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Abstract

We address temporal action localization in untrimmed

long videos. This is important because videos in real ap-

plications are usually unconstrained and contain multiple

action instances plus video content of background scenes

or other activities. To address this challenging issue, we

exploit the effectiveness of deep networks in temporal ac-

tion localization via three segment-based 3D ConvNets: (1)

a proposal network identifies candidate segments in a long

video that may contain actions; (2) a classification network

learns one-vs-all action classification model to serve as ini-

tialization for the localization network; and (3) a localiza-

tion network fine-tunes the learned classification network to

localize each action instance. We propose a novel loss func-

tion for the localization network to explicitly consider tem-

poral overlap and achieve high temporal localization accu-

racy. In the end, only the proposal network and the local-

ization network are used during prediction. On two large-

scale benchmarks, our approach achieves significantly su-

perior performances compared with other state-of-the-art

systems: mAP increases from 1.7% to 7.4% on MEXaction2

and increases from 15.0% to 19.0% on THUMOS 2014.

1. Introduction

Impressive progress has been reported in recent litera-

ture for action recognition [42, 28, 2, 3, 39, 40, 24, 18, 31,

44, 13, 37]. Besides detecting action in manually trimmed

short video, researchers start to develop techniques for de-

tecting actions in untrimmed long videos in the wild. This

trend motivates another challenging topic - temporal action

localization: given a long untrimmed video, “when does a

specific action start and end?” This problem is important

because real applications usually involve long untrimmed

videos, which can be highly unconstrained in space and

time, and one video can contain multiple action instances

plus background scenes or other activities. Localizing ac-

tions in long videos, such as those in surveillance, can save

tremendous time and computational costs.

Most state-of-the-art methods rely on manually selected

features, and their performances still require much improve-

ment. For example, top performing approaches in THU-

MOS Challenge 2014 [27, 41, 17, 15] and 2015 [46, 9] both

used improved Dense Trajectory (iDT) with Fisher Vector

(FV) [40, 25]. There have been some recent attempts at in-

corporating iDT features with appearance features automat-

ically extracted by frame-level deep networks [27, 41, 17].

Nevertheless, such 2D ConvNets do not capture motion in-

formation, which is important for modeling actions and de-

termining their temporal boundaries.

As an analogy in still images, object detection recently

achieved large improvements by using deep networks. In-

spired by Region-based Convolutional Neural Networks (R-

CNN) [7] and its upgraded versions [6, 30, 21], we develop

Segment-CNN1, which is an effective deep network frame-

work for temporal action localization as outlined in Figure

1. We adopt 3D ConvNets [13, 37], which recently has

been shown to be promising for capturing motion charac-

teristics in videos, and add a new multi-stage framework.

First, multi-scale segments are generated as candidates for

three deep networks. The proposal network classifies each

segment as either action or background in order to eliminate

background segment estimated to be unlikely to contain ac-

tions of interest. The classification network trains typical

one-vs-all classification model for all action categories plus

the background.

However, the classification network aims at finding key

evidences to distinguish different categories, rather than lo-

calizing precise action presences in time. Sometimes, the

scores from the classification network can be high even

when the segment has only a very small overlap with the

ground truth instance. This can be detrimental because sub-

sequent post-processing steps, such as Non-Maximum Sup-

pression (NMS), might remove segment of small score but

large overlap with ground truth. To explicitly take tempo-

ral overlap into consideration, we introduce the localiza-

tion network based on the same architecture, but this net-

1Source code and trained models are available online at https://

github.com/zhengshou/scnn/.
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Figure 1. Overview of our framework. (a) Multi-scale segment generation: given an untrimmed video, we generate segments of varied

lengths via sliding window; (b) Segment-CNN: the proposal network identifies candidate segments, the classification network trains an

action recognition model to serve as initialization for the localization network, and the localization network localizes action instances in

time and outputs confidence scores; (c) Post-processing: using the prediction scores from the localization network, we further remove

redundancy by NMS to obtain the final results. During training, the classification network is first learned and then used as initialization for

the localization network. During prediction, only the proposal and localization networks are used.

work uses a novel loss function, which rewards segments

with higher temporal overlap with the ground truths, and

thus can generate confidence scores more suitable for post-

processing. Note that the classification network cannot be

replaced by the localization network. We will show later

that using the trained classification network (without con-

sidering temporal overlap) to initialize the localization net-

work (take into account temporal overlap) is important, and

achieves better temporal localization accuracies.

