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Abstract

Cardiovascular disease (CVD) is the leading cause of

mortality yet largely preventable, but the key to prevention

is to identify at-risk individuals before adverse events. For

predicting individual CVD risk, carotid intima-media thick-

ness (CIMT), a noninvasive ultrasound method, has proven

to be valuable, offering several advantages over CT coro-

nary artery calcium score. However, each CIMT exami-

nation includes several ultrasound videos, and interpreting

each of these CIMT videos involves three operations: (1)

select three end-diastolic ultrasound frames (EUF) in the

video, (2) localize a region of interest (ROI) in each selected

frame, and (3) trace the lumen-intima interface and the

media-adventitia interface in each ROI to measure CIMT.

These operations are tedious, laborious, and time consum-

ing, a serious limitation that hinders the widespread utiliza-

tion of CIMT in clinical practice. To overcome this limita-

tion, this paper presents a new system to automate CIMT

video interpretation. Our extensive experiments demon-

strate that the suggested system performs reliably. The

reliable performance is attributable to our unified frame-

work based on convolutional neural networks (CNNs) cou-

pled with our informative image representation and effec-

tive post-processing of the CNN outputs, which are uniquely

designed for each of the above three operations.

1. Introduction

Given the clinical significance of carotid intima-media

thickness (CIMT) as an early and reliable indicator of car-

diovascular risk, several methods have been developed for
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Figure 1: Longitudinal view of the carotid artery in an ul-

trasound B-scan image. CIMT is defined as the distance be-

tween the lumen-intima interface and the media-adventitia

interface, measured approximately 1 cm distal from the

carotid bulb on the far wall of the common carotid artery at

the end of the diastole; therefore, interpreting a CIMT video

involves three operations: (1) select three end-diastolic ul-

trasound frames (EUFs) in each video (the cardiac cycle in-

dicator, a black line, shows to where in the cardiac cycle the

current frame corresponds); (2) localize a region of inter-

est (ROI) approximately 1 cm distal from the carotid bulb

in the selected EUF; (3) measure the CIMT within the lo-

calized ROI. This paper aims to automate these three opera-

tions simultaneously through a unified framework based on

convolutional neural networks.

CIMT image interpretation. The CIMT is defined as the

distance between the lumen-intima and media-adventitia

interfaces at the far wall of the carotid artery (Figure 1).
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Therefore, to measure CIMT, the lumen-intima and the

media-adventitia interfaces must be identified. As a re-

sult, the earlier approaches are focused on analyzing the

intensity profile and distribution, computing the gradient

[21, 25, 5], or combining various edge properties through

dynamic programming [12, 3, 22]. Recent approaches

[14, 4, 20, 26, 7, 2] are mostly based on active contours (aka,

snakes) or their variations [8]. Some of these approaches

require user interactions, while other approaches aim for

complete automation through integrating with various im-

age processing algorithms, such as Hough transform [18]

and dynamic programming [22]. Most recently, Menchn-

Lara et al. employed a committee of standard multilayer

perceptrons in [16] and a single standard multilayer percep-

tron with an auto-encoder in [17] for CIMT image interpre-

tation, but both methods did not outperform the snake-based

methods from the same research group [2, 1]. For a more

complete survey of methods for automatic CIMT measure-

ments, please refer to the review studies conducted by Moli-

nari et al.[19] and Loizou et al. [13].

However, nearly all the aforementioned methods are fo-

cused on only the third operation: CIMT measurement, ig-

noring the two preceding operations, i.e., frame selection

and ROI localization. To our knowledge, the only system

that simultaneously automates the three operations is the

work [23], an extension of [27], which automatically se-

lects the EUF frame, localizes the ROI in each selected EUF

frame, and provides the CIMT measurement in the selected

ROI. However, as with other works, this method is based on

hand-crafted algorithms, which often lack the desired ro-

bustness for routine clinical use, a weakness that we aim to

overcome in this paper.

