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Abstract

Shape space is an active research field in computer vi-

sion study. The shape distance defined in a shape space may

provide a simple and refined index to represent a unique

shape. Wasserstein distance defines a Riemannian metric

for the Wasserstein space. It intrinsically measures the sim-

ilarities between shapes and is robust to image noise. Thus

it has the potential for the 3D shape indexing and clas-

sification research. While the algorithms for computing

Wasserstein distance have been extensively studied, most

of them only work for genus-0 surfaces. This paper pro-

poses a novel framework to compute Wasserstein distance

between general topological surfaces with hyperbolic met-

ric. The computational algorithms are based on Ricci flow,

hyperbolic harmonic map, and hyperbolic power Voronoi

diagram and the method is general and robust. We apply

our method to study human facial expression, longitudinal

brain cortical morphometry with normal aging, and corti-

cal shape classification in Alzheimer’s disease (AD). Exper-

imental results demonstrate that our method may be used

as an effective shape index, which outperforms some other

standard shape measures in our AD versus healthy control

classification study.

1. Introduction

Over the past decade, exciting opportunities have

emerged in studying 3D imaging data thanks to the rapid

progress made in 3D image acquisition. There is a cru-

cial need to develop effective 3D shape indexing and clas-

sification techniques. Shape space models, which usually

measure similarities between two shapes by the deforma-

tion between them, may provide a suitable mathematical

and computational description for shape analysis (as re-

viewed in [67]). In computer vision research, shape space

has been well studied for brain atlas estimation [19, 18],

shape analysis [33, 24, 56], morphometry study [69, 10],

etc. Recently, the Wasserstein space is attracting more at-

tention. The Wasserstein space is the space consisting of all

the probability measures on a Riemannian manifold. The

Wasserstein distance defines a Riemannian metric for the

Wasserstein space and it intrinsically measures the similar-

ities between shapes. The advantages of Wasserstein dis-

tance for 3D shape analysis research are: (1) the geodesic

distance between space points gives a continuous and re-

fined shape difference measure, which is particularly useful

for brain imaging study, where higher accuracy is usually

expected; (2) it studies a transport between two probability

measures on a canonical image or manifold so it is robust

to noise. It holds the potential to quantitatively measure 3D

shapes reconstructed from images and provide a theoretical

foundation for 3D shape analysis.

Wasserstein distance has been widely studied and ap-

plied in image and shape analysis. In [45], the Wasserstein

distance was used to model local shape appearances and

shape variances for joint variational object segmentation

and shape matching. A linear optimal transportation (LOT)

framework was introduced in [61], where a linearized ver-

sion of the Wasserstein distance was used to measure the

differences between images. Hong, et al. [28] used Wasser-

stein distance to encode the integral shape invariants com-

puted at multiple scales and to measure the dissimilarities

between two shapes. However, these methods only work

with 2D images. In [5], the Wasserstein distance compu-

tation was generalized to Riemannian manifolds. Su, et al.

[56] computed the Wasserstein distance between genus-0

surfaces, where the spherical conformal domain was used

as the canonical space. On the other hand, a major limita-

tion of Wasserstein distance is that its computational cost

increases as the sizes of the problems increase. Cuturi, et

al. [13] proposed to solve this problem with entropic regu-

larization. In [51], the algorithm was extended to geometric

domains for shape interpolation, surface soft maps, etc. To

date, few studies have investigated Wasserstein distance de-

fined on general topological surfaces.

In practice, most 3D shapes have complicated topology

(high-genus). In brain imaging research, to enforce the

alignment of the major anatomic features, one may slice

surface open along certain landmark curves [50]. This
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procedure generates genus-0 surfaces with multiple open

boundaries. The current state-of-the-art Wasserstein space

research is unable to compute Wasserstein distance on these

high-genus surfaces or genus-0 surfaces with multiple open

boundaries. In this work, to overcome these limitations,

we propose a novel framework by integrating hyperbolic

Ricci flow [70, 49], hyperbolic harmonic map [50], sur-

face tensor-based morphometry (TBM) [14, 12], and op-

timal mass transportation (OMT) map [31, 11]. We also ex-

tend the computation of the OMT map and the Wasserstein

distance to the hyperbolic space, i.e., the Poincaré disk.

We call the resulting Wasserstein distance the hyperbolic

Wasserstein distance.

In this paper, we applied the hyperbolic Wasserstein

distance to index and compare different 3D shapes. We

tested our algorithm on genus-0 surfaces with multiple

open boundaries, including human face surfaces with dif-

ferent expressions, longitudinal brain cortical morphology

with normal aging, and cortical shape classification between

Alzheimer’s disease (AD) patients and healthy control peo-

ple. Experimental results demonstrated that the proposed

method is promising to be a new shape analysis tool.

