
Min Norm Point Algorithm for Higher Order MRF-MAP Inference

Ishant Shanu Chetan Arora

IIIT Delhi, India

Parag Singla

IIT Delhi, India

Abstract

Many tasks in computer vision and machine learning can

be modelled as the inference problems in an MRF-MAP

formulation and can be reduced to minimizing a submodu-

lar function. Using higher order clique potentials to model

complex dependencies between pixels improves the perfor-

mance but the current state of the art inference algorithms

fail to scale for larger clique sizes. We adapt a well known

Min Norm Point algorithm from mathematical optimization

literature to exploit the sum of submodular structure found

in the MRF-MAP formulation. Unlike some contemporary

methods, we do not make any assumptions (other than sub-

modularity) on the type of the clique potentials. Current

state of the art inference algorithms for general submodu-

lar function takes many hours for problems with clique size

16, and fail to scale beyond. On the other hand, our algo-

rithm is highly efficient and can perform optimal inference

in few seconds even on clique size an order of magnitude

larger. The proposed algorithm can even scale to clique

sizes of many hundreds, unlocking the usage of really large

size cliques for MRF-MAP inference problems in computer

vision. We demonstrate the efficacy of our approach by ex-

perimenting on synthetic as well as real datasets.

1. Introduction

Many problems in computer vision and machine learning

can be reduced to assigning a label on each pixel. The label

may denote different quantities depending upon the appli-

cation, for example depth, in the stereo matching problem

or pixel intensity in the image denoising problem. Finding

the best labeling configuration can be formulated as finding

the minimum of the following energy equation:

E(lP) = min
lP

∑

c∈C

Wc(lc). (1)

Here, c, also called a clique, is defined as the set of pixels

whose labels are contextually dependent on each other. A

labeling configuration on a clique c is denoted as lc. P
denotes the set of all pixels and C denotes the set of all

cliques. The size of the maximal clique k = maxc |c| is

known as the order of the problem. Each term, Wc(lc),
also called the clique potential, measures the cost of the

labeling configuration lc of a clique c depending on how

consistent the labeling is with respect to the observation

and prior knowledge. The formulation is popularly known

as MRF-MAP inference in computer vision and structured

prediction in the machine learning community. Over the last

decade many computer vision problems ranging from im-

age restoration [14], segmentation of videos [5] and images

[40], super resolution [30], texture synthesis [28], stereo

matching [3] to object detection [16] have been formulated

as the MRF-MAP inference problems.

The focus of this paper is on efficient inference in MRF-

MAP problems with 2 labels. Apart from having applica-

tions in its own right, inference for multi label problems is

often formulated as a series of inference on 2-label prob-

lems [3, 10]. Optimal inference even for a 2-label MRF-

MAP problem is NP hard in general. However, given the

importance of the problem, researchers have focussed on

various subsets of the problems for which efficient inference

is possible. Submodularity is one such property which can

naturally capture commonly occurring constraints in prob-

lems from computer vision, machine learning and signal

processing. A set function f : 2V→R on a set V is called

submodular if for all subsets S, T ⊆ V : f(S ∪T)+ f(S ∩
T) ≤ f(S) + f(T). Note that for a 2-label problem each

clique potential function can also be seen as a set function

where a label 1 implies inclusion in the set and 0 implies ex-

clusion. Hence, the 2-label case can be seen as the problem

minimizing a sum of submodular functions.

Our focus in this paper is on problems with higher order

clique potentials (k > 2) which can encode various struc-

tural and complex dependencies between pixels. It has been

adequately shown by various authors [17, 22, 27, 38, 39, 47]

that using such complex dependencies greatly improves the

solution quality.

There have been many algorithms proposed for inference

in higher order problems during last few years. Some no-

table work in this area includes Message Passing and varia-

tions of Dual Decomposition [7, 15, 20, 24, 27, 34, 36, 43,

45] or reduction techniques [8, 11, 13, 17, 18, 21, 26, 37, 39]

which convert higher order cliques to pairwise ones and

15365

then use QPBO [25] to solve the reduced problem. Despite

the best efforts, efficient inference for general sum of sub-

modular functions has been shown to be possible only for

clique size up to 16 [1].

Considering the complexity of inference for general sum

of submodular functions, researchers have suggested effi-

cient algorithms for various special subsets of submodular

functions. Jegelka et al.[20] applied two well known (block

coordinate descent and Douglas Rachford splitting) dual de-

composition procedures to solve sum of special submodular

functions for which minS⊆V (f(S)− a(S)) can be com-

puted efficiently, where a ∈ RV is a constant vector. Ene

and Nguyen [7] focus on the functions for which f + w
can be computed efficiently, where w is a linear function.