A key contribution of this paper is a new system that ac-

celerates CIMT video interpretation by automating all the

three operations in a novel unified framework based on con-

volutional neural networks (CNNs). We will show that with

proper pre-processing and post-processing, our proposed

CNN-based approach can perform reliably in all aspects of

CIMT image interpretation including frame selection, ROI

localization, and CIMT measurements, making the follow-

ing specific contributions:

• A unified framework based on CNNs that automates

the entire CIMT interpretation process. This is in con-

trast to the prior works where only the very last step of

the CIMT interpretation process was automated. The

performance of the suggested system significantly out-

performs a hand-crafted approach [23], which, to our

knowledge, is the only system in the literature that

aimed to automate all the above three tasks.

• A novel frame selection method based on the ECG sig-

nals at the bottom of ultrasound frames. The suggested

method utilizes effective pre-processing of patches and

post processing of CNN outputs, enabling a significant

increase in the performance of a baseline CNN.

• A new method that localizes the ROI for CIMT in-

terpretation. The suggested method combines the

discriminative power of a CNN with a contextual

constrain to accurately localize the ROIs in the se-

lected frames. We demonstrate that the suggested

contextually-constrained CNN outperforms the perfor-

mance of a baseline CNN.

• A framework that combines CNNs with active contour

models for accurate boundary segmentation. Specifi-

cally, given a localized ROI, the CNN initializes two

open snakes, which further deform to acquire the

shapes of intima-media boundaries. We show that

the segmentation accuracy of the suggested method is

higher than of [23].

• Extensive evaluation of each stage of the suggested

CIMT interpretation system. Specifically, we perform

leave-one-patient-out cross-validation1 using only the

training CIMT videos to tune the parameters of the

suggested system, and then thoroughly evaluate the

performance of our system using an independent test

CIMT videos.

2. CIMT Protocol

The CIMT exams utilized in this paper were performed

with B-Mode ultrasound using an 8-14MHz linear array

transducer utilizing fundamental frequency only (Acuson

SequoiaTM, Mountain View, CA, USA) [6]. The carotid

screening protocol begins with scanning bilateral carotid ar-

teries in a transverse manner from the proximal aspect to the

proximal internal and external carotid arteries. The probe

is then turned to obtain the longitudinal view of the distal

common carotid artery. The sonographer optimizes the 2D

images of the lumen-intima and media-adventitia interfaces

at the level of the common carotid artery by adjusting over-

all gain, time gain, compensation and focus position. Once

the parameters are optimized, the sonographer captures two

CIMT videos focused on the common carotid artery from

two optimal angles of incidence. The same procedure is re-

peated for the other side of neck, resulting in a total of 4

CIMT videos for each subject.

3. Method

Our goal is to automate the three operations in CIMT

video interpretation, i.e, given a CIMT video, our method

will automatically identify three EUFs (Section 3.1), local-

ize an ROI in each EUF (Section 3.2), and segment the

lumen-intima and media-adventitia interfaces within each

ROI (Section 3.3).

1We leave all the videos from one patient out for validation.
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Figure 2: An accumulated difference image is generated by adding up three neighboring difference images.

3.1. Frame Selection

We select the EUFs based on the ECG signal embedded

at the bottom part of a CIMT video. The cardiac cycle indi-

cator is represented by a moving black line in each frame.

Since the ECG signal is overlaid on the ultrasound image,

there is quite bit of noise around the indicator. The chal-

lenge is to reconstruct the original ECG signal from noisy

frames and to detect the R peaks from the ECG signal, as

the R-peaks correspond to the EUFs. To do so, we intro-

duce accumulated difference images that carry sufficient in-

formation for CNN to learn and distinguish R-peaks from

non-R-peaks.

Training Phase: Let It denote an image subregion selected

from the lower part of an ultrasound frame so that it contains

the ECG signal. We first construct a set of difference images

dt by subtracting every consecutive pairs of images, dt =
|It−It+1|, and then form accumulated difference images by

adding up every three neighboring difference images, Dt =
∑2

i=0
dt−i. Accumulated difference image Dt can capture

the cardiac cycle indicator at frame t. Figure 2 illustrates

how an accumulated difference image is generated.