To summarize, our main contributions are three-fold:

(1) To the best of our knowledge, our work is the first to

exploit 3D ConvNets with multi-stage processes for tempo-

ral action localization in untrimmed long videos in the wild.

(2) We introduce an effective multi-stage Segment-CNN

framework, to propose candidate segments, recognize ac-

tions, and localize temporal boundaries. The proposal net-

work improves the efficiency by eliminating unlikely candi-

date segments, and the localization network is key to tem-

poral localization accuracy boosting.

(3) The proposed techniques significantly outperform the

state-of-the-art systems over two large-scale benchmarks

suitable for temporal action localization. When the overlap

threshold used in evaluation is set to 0.5, our approach im-

proves mAP on MEXaction2 from 1.7% to 7.4% and mAP

on THUMOS 2014 from 15.0% to 19.0%. We did not eval-

uate on THUMOS Challenge 2015 [9] because the ground

truth is withheld by organizers for future evaluation. More

detailed evaluation results are available in Section 4.

2. Related work

Temporal action localization. This topic has been studied

in two directions. When training data only have video-level

category labels but no temporal annotations, researchers

formulated this as weakly supervised problems or multi-

ple instance learning problems to learn the key evidences

in untrimmed videos and temporally localize actions by se-

lecting key instances [22, 23]. Sun et al. [36] transferred

knowledge from web images to address temporal localiza-

tion in untrimmed web videos.

Another line of work focuses on learning from data when

the temporal boundaries have been annotated for action in-

stances in untrimmed videos, such as THUMOS. Most of

these works pose this as a classification problem and adopt

a temporal sliding window approach, where each window

is considered as an action candidate subject to classifica-

tion [25]. Surveys about action classification methods can

be found in [42, 28, 2, 3]. Recently, two directions lead

the state-of-the-art: (1) Wang et al. [39] proposed extract-

ing HOG, HOF, MBH features along dense trajectories, and

later on they took camera motion into consideration [40].

Further improvement can be achieved by stacking features

with multiple time skips [24]. (2) Enlighted by the suc-
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cess of CNNs in recent works [20, 32], Karpathy et al. [18]

evaluated frame-level CNNs on large-scale video classifi-

cation tasks. Simonyan and Zisserman [31] designed two-

stream CNNs to learn from still image and motion flow re-

spectively. In [44], a latent concept descriptor of convo-

lutional feature map was proposed, and great results were

achieved on event detection with VLAD encoding. To learn

spatio-temporal features together, the architecture of 3D

ConvNets was explored in [13, 37], achieving competitive

results. Oneata et al. [26] proposed approximately normal-

ized Fisher Vectors to reduce the high dimensionality of FV.

Stoian et al. [35] introduced a two-level cascade to allow

fast search for action instances. Instead of precision, these

methods focus on improving the efficiency of conventional

methods. To specifically address the temporal precision of

action detection, Gaidon et al. [4, 5] modeled the struc-

ture of action sequence with atomic action units (actoms).

The explicit modeling of action units allows for matching

more complete action unit sequences, rather than just par-

tial content. However, this requires mannual annotations

for actoms, which can be subjective and burdensome. Our

paper presented here aims to solve the same problem of pre-

cise temporal localization, but without requiring the difficult

task of manual annotation for atomic action units.

Spatio-temporal localization. There have been active ex-

plorations about localizing action in space and time simul-

taneously. Jain et al. [10] and Soomro et al. [33] built

their work on supervoxel. Recently, researchers treat this

as a tracking problem [43, 8] by leveraging object detectors

[11], especially human detectors [16, 19, 8, 45] to detect re-

gions of interest in each frame and then output sequences

of bounding boxes. Dense trajectories have also been ex-

ploited for extracting the action tubes [29, 38]. Jain et al.

[12] added object encodings to help action localization.

However, this problem is different from temporal local-

ization, which is the main topic in this paper: (1) When

using object detectors to find spatio-temporal regions of

interest, such approaches assume that the actions are per-

formed by human or other pre-defined objects. (2) Spatio-

temporal localization requires exhaustive annotations for

objects of interest on every frame as training data. This

makes it overwhelmingly time-consuming particularly for

long untrimmed videos compared with the task of simply

labeling the start time and end time of an action depicted in

the video, which is sufficient to satisfy many applications.