Our major contributions can be summarized as follows:

1. Propose a novel algorithm to compute Wasserstein dis-

tance between general surfaces with hyperbolic Riemannian

metric.

2. Extend the OMT map to hyperbolic Poincaré space,

which greatly enhance its applicability for general surface

analysis.

3. Develop a general framework that may be applicable for

other shape space work. Currently, most of shape space

work were developed on genus-0 surfaces, e.g. [34, 24],

which cannot be directly applied to high-genus surfaces

because of the difficulty in building a canonical space for

them. Our framework, which adopts a hyperbolic harmonic

map to build diffeomorphic mappings between general sur-

faces, may be used to generalize other shape space studies

to general surfaces as well.

1.1. Prior Work

Analysis and understanding of shapes is one of the most

fundamental tasks in computer vision and medical imag-

ing research. Many 3D shape indexing methods have been

proposed and extensively applied. The spherical harmonic

analysis [21, 55] and its extension, the weighted spheri-

cal harmonic representation [12], use spherical harmonics

to match and compare shapes. But these methods require

the surfaces to be homotopic to a sphere. The medial de-

scription of shapes [42, 54], which is composed of a set of

medial samples (m-reps), is also widely applied. Wang et

al. introduced a series of conformal invariants to represent

and analyze shapes, which are the coordinates of surfaces in

the Teichmüller space. The conformal invariants were com-

puted with Euclidean Ricci flow [65] or hyperbolic Yamabe

flow [64, 64] and no surface registration was required. In

brain imaging studies, the volumes and surface areas of cor-

tical or subcortical structures are often used as biomarkers

to characterize brain morphometry associated with cogni-

tive diseases [27].

The optimal mass transportation (OMT) problem was

first raised by Monge, concerning to find an optimal way

to move a pile of soil from one place to another with min-

imal transportation cost [9]. The existence and uniqueness

of the solution for the OMT problem were proved in [31]

using linear programming. The Monge-Kantorovich opti-

mization has been widely applied in various fields, includ-

ing physics, economics, computer science, etc. Specifically,

the OMT map provides an important tool for image process-

ing [25, 44]. Recently, the algorithm has been generalized

to 3D surfaces for area-preserving mappings [71, 57] and

Wasserstein distance computation [56, 58]. However, exist-

ing methods only work on genus-0 surfaces, while our al-

gorithm extends the OMT problem to general surfaces with

hyperbolic metric.

Kendall [32] pioneered the manifold shape space re-

search. In computational anatomy framework [22], the

space of diffeomorphisms was carefully studied [40, 68].

In [53, 52], shape space was defined as the space of or-

bits of the reparameterization group acting on the space of

immersions. The reparameterization invariant (RI) metric

constructed in [8] used the volume form and the mean cur-

vature of the immersion f , and the metric in [34] used the

area multiplication factor of f . Kurtek et al. [35] extended

the work in [34] by adding landmark constraints. Jermyn

et al. [30] simplified the RI metric computation and Gut-

man et al. [24] built a Riemannian framework for an in-

trinsic comparison of the RI metric structure. Lipman and

Daubechies [37] introduced a metric for shape comparison

based on conformal uniformization and OMT. The metric

is invariant under Möbius transformation. Later, Lipman

et al. [38] provided a convergence analysis of the discrete

approximation to the arising mass transportation problems.

Mémoli [39] presented a modification and expansion of

the original Gromov-Hausdorff notion of distance between

metric spaces which considers probability measures defined

on measurable subsets of metric spaces.

2. Theoretical Background

In this section, we briefly introduce the most relevant

concepts and theories. For details, please refer to [23]

for computational conformal geometry, and to [11, 31] for

OMT map.

Conformal Deformation Suppose S is a surface em-

bedded in R
3 with induced Riemannian metric g. It can

be verified that ḡ = e2ug is also a Riemannian metric

on S and angles measured by ḡ are equal to those mea-

5052



sured by g. Then ḡ is called a conformal deformation of

g and u is the conformal factor. When metric changes, the

surface Gaussian curvature K will change accordingly to

K̄ = e−2u(−∆gu+K), where ∆g = e−2u( ∂2

∂x2 + ∂2

∂y2 ) is

the Laplace-Beltrami operator induced by g. According to

the Gauss-Bonnet theorem [15], the total Gaussian curva-

ture is determined by the surface topology, i.e.,
∫

S
KdA =

2πχ(S), where χ(S) is the Euler characteristic of S and dA

is the surface area element.