Next, we determine the location of the restored wavelet

in each accumulated difference image. For this purpose, we

find the weighted centroid c = [cx, cy] of each accumulated

difference image Dt as follows:

c =
1

Zt

∑

p∈Dt

Dt(px, py)× p

where p = [px, py] is a pixel in the accumulated difference

image and Zt =
∑

p∈Dt D
t(px, py) is a normalization fac-

tor that ensures the weighted centroid stays within the image

boundary. Once centroids are identified, we extract patches

of size 32 × 32 around the centroid locations. Specifically,

we extract patches with up to 2 pixel translations from each

centroid. However, we do not scale the patches in data aug-

mentation, because doing so would inject label noise in the

training set. For instance, a small restored wavelet may take

the appearance of an R-peak after expanding or an R-peak

wavelet may look like a non-R-peak wavelet after shrinking.

Nor do we perform rotation-based patch augmentation, be-

cause we do not expect the restored wavelets to appear with

rotation in the test image patches. Once collected, patches

are binarized using Otsu’s method. In Section 4, we discuss

the choice of binarization method through an extensive set

of experiments. Each binary patch is then labeled as posi-

tive if it corresponds to an EUF (i.e., an R-peak); otherwise

negative. Basically, given a patch, we first determine the

accumulated difference image from which the patch is ex-

tracted. We then trace back to the underlying difference im-

ages and check whether they are related to the EUF or not.

Once the patches are labeled, we form a stratified set with

96,000 patches to train a 2-way CNN for frame selection.

Testing Phase: Figure 3 shows our frame selection system

given a test video. We first compute an accumulated differ-

ence image for each frame in the video. We then extract im-

age patches from the weighted centroids of the accumulated

difference images. The probability of each frame being the

EUF is measured as the average probabilities assigned by

the CNN to the corresponding patches. By concatenating

the resulting probabilities for all the frames in the video,

we obtain a probability signal whose local maxima indicate

the locations of the EUFs. However, the generated proba-

bility signals often exhibit abrupt changes, which can cause
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Figure 3: The test stage of our automatic frame selection

scheme.

too many local maxima along the signal. We therefore first

smooth the probability signal using a Gaussian function,

and then find the EUFs by locating the local maxima of

the smoothed signals. In Figure 3, for illustration purposes,

we have also shown the reconstructed ECG signal, which is

computed as the average of the accumulated difference im-

ages, 1

N

∑N

t=1
Dt with N being the number of frames in the

video. As seen, the probability of being the EUF reaches its

maximum around the R peaks of the QRS complexes (as de-

sired) and then smoothly decays as it distances from the R

peaks. By mapping the locations of the local maxima to the

frame numbers, we can identify the EUFs in the test video.

3.2. ROI Localization

Accurate localization of the ROI is challenging, because,

as seen in Figure 1, there are no significant differences that

can be observed in image appearance among the ROIs on

the far wall of the carotid artery. To overcome this chal-

lenge, we utilize the location of the carotid bulb as a con-

textual constraint. We choose this constraint for two rea-

sons: 1) the carotid bulb appears as a distinct dark area in

the ultrasound frame and thus can be uniquely identified;

2) according to the consensus statement of American soci-

ety of Electrocardiography for cardiovascular risk assess-

ment [24], the ROI should be placed approximately 1 cm
from the carotid bulb on the far wall of the common carotid

artery. While the former motivates the use of the carotid

bulb location as a constraint from a technical point of view,

the latter justifies this constraint from a clinical standpoint.

Training Phase: We incorporate this constraint in the sug-

gested system by training a 3-way CNN that simultaneously

localizes both ROI and carotid bulb, and then refines the es-

timated location of the ROI given the location of the carotid

bulb. Figure 9 in the supplementary material illustrates

how the image patches are extracted from a training frame.

We perform data augmentation by extracting the training

patches within a circle around the locations of the carotid

bulbs and the ROIs. The negative patches are extracted from

a grid of points sufficiently far from the locations of the

carotid bulbs and the ROIs. Note that the above translation-

based data augmentation is sufficient for this application,

because our database provides a relatively large number of

training EUFs, from which a large set of training patches

can be collected. Once the patches are collected, we form

a stratified training set with approximately 410,000 patches

to train a 3-way CNN for constrained ROI localization.