Stobbe and Krause [44] use Lovasz extension for problems

with concave clique potentials f(S) ∝ |S||V −S|, where V
is set of all the nodes. Ramalingam et al.[37] use monotonic

functions and Rother et al.[39] use sparse potentials having

non-zero costs only for a few labeling configurations.

It is useful to note that the sum of submodular functions

is also a submodular function and techniques from mathe-

matical optimization for submodular function minimization

(hereon SFM) can be potentially applied for solving (1) as

well. However, with a high order polynomial complexity of

n5 or higher (n is the number of pixels), these techniques

[12, 19, 29, 33, 41] fail to scale for problem sizes typically

found in computer vision. Kolmogorov [23] has suggested

adapting submodular flow technique proposed by Iwata et

al.[19] for sum of submodular problems. However, the con-

tribution is essentially theoretical with no implementation

or application shown.

We propose an algorithm for inference in 2-label higher

order MRF-MAP problem (1), when the clique potentials

are submodular. The paper has following specific contribu-

tions:

1. Structure: Our algorithm uses the ideas from min-

norm-point algorithm [12] and adapts them for exploit-

ing the sum of submodular structure in our problems.

2. General: Unlike contemporary approaches, the pro-

posed algorithm can give optimal inference for general

submodular functions with no extra conditions on the

type of clique potential.

3. Scalable: In a significant improvement over state of

the art, our algorithm can easily scale to problems with

clique sizes ranging up to many hundreds compared to

16 for current state of the art [1].

4. Efficient: When the earlier state of the art can take

hours for inference on clique size 16, our experiments

show that the proposed algorithm converges with opti-

mal inference in a matter of few seconds on problems

with order of magnitude larger clique sizes.

2. Background

In this section we discuss some results from the standard

SFM literature which will be useful for this paper. We ex-

tend the results to sum of submodular functions in the next

section when we describe our algorithm. We will use the

abbreviation SoS to refer to the phrase Sum of Submodular.

To maintain inter-operability, we will use the notation as is

common in the SFM literature. The objective is to find a

minimizer set, S∗ = minS⊆V f(S), of a submodular func-

tion f , where V is the set of all the elements and S is any

subset of V . Without loss of generality, we will assume that

f({}) = 0. There are two polyhedra in R
V associated with

f , the submodular polyhedron, P (f), and base polyhedron,

B(f), defined as follows:

P (f) = {x | x ∈ R
V , ∀ U ⊆ V : x(U) ≤ f(U)},

B(f) = {x | x ∈ P (f), x(V) = f(V)},

where x(U) =
∑

v∈U x(v). Here, x(v) denotes the element

at index v in the vector x. A vector in the base polyhedron

B(f) is called a base, and an extreme point of B(f) an

extreme base. Edmond’s greedy algorithm gives a simple

procedure to create an extreme base, b≺, given a total order

≺ of elements of V such that: ≺ : v1≺ . . .≺vn. Denoting

by i≺ the set of elements {1, . . . , i}, the algorithm initial-

izes the first element as b≺(1) = f({v1}) and rest of the

elements as b≺(k) = f(k≺)− f((k − 1)≺).
For any vector x ∈ R

V , we denote by x− the vectors in

R
V defined by x−(v) = min{0, x(v)} for v ∈ V . It is easy

to see that for any base x and a subset U : x−(V) ≤ x(U) ≤
f(U). The Min Max Theorem as given below shows that the

inequalities are tight at the maximum and minimum values

of x−(V) and f(U) respectively.

Theorem 2.1 (Min Max Theorem). Given a submodular

function f : 2V → R, we have

max{x−(V) | x ∈ B(f)} = min{f(U) | U ⊆ V }.

Most of the algorithms for SFM suggested in combinato-

rial optimization community actually solve this dual prob-

lem. The earliest strongly polynomial time algorithm for

SFM was given by Schrijver [41], which maintains a set

of extreme bases, bi, and a solution vector, x, as a con-

vex combination of these extreme bases. The algorithm

then tries to find a new x with higher x−(V), by insert-

ing/deleting extreme bases using an operation known as ex-

change moves. The complexity of the algorithm is O(n8).
Schrijver’s algorithm tends to waste a lot of time in some

exchange moves which ultimately get reversed in a later

stage. Iwata et al.[19] improved the strategy by accumu-

lating the exchange moves using a flow like strategy. They

have given a strongly polynomial time algorithm with time

complexity of n7 log n. The current fastest combinatorial

5366

algorithm using a similar strategy for SFM is due to Orlin

et al.[33] with a time complexity of n6.