Uniformization Theorem Given {S,g}, there exist an

infinite number of metrics which are conformal to g. The

uniformization theorem states that, among all conformal

metrics, there is a unique representative, which induces con-

stant Gaussian curvature everywhere. Furthermore, the con-

stant will be one of {−1, 0, 1}. The corresponding metric

is called the uniformization metric of S. Thus, we can em-

bed the universal covering space of any closed surface to

one of three canonical spaces using its uniformization met-

ric: the sphere S
2 for genus-0 surfaces with positive Euler

numbers; the Euclidean plane E
2 for genus-1 surfaces with

Euler number zero; and the hyperbolic space H
2 for high-

genus surfaces with negative Euler numbers.

Surface Ricci Flow The uniformization metric of a sur-

face can be computed by the Ricci flow method. The nor-

malized surface Ricci flow is defined as
dg(t)
dt

= ( 4πχ(S)
A(0) −

2K(t))g(t), where A(0) is the total area of S at time 0 and

K(t) is the Gaussian curvature induced by g(t). It has been

proved that if χ(S) < 0, the solution to the normalized

Ricci flow equation exists for all t > 0 and converges to a

metric with constant Gaussian curvature
2πχ(s)
A(0) [26]. Thus,

the hyperbolic uniformization metric of a surface, which in-

troduces -1 Gaussian curvature everywhere, can be com-

puted by the Ricci flow.

Hyperbolic Geometry As the hyperbolic space H2 can-

not be realized in R
3, we use the Poincaré disk model

to visualize it. The Poincaré disk is a unit disk on the

complex plane {z ∈ C, |z| < 1} with Riemannian met-

ric ds2 = dzdz̄
(1−zz̄)2 . The hyperbolic distance between two

points in the Poincaré disk is defined as

dist(z1, z2) = tanh−1
∣

∣

∣

z1 − z2

1− z1z̄2

∣

∣

∣
(1)

A geodesic (hyperbolic line) is an arc on a circle that is

perpendicular to the unit circle. The rigid motion in the

Poincaré disk is the Möbius transformation

z → eiθ
z − z0

1− z̄0z
(2)

Another hyperbolic model is the Klein disk, where hyper-

bolic lines coincide with Euclidean lines. The conversion

from the Poincaré disk to the Klein model is

z →
2z

1 + zz̄
(3)

Fuchsian Group Suppose {S,g} is a surface with a neg-

ative Euler characteristic and its hyperbolic uniformization

metric is ḡ. Let p ∈ S be a base point, two loops through p

are homotopic, if one can deform to the other without leav-

ing S. All the homotopic classes of loops starting from p

form a simply connected surface S̄. Then the universal cov-

ering space of S, {S̄, ḡ}, can be isometrically embedded in

H
2. A Fuchsian transformation φ is a Möbius transforma-

tion that maps a universal covering space S̄ to another and

preserves the projection φ ◦ p = p. All Fuchsian transfor-

mations form the Fuchsian group, Fuchs(S).
Harmonic Map Given a surface {S,g}, if the coordi-

nates (x, y) satisfy g = e2u(x,y)(dx2 + dy2), where u is

the conformal factor, (x, y) are called the isothermal coor-

dinates. Consider a map f : {S1,g1} → {S2,g2}, z and w

are the local isothermal coordinates on S1 and S2, respec-

tively. We denote f(z) = w and g1 = σ(z)dzdz̄, g2 =
ρ(w)dwdw̄, where z, w ∈ C and z = x + iy, w = u + iv,

dz = dx + idy, dz̄ = dx − idy. The harmonic energy of

the map f is defined as

E(f) =

∫

S1

ρ(f(z))(|fz|
2 + |fz̄|

2)dxdy (4)

where fz = 1
2 (

∂f
∂x

− i∂f
∂y

), fz̄ = 1
2 (

∂f
∂x

+ i∂f
∂y

).
If f is a critical point of the harmonic energy, then it

is called a harmonic map. The necessary condition for

f to be a harmonic map is the Euler-Lagrange equation

fzz̄ +
ρf

ρ
fzfz̄ ≡ 0. The following theorem [46] shows that

harmonic maps with hyperbolic metrics are beneficial for

general surface registration study.

Theorem 1 (Yau): Suppose f : {S1,g1} → {S2,g2} is

a degree one harmonic map, furthermore, the Riemannian

metric on S2 induces negative Gaussian curvature, then for

each homotopy class, the harmonic map is unique and dif-

feomorphic.