Testing Phase: Referring to Figure 4, during the test stage,

the trained CNN is applied to all the pixels in the EUF,

generating two confidence maps with the same size as the

EUF. The first confidence map shows the probability of a

pixel being the carotid bulb and the second confidence map

shows the probability of a pixel being the ROI. One way

to localize the ROI is to find the center of the largest con-

nected component within the ROI confidence map without

considering the detected location of the carotid bulb. How-

ever, this naive approach may fail to accurately localize the

ROI. For instance, a long-tale connected component along

the far wall of the carotid artery may cause substantial ROI

localization error. To compound the problem, the largest

connected component of the ROI confidence map may ap-

pear far from the actual location of the ROI, resulting in a

complete detection failure. To overcome these limitations,

we constraint the ROI location lroi by the location of the

carotid bulb lcb. For this purpose, we first determine the

location of the carotid bulb as the centroid of the largest

connected component within the first confidence map, and

then localize the ROI using the following formula

lroi =

∑

p∈C∗ M(p) · p · I(p)
∑

p∈C∗ M(p) · I(p)
(1)

where lroi denotes the ROI location, lcb denotes the center

of the carotid bulb, M denotes the confidence map of being

the ROI, C∗ is the largest connected component in M that

is the nearest to the carotid bulb, and I(p) is an indicator

function for pixel p = [px, py] that is defined as

I(p) =

{

1, if ‖p− lcb‖ < 1 cm

0, otherwise

(2)

(3)

The indicator function I(p) simply includes pixels when

the value is 1 as in Eq. 2, otherwise excludes pixels when

the value is 0 as in Eq. 3.

3.3. Intima­Media Thickness Measurement

Measuring intima-media thickness require a continu-

ous and one-pixel precise boundary for lumen-intima and
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Figure 4: The test stage of our ROI localization method. In the unconstrained scenario, we only use the ROI confidence map,

which results in relatively large localization error. In the constrained mode, given the estimated location of the carotid bulb,

we localize the ROI more accurately.

media-adventitia. Lumen-intima is relatively easier to de-

tect because of strong gradient change at the border, how-

ever, detecting media-adventitia interface is quite challeng-

ing due to its subtle image gradients and noise around its

border. We approach this problem as a 3-way classification

task: 1) lumen-intima interface, 2) media-adventitia inter-

face, and 3) background.

Training Phase: To train a 3-way CNN, we collected

sparse background patches and then pixel-by-pixel im-

age patches around lumen-intima interface and media-

adventitia interface with additional patches ±3 pixels from

the ground truth. Using ±3 pixels for additional patches

around intima-media boundary was necessary to balance

number of patches with background patches and produced

better results. Figure 10 in the supplementary material illus-

trates how the training patches are collected from an ROI.

Testing Phase: Figure 5 illustrates the testing process. The

trained 3-way CNN is applied in a sliding-window fash-

ion to a given test ROI, generating two confidence maps

(Figure 5(b)) with the same size as the ROI. Since confi-

dence map is thicker than a pixel, we choose the maximum

response column-by-column, generating a new binary im-

age as shown in Figure 5(c). Finally, we use two active

contour models (a.k.a, snakes) [11] for segmenting lumen-

intima and media-adventitia interfaces. Figure 5(d) shows

two final converged snakes and we take measurements as

the average vertical distance between the two snakes.

4. Experiments

To construct our database, we selected 23 patients from

UFL MCAEL CIMT research database using systematic

random sampling, resulting in a total of 92 CIMT videos

(4 videos per patient). The number of frames in each video

ranges between 49 to 119. Each video covered at least 3

cardiac cycles and thus a minimum of 3 EUFs. The ground

truth for each video consisted of the locations of EUFs, the

locations of ROIs, and the segmentation of lumen-intima

and media-adventitia interfaces. The ground truth was cre-

ated by a sonographer using a spline-based graphical user

interface system and was then refined as the consensus of

the first sonographer and a new expert. For consistency, we

use the same training cases and the same test cases (no over-

lap with training) for all three tasks. Our training set con-

tains 48 CIMT videos of 12 subjects with a total of 4,456

frames and our test set contains 44 CIMT videos of 11 sub-

jects with a total of 3,565 frames. For each task, we perform

leave-one-patient-out cross-validation based on the training

subjects to tune the parameters, and then evaluate the per-

formance of the tuned system using the test subjects.