Object detection. Inspired by the success of deep learning

approaches in object detection, we also review R-CNN and

its variations. R-CNN consists of selective search, CNN

feature extraction, SVM classification, and bounding box

regression [7]. Fast R-CNN reshapes R-CNN into a single-

stage using multi-task loss, and also has a RoI pooling layer

to share the computation of one image in ConvNets [6].

Our work differs from R-CNN in the following aspects:

(1) Temporal annotations in training videos can be diverse:

some are cleanly trimmed action instances cut out from

long videos, such as UCF101 [34], and some are untrimmed

long videos but with temporal boundaries annotated for ac-

tion instances, such as THUMOS [15, 9]. We provide a

paradigm that can handle such diverse annotations. (2) As

proven in Faster R-CNN [30] which proposes region pro-

posal network, and DeepBox [21] which detects objectness

to re-rank the results of R-CNN, using deep networks for

learning objectness is effective and efficient. Therefore, we

directly use deep network to classify background and action

to obtain candidate segments. (3) We remove the regression

stage because learning regression for time shift and dura-

tion of video segment does not work well in our experi-

ments, probably because actions can be quite diverse, and

therefore do not contain consistent patterns for predicting

start/end time. To achieve precise localization, we design

the localization network using a new loss function to explic-

itly consider temporal overlap. This can decrease the score

for the segment that has small overlap with the ground truth,

and increase the segment of larger overlap. This also ben-

efits post-processing steps, such as NMS, to keep segment

with higher temporal localization accuracy.

3. Detailed descriptions of Segment-CNN

3.1. Problem setup

Problem definition. We denote a video as X = {xt}
T

t=1

where xt is the t-th frame in X , and T is the total number

of frames in X . Each video X is associated with a set of

temporal action annotations Ψ =
{(

ψm, ψ
′

m
, km

)}M

m=1
,

where M is the total number of action instances in X , and

km, ψm, ψ
′

m
are, respectively, action category of the in-

stance m and its starting time and ending time (measured

by frame ID). km ∈ {1, . . . ,K}, where K is the number

of categories. During training, we have a set T of trimmed

videos and a set U of untrimmed videos. Each trimmed

video X ∈ T has ψm = 1, ψ
′

m
= T , and M = 1.

Multi-scale segment generation. First, each frame is re-

sized to 171 (width) × 128 (height) pixels. For untrimmed

video X ∈ U , we conduct temporal sliding windows of

varied lengths as 16, 32, 64, 128, 256, 512 frames with

75% overlap. For each window, we construct segment

s by uniformly sampling 16 frames. Consequently, for

each untrimmed video X , we generate a set of candidates

Φ =
{(

sh, φh, φ
′

h

)}H

h=1
as input for the proposal network,

where H is the total number of sliding windows for X , and

φm and φ
′

m
are respectively starting time and ending time

of the h-th segment sh. For trimmed video X ∈ T , we di-
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rectly sample a segment s of 16 frames from X in uniform.

Network architecture. 3D ConvNets conducts 3D convo-

lution/pooling which operates in spatial and temporal di-

mensions simultaneously, and therefore can capture both

appearance and motion for action. Given the competitive

performances on video classification tasks, our deep net-

works use 3D ConvNets as the basic architecture in all

stages and follow the network architecture of [37]. All

3D pooling layers use max pooling and have kernel size

of 2×2 in spatial with stride 2, while vary in temporal. All

3D convolutional filters have kernel size 3 and stride 1 in

all three dimensions. Using the notations conv(number

of filters) for the 3D convolutional layer, pool(temporal

kernel size, temporal stride) for the 3D pooling layer, and

fc(number of filters) for the fully connected layer, the lay-

out of these three types of layers in our architecture is

as follows: conv1a(64) - pool1(1,1) - conv2a(128) -

pool2(2,2) - conv3a(256) - conv3b(256) - pool3(2,2) -

conv4a(512) - conv4b(512) - pool4(2,2) - conv5a(512)
- conv5b(512) - pool5(2,2) - fc6(4096) - fc7(4096) -

fc8(K + 1). Each input for this deep network is a segment

s of dimension 171 × 128 × 16. C3D is training this net-

work on Sports-1M train split [37], and we use C3D as the

initialization for our proposal and classification networks.