Optimal Mass Transportation Map Given a Rieman-

nian manifold {S,g}, let µ and ν be two probability mea-

sures on S with the same total mass, i.e.,
∫

S
µdx =

∫

S
νdx,

let φ : S → S be a diffeomorphic map, then the pull back

measure induced by φ is φ∗ν = det(J)ν ◦ φ, where J is

the Jacobian matrix of φ. If the pull back measure satis-

fies φ∗ν = µ, then the map φ is measure preserving. The

transportation cost of φ is defined as

Cost(φ) =

∫

S

d2
g
(p, φ(p))µ(p)dx (5)

where p is a vertex on S and dg(p, φ(p)) is the geodesic

distance between p and its image φ(p) with respect to the

metric g. The OMT problem tries to find the measure pre-

serving mapping, which uses minimal transportation cost

(Eq. [5]).

Wasserstein Space and Wasserstein Distance Given a
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Figure 1. Algorithm pipeline: (a) slice a surface open along land-

mark curves to generate a genus-0 surface with multiple bound-

aries; (b) embed the surface onto the Poincaré disk with its hy-

perbolic uniformization metric, which is computed by the hyper-

bolic Ricci flow; (c) covert the Poincaré disk to the Klein model

to construct the initial map between the surface and a template;

(d) compute the hyperbolic harmonic map by diffusing the initial

map; (e) compute the OMT map using hyperbolic power Voronoi

diagram, with surface tensor-based morphometry as the probabil-

ity measure, where the colored regions denote Voronoi cells.

Riemannian manifold {S,g}, the Wasserstein space is de-

fined as:

Definition 1 (Wasserstein Space): Let Pn(S) denote the

space of all probability measures µ on S with finite nth

moment, where n ≥ 1. Suppose there exists some point

p0 ∈ S, such that
∫

S
dn
g
(p, p0)µ(p)dx < +∞.

Given two measures µ and ν in Pn(S), the Wasserstein

distance between them is defined as the cost of the OMT

map φ : Sµ → Sν .

Wn(µ, ν) = inf
φ∗ν=µ

(
∫

S

dn
g
(p, φ(p))µ(p)dx

)
1

n

(6)

Theorem 2 [60]: The Wasserstein distance Wn is a Rieman-

nian metric of the Wasserstein space Pn(S).

3. Computational Algorithms

In this section, we explain the computation framework

of the hyperbolic Wasserstein distance. We use genus-0 sur-

faces with multiple boundaries as examples to illustrate our

algorithm. The pipeline is summarized in Algorithm 1 and

illustrated in Fig. 1.

Algorithm 1. Hyperbolic Wasserstein Distance Compu-

tation Pipeline.

1. Slice the surface open along some delineated landmark

curves to generate a genus-0 surface with multiple bound-

aries (Fig. 1 (a)).

2. Compute the hyperbolic uniformization metric of the sur-

face with hyperbolic Ricci flow.

3. Isometrically embed the surface onto the Poincaré disk

and convert it to the Klein model (Fig. 1 (b)-(c)).

4. With the Klein model, construct the initial mapping

between the surface and a template surface with the con-

strained harmonic map.

5. Improve the initial mapping with hyperbolic harmonic

map to obtain a global diffeomorphic mapping on the

Poincaré disk (Fig. 1 (d)).

6. Compute the OMT map between the surface and the tem-

plate surface with the hyperbolic power Voronoi diagram,

where the surface tensor-based morphometry of the hyper-

bolic harmonic map is used as a measure (Fig. 1 (e)).

7. Compute the hyperbolic Wasserstein distance between

the surface and the template surface.

3.1. Topology Optimization

Surfaces with negative Euler characteristics admit hyper-

bolic geometry. For closed surfaces with genus g ≥ 2, we

can directly compute their hyperbolic uniformization metric

with hyperbolic Ricci flow. For genus-0 surfaces, we usu-

ally slice them open along multiple (3 or more) boundaries,

as shown in Fig. 1 (a). This process is called topology opti-

mization and is usually applied in medical imaging research

[49, 66, 50], where landmark curve matchings are often en-

forced across subjects.

3.2. Discrete Hyperbolic Ricci Flow

In engineering fields, smooth surfaces are often rep-

resented as triangular meshes. Given a triangular mesh

M(V,E, F ), where V , E, and F are the sets of vertices,

edges, and faces, respectively, we use vi to denote a vertex,

eij to denote the edge connecting vi and vj , fijk to denote

the triangle formed by vi, vj , and vk, and θ
jk
i to denote the

corner angle attached to vi in the face fijk.