Architecture: As shown in Table 1, we employ a CNN ar-

chitecture with 2 convolutional layers, 2 subsampling lay-

ers, and 2 fully connected layers (see Section 5 for our

justifications). We also append a softmax layer to the last

fully connected layer so as to generate probabilistic confi-

dence values for each class. Our CNN architecture has input

patches of size 32x32, so we resize the collected patches to

32x32 prior to the training process. For the CNNs used in

our experiments, we employ a learning rate of 0.001, a mo-

mentum of 0.9, and a constant scheduling rate of 0.95.

Pre- and post-processing for frame selection: We have

experimentally found out that binarized image patches im-

prove the quality of convergence and accuracy of frame se-

lection. Furthermore, we have observed that the standard

deviation of the Gaussian function used for smoothing the

probability signals, can also substantially influence frame

selection accuracy. Therefore, we have conducted leave-

one-patient-out cross-validation based on the training sub-

jects to find the best binarization method and the optimal

standard deviation of the Gaussian function. For binariza-

tion, we have considered adaptive thresholding using Otsu’s
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Figure 5: The test stage of lumen-intima and media-adventitia interface detection. (a) A test region of interest. (b) The

trained CNN generates a confidence map where the green and red colors indicate the likelihood of lumen-intima interface

and media-adventitia interface, respectively. (c) The thick probability band around each interface is thinned by selecting the

largest probability for each interface in each column. (d) The step-like boundaries are refined through 2 open snakes. (e) The

ground truth made as the consensus of two experts.

Table 1: The CNN architecture used in our experiments. Note that C is the number of classes, which is 2 for frame selection

and 3 for both ROI localization and intima-media thickness measurements.

layer type input kernel stride pad output

0 input 32x32 N/A N/A N/A 32x32

1 convolution 32x32 5x5 1 0 64x28x28

2 max pooling 64x28x28 3x3 2 0 64x14x14

1 convolution 64x14x14 5x5 1 0 64x10x10

2 max pooling 64x10x10 3x3 2 0 64x5x5

2 fully connected 64x5x5 5x5 1 0 250x1

2 fully connected 250x1 1x1 1 0 Cx1

method as well as a number of constant thresholds. For

smoothing, we have considered a Gaussian function with

different standard deviation (σg) as well as the scenario

where no smoothing is applied. For each configuration of

parameters, we have done a free-response ROC (FROC)

analysis. We consider a selected frame a true positive, if it

is found within one frame from the expert-annotated EUF;

otherwise, a false positive. Our leave-one-patient-out cross-

validation study indicates that the use of a Gaussian func-

tion with σg = 1.5 for smoothing the probability signals

and adaptive thresholding using Otsu’s method achieve the

highest performance. Figure 6 shows the FROC curve for

the test subjects using the above parameters. For compar-

ison, we have also shown the operating point of a hand-

crafted approach [23], which is significantly outperformed

by the suggested system. Note that the hand-crafted ap-

proach generates binary predictions for each image and thus

its performance curve reduces to only one operating point.

Constrained ROI Localization: We conduct a leave-one-

patient-out cross-validation study based on the training sub-

jects to find the optimal size of the training patches. Our

cross-validation analysis indicates that the use of 18 × 18
mm patches achieves the most stable performance, yielding

low ROI localization error with only a few outliers. Fig-

ure 7 shows the ROI localization error of our system for

the test subjects using the optimal size of training patches.

Figure 6: FROC curve of our frame selection system for the

test subjects using the tuned parameters. For comparison,

we have also shown the operating point of a hand-crafted

approach [23], which is significantly outperformed by the

suggested system.