3.2. Training procedure

The proposal network: We train a CNN network Θpro as

the background segment filter. Basically, fc8 has two nodes

that correspondingly represent the background (rarely con-

tains action of interest) and being-action (has significant

portion belongs to the actions of interest).

We use the following strategy to construct training data

Spro = {(sn, kn)}
N

n=1, where label kn ∈ {0, 1}. For each

segment of the trimmed video X ∈ T , we set its label

as positive. For candidate segments from an untrimmed

video X ∈ U with temporal annotation Ψ, we assign a

label for each segment by evaluating its Intersection-over-

Union (IoU) with each ground truth instance in Ψ : (1)

if the highest IoU is larger than 0.7, we assign a positive

label; (2) if the highest IoU is smaller than 0.3, we set it

as the background. On the perspective of ground truth, if

there is no segment that overlaps with a ground truth in-

stance with IoU larger than 0.7, then we assign a positive

label segment s if s has the largest IoU with this ground

truth and its IoU is higher than 0.5. At last, we obtain

Spro = {(sn, kn)}
Npro

n=1 which consists of allNT +NU posi-

tive segments andNb ≈ NT +NU randomly sampled back-

ground segments, where Npro = NT +NU +Nb.

In all experiments, we use a learning rate of 0.0001, with

the exception of 0.01 for fc8, momentum of 0.9, weight de-

cay factor of 0.0005, and drop the learning rate by a factor

of 10 for every 10K iterations. The number of total itera-

tions depends on the scale of dataset and will be clarified in

Section 4.

Note that, compared with the multi-class classification

network, this proposal network is simpler because the out-

put layer only consists of two nodes (action or background).

The classification network: After substantial background

segments are removed by the proposal network, we train a

classification model Θcls for K action categories as well as

background.

Preparing the training data Scls follows a similar strategy

for the proposal network. Except when assigning label for

positive segment, the classification network explicitly indi-

cates action category km ∈ {1, . . . ,K}. Moreover, in order

to balance the number of training data for each class, we re-

duce the number of background instances toNb ≈
NT +NU

K
.

As for parameters in SGD, the learning rate is 0.0001,

with the exception of 0.01 for fc8, momentum is 0.9,

weight decay factor is 0.0005, and the learning rate is di-

vided by a factor of 2 for every 10K iterations, because the

convergence shall be slower when the number of classes in-

creases.

The localization network: As illustrated in Figure 2, it is

important to push up the prediction score of the segment

with larger overlap with the ground truth instance and de-

crease the scores of the segment with smaller overlap, to

make sure that the subsequent post-processing steps can

choose segments with higher overlap over those with small

overlap. Therefore, we propose this localization network

Θloc with a new loss function, which takes IoU with ground

truth instance into consideration.

Training data Sloc for the localization network are aug-

mented from Scls by associating each segment s with the

measurement of overlap, v. In specific, we set v = 1 for s

from trimmed video. If s comes from untrimmed video and

has positive label k, we set v equal to the overlap (measured

by IoU) of segment s with the associated ground truth in-

stance. If s is a background segment, as we can see later, its

B: CliffDiving   0.90   Remove

Background CliffDiving Background

A: CliffDiving   0.95   Keep

C: CliffDiving   0.85   Keept1      t2

Figure 2. Typical case of bad localizations. Assume that the sys-

tem outputs three predictions: A, B, C. Probably due to that there

are some evidences during [t1, t2], and A has the highest predic-

tion score. Therefore, the NMS will keep A, remove B, and then

keep C. However, actually we hope to remove A and C in NMS,

and keep B because B has the largest IoU with the ground truth

instance.
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overlap measurement v will not affect our new loss function

and gradient computation in back-propagation, and thus we

simply set its v as 1.

During each mini-batch, we have N training samples

{(sn, kn, vn)}
N

n=1. For the n-th segment, the output vec-

tor of fc8 is On and the prediction score vector after the

softmax layer is Pn. Note that for the i-th class, P
(i)
n =

e
O

(i)
n

∑
N
j=1 eO

(j)
n

. The new loss function is formed by combining

Lsoftmax and Loverlap :

L = Lsoftmax + λ · Loverlap, (1)

where λ balances the contribution from each part, and

through empirical validation, we find that λ = 1 works well

in practice. Lsoftmax is the conventional softmax loss and is

defined as

Lsoftmax =
1

N

∑

n

(

− log
(

P (kn)
n

))

, (2)

which is effective for training deep networks for classifica-

tion. Loverlap is designed to jointly reduce the classification

error and adjust the intensity of confidence score according

to the extent of overlap:

Loverlap =
1

N

∑

n







1

2
·







(

P
(kn)
n

)2

(vn)
α − 1






· [kn > 0]






.