The edge lengths of the mesh M define the discrete Rie-

mannian metric l : E → R
+, and for each face fijk, the

edge lengths satisfy the triangle inequality lij + ljk > lki.

The discrete Gaussian curvature Ki on a vertex vi ∈ M

can be computed by the angle deficit

Ki =

{

2π −
∑

fijk∈F θ
jk
i , vi 6∈ ∂M

π −
∑

fijk∈F θ
jk
i , vi ∈ ∂M

(7)

where ∂M represents the boundary of M .

Theoretically, a conformal deformation maps infinitesi-

mal circles to infinitesimal circles and preserves the inter-

section angles among the circles. In computation, we use

circles with finite radii to approximate infinitesimal circles.

The circle packing metric [59] of a mesh M assigns a circle

radius ri to each vertex vi and a weight φij to each edge eij ,
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which is the intersection angle of the two circles defined on

vi and vj .

With the hyperbolic geometry, we treat each face as a

hyperbolic triangle and the corner angles are computed by

the hyperbolic cosine law. The discrete hyperbolic Ricci

flow algorithm is described in Algorithm 2.

Algorithm 2. Discrete Hyperbolic Ricci Flow

1. For each vertex vi, assign an initial value to ri; for

each edge eij , compute the value of its weight func-

tion φij with the hyperbolic cosine law cos(φij) =
cosh(lij)−cosh(ri)cosh(rj)

sinh(ri)sinh(rj)
; initialize the conformal factor ui

on each vertex vi as 0.

2. Compute the edge length lij with the above hyperbolic

cosine law.

3. Compute the corner angle θ
jk
i with the inverse hyperbolic

cosine law θ
jk
i = cos−1 cosh(lij)cosh(lki)−cosh(ljk)

sinh(lij)sinh(lki)
.

4. Compute the discrete Gaussian curvature Ki of each ver-

tex vi with Eq. [7].

5. Update the conformal factor with ut+1
i = uti −∆tKi.

6. Update the vertex radius with ri = 2tanh−1(eui).
7. Repeat steps 2 to 6, until |K| of all vertices are less than

a user-specified threshold.

8. Output the hyperbolic uniformization metric.

For details of the hyperbolic Ricci flow algorithm, please

refer to [70, 49].

3.3. Initial Map Construction

With the hyperbolic uniformization metric, we can iso-

metrically embed the surface onto the Poincaré disk, as

shown in Fig. 1 (b). Briefly, we select a seed face

f012 ∈ M and embed its three vertices in the Poincaré

disk as p(v0) = (0, 0), p(v1) = el01−1
el01+1

(1, 0), p(v2) =
el02−1
el02+1

(cosθ120 , sinθ
12
0 ). Then we put all un-embedded faces

that are adjacent to current face in a queue. We pop a

face fijk from the queue, if all its vertices are embed-

ded, then continue to pop next face; otherwise, suppose

vi, vj are embedded, then p(vk) is computed as the in-

tersection between two hyperbolic circles, which center at

p(vi), p(vj) and with radii lki, lkj , respectively, satisfying

(p(vj) − p(vi)) × (p(vk) − p(vi)) > 0. We continue to

do so until the queue is empty. By converting the embed-

ding to the Klein model (Eq. [3]), we obtain a hyperbolic

polygon, where all the hyperbolic lines coincide with Eu-

clidean straight lines, as shown in Fig. 1 (c). With the Klein

model, we construct the initial map between a surface and

the template surface using the constrained harmonic map

[66, 49, 50]. Briefly, suppose M and N are two homotopic

surfaces and both of them are mapped to the Klein disk.

A map f : M → N is harmonic if ∆f = 0. To solve

the Laplace equation, corresponding boundaries of the two

Klein polygons are treated as boundary conditions and are

enforced to be aligned with linear interpolation by the arc

length parameter. With the discrete finite element definition

of the Laplace operator, the initial map can be constructed

by solving a sparse linear system [47]. As indicated in [46],

if the target domain is convex, the planar harmonic maps

are diffeomorphic. Thus, the initial map is diffeomorphic.

3.4. Hyperbolic Harmonic Map

We then diffuse the initial map to form the hyperbolic

harmonic map [50]. Given two surfaces M and N with

hyperbolic metrics gM and gN , respectively, we denote

their local isothermal coordinates as z and w. Suppose

f : M → N is the initial map, locally, it can be written

as f(z) = w. Then the diffusion process is given by the

following gradient descent method

df(z, t)

dt
= −[fzz̄ +

ρw(w)

ρ(w)
fzfz̄] (8)

where ρ(w) = 1
(1−ww̄)2 is the hyperbolic metric in the

Poincaré disk. Algorithm 3 gives the detailed computation

steps. A hyperbolic harmonic map example is illustrated in

Fig. 1 (d).