2.1. Min Norm Point Algorithm [12]

Min Norm Point algorithm reduces the problem of find-

ing the minimum of f to finding a base x with minimum

norm in the convex hull of all the extreme bases. The fol-

lowing lemma establishes the equivalence of the problem:

Lemma 2.2 (Min Norm Equivalence). Suppose x∗ is a min-

imizer of the problem:

min ‖x‖
2

subject to x ∈ B(f).

Then a minimizer S∗ for f can be obtained as follows:

S∗ = {u ∈ V | x−(u) ≤ 0}.

Using the above equivalence, in the rest of the paper,

we will focus on the task of finding minx∈B(f) ‖x‖
2

and

equivalently, we would have solved the SFM problem. A

popular strategy to find the minimum norm point is using

Wolfe’s algorithm as described below.

2.2. Wolfe’s Algorithm [12, 46]

Given a finite set P of points pi ∈ R
n (i ∈ I), Wolfe’s

algorithm gives an efficient way to find the minimum-norm

point x∗ in the convex hull P̂ of points pi (i ∈ I). The

algorithm can be described as follows [12]:

Procedure 1 Wolfe’s Algorithm

Input: A finite set P of points pi (i ∈ I) in R
n.

Output: The minimum-norm point x∗ in the convex hull

of P .

1: Choose any point p ∈ P and initialize S := {p} and

x := p.

2: Find a point p̂ in P that minimizes the dot product p̂ =
arg minp∈P 〈x, p〉 = arg minp∈P

∑n

k=1 x(k)p(k). If

‖x‖
2
≤ 〈x, p̂〉+ ǫ, then return x∗ = x and halt; else put

S := S ∪ {p̂}.
3: Find the minimum-norm point y in the affine hull of

points in S. If y lies in the relative interior of the convex

hull of S, then put x := y and go to Step 2.

4: Let z be the point that is the nearest to y among the

intersection of the convex hull of S and the line segment

[y, x] between y and x. Also let S′ ⊂ S be the unique

subset of S such that z lies in the relative interior of the

convex hull of S′. Put S := S′ and x := z. Go to Step

3.

The base polyhedron, B(f), for a submodular function

f , is the convex hull of all the extreme bases. Therefore,

Wolfe’s algorithm can be used to find the min norm point,

minx∈B(f) ‖x‖
2
, by setting the set of points P as the set of

extreme bases associated with B(f). The n, in this case,

is equal to the dimension of each of the points, i.e., |V |.
Since the number of extreme bases can be n!, the key to the

application of Wolfe’s algorithm is step 2, which requires

that the computation of minp∈P 〈x, p〉 be done efficiently.

Fortunately, the Edmond’s algorithm [12] gives a procedure

to do this step in n log(n) steps as given in Procedure 2.

Procedure 2 Edmond’s Algorithm

Input: A set of extreme bases b ∈ Bf . A base vector x.

Output: An extreme base b̂ = arg minb 〈x, b〉.
1: Define an ordering ≺ on the indices, such that x1 ≤

x2 . . . ≤ xn.

2: Denote by i≺ the set of elements {1, . . . , i}. Set b̂(i) =
f(i≺)− f((i− 1)≺).

Chakrabarty et al.[4] have shown that an approximate

min-norm point x satisfying ‖x‖ ≤ ‖x∗‖ + ǫ can be

reached in O(n2F 2/ǫ2) number of iterations of Wolfe’s al-

gorithm. Here, F = maxU,v |f(U ∪ {v}) − f(U)|, where

U ⊆ V, v ∈ V i.e., the maximum increase in the value of

the function after adding (deleting) an element to (from) a

set. Correspondingly, they give a time complexity bound

of O((n5EO + n7)F 2) for finding the minimizer of f 1.

Here, EO denotes the time complexity of an oracle call to

evaluate the function f at any given subset U ⊆ V .

3. Proposed Algorithm: SoS Min Norm

The key to the scalability of the algorithms for com-

puter vision problems is their ability to exploit the struc-

ture present in such problems. Specifically, the MRF-MAP

problem (1) is minimizing the sum of submodular func-

tions. Although, sum of submodular functions is also a sub-

modular function and traditional SFM techniques can be ap-

plied, their usage is highly inefficient without exploiting the

sum structure. In this work, we adapt the min norm point al-

gorithm for exploiting the sum of submodular structure. We

start with the theoretical foundations for our work, followed

by the algorithm description. We show the effectiveness of

our algorithm by running it on real computer vision prob-

lems in the next section.