(3)

Here, [kn > 0] is equal to 1 when the true class label kn is

positive, and it is equal to 0 when kn = 0, which means the

sn is a background training sample. Loverlap is intended to

boost the detection scores (P ) of segments that have high

overlaps (v) with ground truth instances, and reduce the

scores of those with small overlaps. The hyper-parameter

α controls the adjustment range for the intensity of the con-

fidence score. The sensitivity of α is explored in Section 4.

In addition, the total gradient w.r.t output of the i-th node in

fc8 is as follows:

∂L

∂O
(i)
n

=
∂Lsoftmax

∂O
(i)
n

+ λ ·
∂Loverlap

∂O
(i)
n

, (4)

in which

∂Lsoftmax

∂O
(i)
n

=

{

1
N

·
(

P
(kn)
n − 1

)

if i = kn
1
N

· P
(i)
n if i 6= kn

(5)

and

∂Loverlap

∂O
(i)
n

=































1
N

·

(

(P (kn)
n )

2

(vn)
α ·

(

1− P
(kn)
n

)

)

· [kn > 0]

if i = kn

1
N

·

(

(P (kn)
n )

2

(vn)
α ·

(

−P
(i)
n

)

)

· [kn > 0]

if i 6= kn

.

(6)
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Figure 3. An illustration of how Loverlap works compared with

Lsoftmax for each positive segment. Here we use α = 1, λ = 1,

and vary overlap v in Loverlap. The x-axis is the prediction score

at the node that corresponds to true label, and the y-axis is the loss.

Given a training sample (sn, kn, vn), Figure 3 shows

how Loverlap influences the original softmax loss. It also

provides more concrete insights about the design of this

loss function. (1) If the segment belongs to the background,

Loverlap = 0 and L = Lsoftmax. (2) If the segment is posi-

tive, L reachs the minimum at P
(kn)
n =

√

(vn)
α

, and there-

fore penalizes two cases: either P
(kn)
n is too small due to

misclassification, or P
(kn)
n explodes and exceeds the learn-

ing target
√

(vn)
α

which is proportional to overlap vn. Also

note that L is designed to increase as vn decreases, consid-

ering that the training segment with smaller overlap with

ground truth instance is less reliable because it may include

considerable noise. (3) In particular, if this positive segment

has overlap vn = 1, the loss function becomes similar to the

softmax loss, and L gradually decreases from +∞ to 1 as

P
(kn)
n goes from 0 to 1.

During optimization, Θloc is fine-tuned on Θcls. Because

doing classification is also one objective of the localization

network, and a trained classification network can be good

initialization. We use the same learning rate, momentum,

and weight decay factor as for the classification network.

Other parameters depending on the dataset are indicated in

Section 4.

3.3. Prediction and post­processing

During prediction, we slide varied length temporal win-

dow to generate a set of segments and input them into Θpro

to obtain proposal scores Ppro. In this paper, we keep seg-

ments with Ppro ≥ 0.7. Then we evaluate the retained

segments by Θloc to obtain action category predictions and

confidence scores Ploc. During post-processing, we remove

all segments predicted as the background and refine Ploc by

multiplying with class-specific frequency of occurrence for

each window length in the training data to leverage win-

dow length distribution patterns. Finally, because redun-

dant detections are not allowed in evaluation, we conduct

NMS based on Ploc to remove redundant detections, and
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set the overlap threshold in NMS to a little bit smaller than

the overlap threshold θ in evaluation (θ− 0.1 in this paper).

4. Experiments

4.1. Datasets and setup

MEXaction2 [1]. This dataset contains two action classes:

“BullChargeCape” and “HorseRiding”. This dataset con-

sists of three subsets: INA videos, YouTube clips, and

UCF101 Horse Riding clips. YouTube clips and UCF101

Horse Riding clips are trimmed, whereas INA videos are

untrimmed and are approximately 77 hours in total. With

regard to action instances with temporal annotation, they are

divided into train set (1336 instances), validation set (310

instances), and test set (329 instances).