Algorithm 3. Hyperbolic Harmonic Map

1. Given two surfaces (M,gM ) and (N,gN ), where gM

and gN are hyperbolic metrics in the Poincaré disk. There

is a one-to-one correspondence between these two surfaces,

(mi, ni), where mi and ni are vertices on M and N , re-

spectively.

2. For each pair of corresponding vertices mi ∈ M and

ni ∈ N , embed their one-ring neighboring vertices onto

the Poincaré disk. Let zi and wi = f(zi) denote the 2D

coordinates of mi and ni in the Poincaré disk, respectively.

3. Compute
dwi(zi,t)

dt
with Eq. [8].

4. Update wt+1
i = wt

i − ǫ
dwi(zi,t)

dt
.

5. Compute the new 3D coordinate of ni with the new wi.

6. Repeat steps 2 to 5, until
dwi(zi,t)

dt
is less than a user-

specified threshold.

3.5. Surface Tensor­based Morphometry

In this work we use surface tensor-based morphometry

(TBM) [14, 12] to define the probability measure on the

Poincaré disk. Suppose f : M → N is the hyperbolic

harmonic map between surfaces M and N . The deriva-

tive map of f is the linear map between the tangent spaces

df : TM(p) → TM(f(p)), induced by f , which also de-

fines the Jacobian matrix of f . With triangular meshes, the

derivative map df is approximated by the linear map from
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Figure 2. Illustration of the power distance between two points

on the Euclidean plane and the power Voronoi diagram on the

Poincaré disk.

one face [vi, vj , vk] to another [wi, wj , wk]. First, we iso-

metrically embed the faces onto the Poincaré disk, where

the planar coordinates of vi and wi are denoted by the same

symbols vi and wi. Then the Jacobian matrix of the map f

can be computed explicitly [62]

J = df = [w3 − w1, w2 − w1][v3 − v1, v2 − v1]
−1 (9)

Then the TBM is defined as
√

det(J). TBM measures

the amount of local area changes in a surface with respect

to the map f [12].

3.6. Optimal Mass Transportation Map and Hyper­
bolic Wasserstein Distance

As shown in [56, 58], the OMT map between two prob-

ability measures that are defined on surfaces can be com-

puted by the power Voronoi diagram [16]. Here we use

the hyperbolic space as the canonical space and TBM as

the measure to compute the power Voronoi diagram on the

Poincaré disk.

Given a surface S with the Riemannian metric g, let P =
{p1, p2, . . . , pn} be a set of n discrete points on S and w =
{w1, w2, . . . , wn} be the weights defined on each point.

Definition 2 (Power Voronoi Diagram): Given a point set P

and its corresponding weight vector w, the power Voronoi

diagram induced by (P,w) is a cell decomposition of the

surface (S,g), such that the cell spanned by pi is given by

Celli = {x ∈ S|d2
g
(x, pi)− wi ≤ d2

g
(x, pj)− wj},

j = 1, . . . , n and i 6= j
(10)

In this work, with the Poincaré disk model, the geodesic

distance dg between two points is defined by Eq. [1]. The

term d2
g
(x, pi) − wi is called the power distance between

x and pi. Figure 2 (a) shows the power distance on the

Euclidean plane. Figure 2 (b) illustrates the power Voronoi

diagram on the Poincaré disk.

Theorem 3: Given a Riemannian manifold (S,g), µ and

ν represent two probability measures defined on S and

they have the same total mass. ν is a Dirac measure,

with discrete point set support P = {p1, p2, . . . , pn} and

ν(pi) = νi. Then there exists a weight vector w =

{w1, w2, . . . , wn}, unique up to a constant, such that the

power Voronoi diagram induced by (P,w) gives the OMT

map between µ and ν:

ψ : Celli → pi, i = 1, 2, . . . , n

and
∫

Celli
µ(x)dx = νi, ∀i ∈ [1, . . . , n].

The proof of Theorem 3 can be found in [58].

The optimal weight for the power Voronoi diagram that

induces the OMT map can be computed by

dwi

dt
= νi −

∫

Celli

µ(x)dx, x ∈ S. (11)

Algorithm 4 gives the details about the OMT map com-

putation with hyperbolic metric. Figure 1 (e) illustrates the

hyperbolic power Voronoi diagram that results in the OMT

map between the cortical surface in Fig. 1 (a) and a tem-

plate surface. In Fig. 1 (e), the black points form the dis-

crete point set P . The initial hyperbolic geodesic Voronoi

diagram is computed by the method in [41].

