video biometrics. CoRR,

abs/1411.7591, 2014. 1
[12] M. Jain, H. Jégou, and P. Bouthemy. Better exploiting motion for

better action recognition. In CVPR, 2013. 2, 5
[13] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks

for human action recognition. In TPAMI, 2013. 2
[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, , and T. Darrell. Caffe: Convolutional architecture

for fast feature embedding. In arXiv preprint arXiv:1408.5093, 2014.

7
[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and

L. Fei-Fei. Large-scale video classification with convolutional neural

networks. In CVPR, 2014. 2
[16] K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Fast unsupervised

ego-action learning for first-person sports videos. In CVPR, 2011. 1,

2
[17] A. Klaser and M. Marszalek. A spatio-temporal descriptor based on

3d-gradients. In BMVC, 2008. 2
[18] J. Kopf, M. Cohen, and R. Szeliski. First-person hyperlapse videos.

ACM Transactions on Graphics, 2014. 1
[19] E. Kraft and T. Brox. Motion based foreground detection and poselet

motion features for action recognition. In ACCV, 2014. 2, 5
[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In NIPS, 2012. 5
[21] I. Laptev. On space-time interest points. IJCV, 2005. 2
[22] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people

and objects for egocentric video summarization. In CVPR, 2012. 1,

2, 5, 6, 7, 8
[23] C. Li and K. M. Kitani. Pixel-level hand detection in ego-centric

videos. In CVPR, 2013. 3, 7
[24] Y. Li, A. Fathi, and J. M. Rehg. Learning to predict gaze in egocentric

video. In ICCV, 2013. 1
[25] Y. Li, Z. Ye, and J. M. Rehg. Delving into egocentric actions. In

CVPR, 2015. 2, 6
[26] Z. Lu and K. Grauman. Story-driven summarization for egocentric

video. In CVPR, 2013. 1
[27] K. Matsuo, K. Yamada, S. Ueno, and S. Naito. An attention-based

activity recognition for egocentric video. In CVPRW, 2014. 1
[28] T. McCandless and K. Grauman. Object-centric spatio-temporal

pyramids for egocentric activity recognition. In BMVC, 2013. 2
[29] K. Ogaki, K. M. Kitani, Y. Sugano, and Y. Sato. Coupling eye-

motion and ego-motion features for first-person activity recognition.

In CVPRW, 2012. 1
[30] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. IJCV, 2001. 2
[31] H. Pirsiavash and D. Ramanan. Detecting activities of daily living in

first-person camera views. In CVPR, 2012. 1, 2, 5, 6, 7, 8

[32] Y. Poleg, C. Arora, and S. Peleg. Head motion signatures from ego-

centric videos. In ACCV, 2014. 1
[33] Y. Poleg, C. Arora, and S. Peleg. Temporal segmentation of egocen-

tric videos. In CVPR, 2014. 1, 2
[34] Y. Poleg, T. Halperin, C. Arora, and S. Peleg. Egosampling: Fast-

forward and stereo for egocentric videos. CoRR, abs/1412.3596,

2014. 1
[35] X. Ren and C. Gu. Figure-ground segmentation improves handled

object recognition in egocentric video. In CVPR, 2010. 1
[36] X. Ren and M. Philipose. Egocentric recognition of handled objects:

Benchmark and analysis. In CVPRW, 2009. 1
[37] M. S. Ryoo and L. Matthies. First-person activity recognition: What

are they doing to me? In CVPR, 2013. 1
[38] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor

and its application to action recognition. In ACMMM, 2007. 2
[39] K. Simonyan and A. Zisserman. Two-stream convolutional networks

for action recognition in videos. In NIPS, 2014. 2, 5
[40] S. Singh, C. Arora, and C. V. Jawahar. Trajectory aligned features

for first person action recognition. CoRR, abs/1604.02115, 2016. 2
[41] E. H. Spriggs, F. De La Torre, and M. Hebert. Temporal segmenta-

tion and activity classification from first-person sensing. In CVPRW,

2009. 1, 2, 5, 6, 7, 8
[42] S. Sundaram and W. W. M. Cuevas. High level activity recognition

using low resolution wearable vision. In CVPRW, 2009. 1
[43] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional

learning of spatio-temporal features. In ECCV, 2010. 2
[44] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning

spatiotemporal features with 3d convolutional networks. In ICCV,

2015. 2, 5
[45] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recognition

by dense trajectories. In CVPR, 2011. 2, 5, 7
[46] H. Wang and C. Schmid. Action recognition with improved trajecto-

ries. In ICCV, 2013. 2, 5, 7
[47] L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-

pooled deep-convolutional descriptors. In CVPR, 2015. 2, 5, 7
[48] G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense

and scale-invariant spatio-temporal interest point detector. In ECCV,

2008. 2
[49] B. Xiong and K. Grauman. Detecting snap points in egocentric video

with a web photo prior. In ECCV, 2014. 1
[50] L. Yeffet and L. Wolf. Local trinary patterns for human action recog-

nition. In ICCV, 2009. 2

2628

https://www.google.com/glass/start/
http://gopro.com/
http://research.microsoft.com/en-us/um/cambridge/projects/sensecam/
http://research.microsoft.com/en-us/um/cambridge/projects/sensecam/