To demonstrate the effectiveness of our constrained ROI lo-

calization method, we have also included the performance

of the unconstrained counterpart. In the constrained mode,

we use Eq. 1 for ROI localization whereas in the uncon-

strained mode we localize the ROI as the center of the

largest connected component in the corresponding confi-

dence map without considering the location of the carotid

bulb. Our method achieves an average localization error of
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Figure 7: ROI localization error for the test subjects. Our

method in the constrained mode outperforms both the un-

constrained counterpart and a hand-crafted approach [23].

1.5mm and 3.1mm in the constrained and unconstrained

modes, respectively. The decrease in localization error is

statistically significant (p < 0.01). Also as seen in Fig-

ure 7, our method in the unconstrained mode has resulted in

3 complete localization failures (outliers), which have been

corrected in the constrained mode. Furthermore, compared

with the hand-crafted approach [23], our system in the con-

strained mode shows a decrease of 0.84mm in ROI local-

ization error, which is statistically significant (p < .00001).

Intima-Media Thickness Measurement: We determined

the optimal image patch size by leave-one-patient-out cross-

validation using various image patch sizes and found that

360×360 µm achieved slightly lower localization error and

fewer outliers. Figure 8 shows the interface localization er-

ror of our system on the test subjects, where we break down

the overall localization error for lumen-intima and that of

the media-adventitia interface as well as the hand-crafted

approach [23] for each interface.

5. Discussions

In Section 4, we investigated how the choice of patch

binarization and degree of Gaussian smoothing affect the

accuracy of frame selection. Here, we would like to dis-

cuss our findings and provide insights about our choices.

We choose to binarize the patches, because it reduces ap-

pearance variability and suppress the low-magnitude noise

content in the patches. Without patch binariztion, one can

expect a large amount of variability in the appearance of

wavelets that can deteriorate the performance of the subse-

Figure 8: Localization error of the lumen-intima and media-

adventitia interfaces for the suggested system and a hand-

crafted approach [23]. The results are obtained for the test

subjects.

quent CNN. The choice of binarization threshold is another

important factor. The use of a high threshold results in the

partial appearance of the wavelets in the resulting binary

patches, reducing the discriminatory appearance features of

the patches. A low threshold, on the other hand, can inten-

sify noise content in the images, which decreases the quality

of training samples and consequently a drop in classification

performance. According to our analyses, it is difficult to

find a fixed threshold that can both suppress the noise con-

tent and keep the shapes of the restored wavelets intact in

all the collected patches. Otsu’s method seems to overcome

this limitation by adaptively selecting a binarization thresh-

old according to the intensity distribution of each individual

patch. For patches with intensity values between 0 and 1,

the adaptive thresholds have a mean of 0.15 and standard

deviation of 0.05. The wide range of adaptive thresholds

explains why a constant threshold may not perform as de-

sirably.

Gaussian smoothing of the probability signals is also

essential for accurate frame selection. This is because

the probability signals prior to smoothing exhibit high fre-

quency fluctuations, which may complicate the localization

of the local maxima in the signals. The first cause of such

high frequency changes is patch misplacement in the ac-

cumulated difference images. Recall that we extract the

patches around the weighted centroids of the accumulated

difference images. However, a large amount of noise con-
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tent in the difference images may cause the weighted cen-

troid to deviate from the center of the restored wavelet. In

this case, the extracted patch may partially or completely

miss the restored wavelet. This can manifest itself as a sud-

den change in the CNN output and as a result in the cor-

responding probability signal. The second cause of high

frequency changes is the inherited high variance of CNNs.

Use of ensemble of CNNs and data augmentation can allevi-

ate this problem at a significant computation cost. Alterna-

tively, we choose to mitigate these undesirable fluctuations

using Gaussian smoothing for computational efficiency.