Algorithm 4. Optimal Mass Transportation Map

1. Given a triangular mesh M with hyperbolic metric g on

the Poincaré disk, define a measure µ and a Dirac measure

(P, ν) = {(pi, νi)}, i = 1, 2, . . . , n,
∫

M
µ(x)dx = Σn

i=1νi.

2. For each pi ∈ P , compute it geodesic distances to every

other vertex on M with Eq. [1].

3. For each vertex vi ∈M , determine which Voronoi cell it

belongs to with Eq. [10].

4. For each pi ∈ P , compute the total mass of the measures

in the cell spanned by it, µi =
∫

Celli
µ(x)dx.

5. Update each weight by wt+1
i = wt

i + ǫ(νi − µi).
6. Repeat steps 3 to 5, until |νi − µi|, ∀i, is less than a

user-specified threshold.

The cost of the OMT map computed by Algorithm 4

gives the Wasserstein distance between two measures. With

the hyperbolic metric, we define the hyperbolic Wasser-

stein distance between two measures that are defined on the

Poincaré disk by

Wasserstein(µ, ν) =

Σn
i=1

∫

Celli

(tanh−1
∣

∣

∣

x− pi

1− xp̄i

∣

∣

∣
)2µ(x)dx.

(12)

4. Experimental Results

The proposed method is quite efficient. For example,

for cortical surfaces each with 100k faces, the average run-

ning time of major steps is summarized in Table 1. The

experiments were executed on a PC with 3.6 GHz Intel(R)

Core(TM) i7-4790 CPU and 64-bit Windows 7 operating

system.
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Table 1. Average running time of major steps in the proposed al-

gorithm, on cortical surfaces each with 100k faces.

Step Time Step Time

hyper Ricci flow 20 sec initial map 15 sec

hyper harmonic 30-40 sec hyper OMT 20-30 sec

4.1. Human Facial Expression Analysis

In the first experiment, we applied our method to study

3D human face expression. Human facial expression mod-

eling is an interesting problem studied for a long time [17].

The goal is to discriminate and describe different human

facial expressions. It is useful for face recognition and dy-

namical facial animation research.

We picked three face meshes from the BU-3DFE

Database [1], including an angry face (Fig. 3 (a)), a happy

face (Fig. 3 (b)), and a happier face (Fig. 3 (c)), which

all belong to a randomly selected sample. On each face

surface, we removed two eyes and the mouth along their

boundaries, a common approach used in 3D face modeling

[70]. The resulting facial surface became a genus-0 sur-

face with four open boundaries. We used the happy face

as the template surface to compute the hyperbolic harmonic

map and the OMT map. First, we ran hyperbolic Ricci flow

on the three surfaces and isometrically embedded them on

the Poincaré disk, as shown in Fig. 3 (d-f). Then, the

angry and happier faces were registered to the happy face

with the hyperbolic harmonic map (Fig. 3 (g)). Finally,

with the TBM measures, we constructed the OMT maps be-

tween both faces and the template face with the hyperbolic

power Voronoi diagram (Fig. 3 (h)). Later, the hyperbolic

Wasserstein distances between the angry face and the tem-

plate face, between the happier face and the template face,

were computed as the costs of respective OMT maps. In-

tuitively, the happier face is more similar to the template,

thus it should have smaller Wasserstein distance. The ex-

perimental results verify our intuition, where the hyperbolic

Wasserstein distances for the angry face and happier faces

are 25.94 and 11.75, respectively. Although multi-subject

studies are clearly necessary, this experiment demonstrates

that our hyperbolic Wasserstein distance may have the po-

tential to quantify and measure human expression changes.

4.2. Longitudinal Cortical Morphometry Analysis

In this experiment, we applied the proposed algorithm

to analyze cortical surface morphology in normal aging.

Brain atrophy seems to be inevitable for elderly people [20].

However, a simple, non-invasive brain imaging biomarker

would be beneficial to quantify brain morphometry patterns

and identify abnormal changes potentially for early inter-

ventions.

We randomly selected an elderly heathy subject (85-year

Figure 3. Experimental results of human facial expression analysis

with hyperbolic Wasserstein distance.

old male) from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) [29]. We studied the longitudinal structural

magnetic resonance image (MRI) at three time points, the

baseline, 12 months, and 24 months after screening. The

MRIs were preprocessed using FreeSurfer [3] to reconstruct

the cortical surfaces. Only the left hemispheric cerebral

cortices were used here. Six major brain landmark curves

were automatically labeled on each cortical surface with the

Caret software [2], including the Central Sulcus, Anterior

Half of the Superior Temporal Gyrus, Sylvian Fissure, Cal-

carine Sulcus, Medial Wall Ventral Segment, and Medial

Wall Dorsal Segment, as shown in Fig. 4.