THUMOS 2014 [15]. The temporal action detection task in

THUMOS Challenge 2014 is dedicated to localizing action

instances in long untrimmed videos. The detection task in-

volves 20 categories as indicated in Figure 4. The trimmed

videos used for training are 2755 videos of these 20 actions

in UCF101. The validation set contains 1010 untrimmed

videos with temporal annotations of 3007 instances in to-

tal. The test set contains 3358 action instances from 1574

untrimmed videos, whereas only 213 of them contain ac-

tion instances of interest. We exclude the remaining 1361

background videos in the test set.

4.2. Comparison with state­of­the­art systems

Evaluation metrics. We follow the conventional met-

rics used in THUMOS Challenge to regard temporal ac-

tion localization as a retrieval problem, and evaluate aver-

age precision (AP). A prediction is marked as correct only

when it has the correct category prediction, and has IoU

with ground truth instance larger than the overlap threshold

(measured by IoU). Note that redundant detections are not

allowed.

Results on MEXaction2. We build our system based on

Caffe [14] and C3D [37]. We use the train set in MEX-

action2 for training. The number of training iterations is

30K for the proposal network, 20K for the classification net-

work, and 20K in the localization network with α = 0.25.

We denote our Segment-CNN using the above settings

as S-CNN and compare with typical dense trajectory fea-

tures (DTF) with bag-of-visual-words representation. The

results of DTF is provided by [1] 2, which trains three SVM

models with different set of negative samples and aver-

ages AP overall. According to Table 1, our Segment-CNN

2Note that the results reported in [1] use different evaluation metrics. To

make them comparable, we re-evaluate their prediction results according

to standard criteria mentioned in Section 4.2.

achieves tremendous performance gain for “BullCharge-

Cape” action and competitive performance for “HorseRid-

ing” action. Figure 5 displays our prediction results for

“BullChargeCape” and “HorseRiding”, respectively.

AP(%) BullChargeCape HorseRiding mAP

DTF 0.3 3.1 1.7

S-CNN 11.6 3.1 7.4

Table 1. Average precision on MEXaction2. The overlap threshold

is set to 0.5 during evaluation.

Results on THUMOS 20143: The instances in train set

and validation set are used for training. The number of

training iterations is 30K for all three networks. We again

set α = 0.25 for the localization network. We denote our

Segment-CNN using the above settings as S-CNN.

θ 0.1 0.2 0.3 0.4 0.5

Karaman et al. [17] 1.5 0.9 0.5 0.3 0.2

Wang et al. [41] 19.2 17.8 14.6 12.1 8.5

Oneata et al. [27] 39.8 36.2 28.8 21.8 15.0

S-CNN 47.7 43.5 36.3 28.7 19.0

Table 2. Mean average precision on THUMOS 2014 as the overlap

IoU threshold θ used in evaluation varies.

As for comparisons, beyond DTF, several baseline sys-

tems incorporate frame-level deep networks and even utilize

lots of other features: (1) Karaman et al. [17] used FV en-

coding of iDT with weighted saliency based pooling, and

conducted late fusion with frame-level CNN features. (2)

Wang et al. [41] built a system on iDT with FV represen-

tation and frame-level CNN features, and performed post-

processing to refine the detection results. (3) Oneata et al.

[27] conducted localization using FV encoding of iDT on

temporal sliding windows, and performed post-processing

following [25]. Finally, they conducted weighted fusion for

the localization scores of temporal windows and video-level

scores generated by classifiers trained on iDT features, im-

age features, and audio features. The results are listed in

Table 2. AP for each class can be found in Figure 4. Our

Segment-CNN significantly outperforms other systems for

14 of 20 actions, and the average performance improves

from 15.0% to 19.0%. We also show two prediction results

for the THUMOS 2014 test set in Figure 6.

Efficiency analysis. Our approach is very efficient when

compared with all other systems, which typically fuse dif-

ferent features, and therefore can become quite cumber-

3Note that the evaluation toolkit used in THUMOS 2014 has some

bugs, and recently the organizers released a new toolkit with fair evalua-

tion criteria. Here, we re-evaluate the submission results of all teams using

the updated toolkit.
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Figure 4. Histogram of average precision (%) for each class on THUMOS 2014 when the overlap threshold is set to 0.5 during evaluation.

some. Most segments generated from sliding windows are

removed by the first proposal network, and thus the opera-

tions in classification and localization are greatly reduced.