As described in Section 3.2, we constrain our ROI local-

ization method by the location of the carotid bulb. This is

because the bulb area appears as a relatively distinct dark

area in the ultrasound frame. The distinct appearance of the

carotid bulb is also confirmed by our experiments, where

we obtain the average bulb localization error of 2.1mm for

the test subjects with only one failure case, which is more

favorable than the average unconstrained ROI localization

error of 3.1mm with 3 failure cases. Therefore, the local-

ization of the bulb area can be done more reliably than the

localization of the ROI, which motivates the use of the bulb

location as a guide for more accurate ROI localization. We

integrate this constraint into our localization system through

a post-processing mechanism (see Eq. 1). Alternatively, we

could train a regression CNN where each pixel in the im-

age directly votes for the location of the ROI. However,

this approach may be hindered by lack of stable anatomi-

cal structures in noisy ultrasound images. We will explore

a regression CNN for ROI localization as future work.

We used a LeNet-like CNN architecture in our study, but

it does not limit the suggested framework to this architec-

ture. In fact, we have experimented with deeper CNN ar-

chitectures such as AlexNet [9] in both training and fine-

tuning modes; however, we did not observe any significant

performance gain. This was probably because the higher

level semantic features detected by the deeper networks are

not very relevant to the tasks in our CIMT applications.

Meanwhile, the concomitant computational cost of deep ar-

chitectures may hinder the applicability of our system, be-

cause it lowers the speed—a key usability factor of our sys-

tem. We also do not envision that a shallower architec-

ture can offer the performance required for clinical prac-

tice. This is because a network shallower than the LeNet

has only one convolutional layer and thus limited to learn-

ing primitive edge like features. Detecting the carotid bulb

and the ROI, and segmenting intima-media boundaries are

relatively challenging tasks, requiring more than primitive

edge-like features. Similarly, for frame selection, classify-

ing the restored wavelets into R-peak and non-R-peak cat-

egories is similar to digit recognition, for which LeNet is

a common choice of architecture. Therefore, LeNet-like

CNN architecture seems to represent an optimal balance be-

tween efficiency and accuracy for CIMT video analysis.

We should note that throughout this paper, all perfor-

mance evaluations were performed without involving any

user interactions. However, our goal is not to exclude the

user (sonographer) from the loop rather to relieve him from

the three tedious, laborious, and time consuming operations

by automating them while still offering the user a highly,

user-friendly interface to bring his indispensable expertise

onto CIMT interpretation through refining the automatic re-

sults easily at the end of each of the automated operations.

For instance, our system is expected to automatically lo-

cate a EUF within one frame, which is clinically accept-

able, but in case the automatic selected EUF is not the exact

one as desired, the user can simply press an arrow key to

move one frame forward or backward. From our experi-

ence, the automatically localized ROI is acceptable even if

there is a small distance from the ground truth location, but

the user still can easily drag the ROI and move it around

as desired. Finally, in refining the automatically identified

lumen-intima and media-adventitia interfaces, the original

snake formulation comes with spring forces for user inter-

action [8], but given the small distance between the lumen-

intima and media-adventitia interfaces, we have found that

“movable” hard constraints as proposed in [11] are far more

effective than the spring forces in measuring CIMT.

6. Conclusion

In this paper, we presented a unified framework to fully

automate and accelerate CIMT video interpretation. Specif-

ically, we suggested a computer-aided CIMT measurement

system with three components: (1) automatic frame selec-

tion in CIMT videos, (2) automatic ROI localization within

the selected frames, (3) automatic intima-media boundary

segmentation within the localized ROIs. We based each of

the above components on a CNN with a LeNet-like archi-

tecture and then boosted the performance of the employed

CNNs with effective pre- and post-processing techniques.

For frame selection, we demonstrated that how patch bina-

rization as a pre-processing step and smoothing the proba-

bility signals as a post-processing step improve the results

generated by the CNN. For ROI localization, we experimen-

tally proved that the location of the carotid bulb, as a con-

straint in a post-processing setting, significantly improves

ROI localization accuracy. For intima-media boundary seg-

mentation, we employed open snakes as a post processing

step to further improve the segmentation accuracy. We com-

pared the results produced by the suggested system with

those of a hand-crafted approach, demonstrating more ac-

curate frame selection, ROI localization, and CIMT mea-

surements. This superior performance is attributed to the

effective use of CNNs coupled with pre- and post- process-

ing steps, uniquely designed for the three CIMT tasks.
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