After we cut the cortical surfaces along the delineated

landmark curves, they became genus-0 surfaces with six

open boundaries. We used the baseline cortical surface as

the template and did the same analysis as in Sec. 4.1. The

hyperbolic power Voronoi diagrams for the 12-month and

24-month cortical surfaces are shown in Fig. 5. The hyper-

bolic Wasserstein distances between the template surface

and the 12-month and 24-month surfaces are 132.28 and

201.70, respectively, revealing the cortex changing process

along with normal aging [43]. This shows that our method
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Figure 4. Landmark curves on a left cortical surface, which are

automatically labeled by Caret [2], showing in two different views.

may serve as an imaging index to study the longitudinal

brain morphometry.

4.3. Cortical Shape Classification

We also applied our hyperbolic Wasserstein distance

to study the classification problem with cortical surfaces

between healthy control subjects and Alzheimer’s disease

(AD) patients. We randomly selected 30 AD patients and

30 healthy controls from the ADNI1 baseline dataset. The

inclusive rules were based on segmentation and reconstruc-

tion result quality of the FreeSurfer package [3]. Only left

hemispheric cortices were studied here, as some prior re-

search, e.g. [48], has identified a trend that AD related

brain atrophy may starts from left side and subsequently

extends to the right. We randomly selected the left corti-

cal surface of a healthy control subject, who is not in our 60

studied subject dataset, as the template surface. Similar to

Sec. 4.2, Caret was used to automatically identify six land-

mark curves on each cortical surface. After cutting open

the cortical surfaces along the landmark curves, we mod-

eled each left hemispheric cortical surface as a genus-0 sur-

face with six open boundaries and computed the hyperbolic

Wasserstein distance between each cortical surface and the

common template surface.

With the computed hyperbolic Wasserstein distances,

we applied the complex tree in the Statistics and Machine

Learning Toolbox of MATLAB [4] as a classifier. With a

5-fold cross validation, the classification rate of our method

is 76.7%. As a comparison, we also computed two other

standard cortical surface shape features, the cortical surface

area and cortical surface volume, which have been widely

used in shape classification [6, 36]. We applied the same

classifier on the two measurements with 5-fold cross vali-

dation. Their results are summarized in Table 2. It can be

noticed that our method significantly outperformed them.

Generally speaking, the discrimination of the AD progres-

sion and normal aging is challenging, but has numerous

benefits to help design early interventions. Whether or not

our approach provides a more accurate way to quantify

the cortical changes than those afforded by other criteria

(such as SPHARM [55], radial distance [7], or Teichmüller

Figure 5. Optimal mass transportation maps between the 12-

month, 24-month cortical surfaces and baseline surface with hy-

perbolic power Voronoi diagram.

shape space coordinates [65, 64, 63]) requires careful vali-

dation for each application. If statistical power is increased

in shape feature representation, this would support the use

of 3D modeling techniques in advanced brain imaging re-

search. Meanwhile, our work may build a theoretical foun-

dation to extend other shape space work to general surfaces

to further improve AD imaging biomarkers for preclinical

AD research.

Table 2. Classification rate comparison of our method and two

other cortical surface shape features, the cortical surface area and

cortical surface volume. The results demonstrated an accuracy rate

achieved by the proposed method.

Method Classification Rate

hyperbolic Wasserstein distance 76.7%
Surface Area 41.7%
Surface Volume 51.7%

5. Conclusion and Future Work

This work introduces a novel algorithm to compute the

Wasserstein distance between general surfaces with hyper-

bolic metric. With hyperbolic Ricci flow, hyperbolic har-

monic map, surface TBM, and hyperbolic power Voronoi

diagram, we computed the hyperbolic Wasserstein distance.

Our work generalized the OMT and Wasserstein space work

to general surfaces. In our experiments, we applied the al-

gorithm to study human facial expression changes, corti-

cal longitudinal morphometry and cortical shape classifica-

tion in AD. In future, we will further validate our method

with brain morphometry analysis on more 3D imaging data

and human facial expression tracking study on BU-3DFE

database [1]. We will also try to improve the performance of

the algorithm by considering other probability measures for

the OMT map, such as the multivariate tensor-based mor-

phometry (mTBM) [62]. Furthermore, we will explore the

possibility to use this framework to generalize other shape

space work.
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