For each batch, the speed is around 1 second, and the num-

ber of segments can be processed during each batch depends

on the GPU memory (approximately 25 for GeForce GTX

980 of 4G memory). The storage requirement is also ex-

tremely small because our method does not need to cache

intermediate high dimensional features, such as FV to train

SVM. All required by Segment-CNN is three deep network

models, which occupy less than 1 GB in total.

4.3. Impact of individual networks

To study the effects of each network individually, we

compare four Segment-CNNs using different settings: (1)

S-CNN: keep all three networks and settings in Section

4.2, and Θloc is fine-tuned on Θcls; (2) S-CNN (w/o pro-

posal): remove the proposal network completely, and di-

rectly use Θloc to do predictions on sliding windows; (3)

S-CNN (w/o classification): remove the classification net-

work completely and thus do not have Θcls to serve as ini-

tialization for training Θloc; (4) S-CNN (w/o localization):

remove the localization network completely and instead use

classification model Θcls to produce predictions.

The proposal network. We compare S-CNN (w/o pro-

posal) and S-CNN, which includes the proposal network as

described above (two nodes in fc8). Because of the smaller

network architecture than S-CNN (w/o proposal), S-CNN

can reduce the number of operations conducted on back-

ground segments, and therefore accelerate speed. In addi-

tion, the results listed in Table 3 demonstrate that keeping

the proposal network can also improve precision because it

is designed for filtering out background segments that lack

action of interests.

The classification network. Although Θcls is not used dur-

ing prediction, the classification network is still important

because fine-tuning on Θcls results in better performance.

During evaluation here, we perform top-κ selection on the

networks S-CNN (w/o proposal) S-CNN

mAP(%) 17.1 19.0

Table 3. mAP comparisons on THUMOS 2014 between remov-

ing the proposal network and keeping the proposal network. The

overlap threshold is set to 0.5 during evaluation.

final prediction results to select κ segments with maximum

confidence scores. As shown in Figure 7, S-CNN fine-

tuned on Θcls outperforms S-CNN (w/o classification) con-

sistently when κ varies, and consequently the classification

network is necessary during training.
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Figure 7. Effects of the classification and localization networks.

y-axis is mAP(%) on THUMOS 2014, and x-axis varies the depth

κ in top-κ selection. The overlap threshold is set to 0.5 during

evaluation.

The localization network. Figure 7 also proves the ef-

fectiveness of the localization network. By adding the lo-

calization network, S-CNN can significantly improve per-

formances compared with the baseline S-CNN (w/o local-

ization), which only contains the proposal and classifica-

tion networks. This is because the new loss function in-

troduced in the localization network refines the scores in

favoring segments of higher overlap with the ground truths,

and therefore higher temporal localization accuracy can be

achieved.
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Figure 5. Prediction results for two action instances from MEXaction2 when the overlap threshold is set to 0.5 during evaluation. For

each ground truth instance, we show two prediction results: A has the highest confidence score among the predictions associated with this

ground truth, and B is an incorrect prediction. BullChargeCape: A is correct, but B is incorrect because each ground truth only allows one

detection. HorseRiding: A is correct, but B is incorrect because each ground truth only allows one detection. The numbers shown with #

are frame IDs.
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Figure 6. Prediction results for two action instances from THUMOS 2014 test set when the overlap threshold is set to 0.5 during evaluation.

For each ground truth instance, we show two prediction results: A has the highest confidence score among the predictions associated with

this ground truth, and B is an incorrect prediction. ClearAndJerk: A is correct, but B is incorrect because its overlap IoU with ground truth

is less than threshold 0.5. LongJump: A is correct, but B is incorrect because it has the wrong action category prediction - PoleVault.

In addition, we vary α in the overlap loss term Loverlap of

the loss function to evaluate its sensitivity. We find that our

approach has stable performances over a range of α value

(e.g., from 0.25 to 1.0).

5. Conclusion

We propose an effective multi-stage framework called

Segment-CNN to address temporal action localization in

untrimmed long videos. Through the above evaluation for

each network, we demonstrate the contribution from the

proposal network to identify candidate segments, the ne-

cessity of the classification network to provide good initial-

ization for training the localization model, and the effec-

tiveness of the new loss function used in the localization

network to precisely localize action instances in time.

In the future, we would like to extend our work to events

and activities, which usually consist of multiple actions,

therefore precisely localizing action instances in time can

be helpful for their recognition and detection.
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