3.1. Theoretical Results

Let f be a submodular set function on a set V of the

form: f(S) =
∑

c∈C fc(S ∩ c), where C ⊆ 2V is a

set of subsets of V , and fc : 2c → R are submodu-

lar functions. Our objective is to find the minimizer set

S∗ = arg minS f(S) = arg minS
∑

c
fc(S ∩ c). Since

each fc is submodular, we can associate, with each fc, a

1The time complexity bound is applicable when f is integer valued;

any function can be made integer valued by appropriate scaling [4].

5367

base polyhedron given by:

B(fc) :=
{

yc ∈ R
c | yc(U) ≤ fc(U), ∀ U ⊆ c;

yc(c) = fc(c)
}

.

As defined earlier, yc denotes a vector of scalars for every

element in c: yc(U) :=
∑

v∈U yc(v), ∀ U ⊆ c.

We define a total order≺j
c

for any c ∈ C and correspond-

ingly define the extreme base qc,j ∈ R
c using Edmond’s

algorithm. It follows that any convex combination of the

extreme bases i.e., yc =
∑k

j=1 λc,jqc,j , lies on the submod-

ular polyhedron B(fc). We can now state the following:

Lemma 3.1. Let x(S) =
∑

c
yc(c ∩ S) where each yc lies

on the submodular polyhedron B(fc). Then, the vector x
lies on the base polyhedron B(f).

Proof. Consider U ⊆ V . To prove the lemma, it suffices to

show that x(U) ≤ f(U) and x(V) = f(V). It is easy to

see that:

x(U) =
∑

c

yc(c ∩ U) ≤
∑

c

fc(c ∩ U) = f(U).

The inequality follows from the fact that each xc lies on the

submodular polyhedron B(fc). Further,

x(V) =
∑

c

yc(c ∩ V) =
∑

c

yc(c) =
∑

c

fc(c)

=
∑

c

fc(c ∩ V) = f(V).

Hence, proved.

Lemma 3.2. Let x be a vector belonging to the base polyhe-

dron B(f). Then, x can be expressed as the sum: x(S) =
∑

c
yc(S ∩ c), where each yc belongs to the submodular

polyhedron B(fc) i.e., yc ∈ B(fc)∀c.

Proof. Let us first prove the lemma for the case when

x is an extreme base of B(f). Using Edmond’s algo-

rithm, ∃ an ordering ≺ over the variables such that x(i) =
f(i≺) − f((i − 1)≺) (see Procedure 2 for details). Then,

using the submodular decomposition of f , we have x(i) =
∑

c
(fc(i≺ ∩ c)− f((i− 1)≺ ∩ c)). Given a clique c, de-

fine yc(i) = fc(c ∩ i≺) − fc(c ∩ (i − 1)≺). It is easy

to see that yc is an extreme base for B(fc), thus implying

x(i) =
∑

c
yc(i) for some yc ∈ B(fc), ∀c. The same can

be extended to show that x(S) =
∑

c
yc(c ∩ S) by adding

the corresponding equations for each i ∈ S.

Next, let us consider the case when x ∈ B(f) but may

not be an extreme base. Since, every vector in the base

polyhedron can be expressed as a convex combination of

extreme bases, we have x(S) =
∑

i λibi(S) where bi is

an extreme base of B(f). Using the earlier proof for ex-

treme bases, there exist qc,i ∈ B(fc) such that bi(S) =
∑

c
qc,i(c∩S). This means that x(S) =

∑

i λi

∑

c
qc,i(c∩

S) =
∑

c

∑

i λiqc,i(c ∩ S). The inner sum is a convex

combination of extreme bases qc,i and hence, lies inside the

base polyhedron B(fc). Let yc =
∑

i λiqc,i(c∩S). There-

fore, x(S) =
∑

c
yc(c ∩ S) where yc ∈ B(fc). Hence,

proved.

3.2. Algorithm

Our goal in this section is to devise a strategy for min-

imizing ‖x‖
2

subject to x ∈ B(f). From lemma 3.2, ev-

ery vector x ∈ B(f) can be expressed as a sum x(S) =
∑

c
yc(c ∩ S), where each yc ∈ B(fc). In other words, ev-

ery vector x can be written as a sum of vector yc’s which lie

on respective base polyhedrons. Therefore, we can devise a

strategy for minimizing ‖x‖
2

by applying block coordinate

descent where the blocks are represented by the variables

yc’s as defined above.

Let xc denote the restriction of the base vector x to clique

c. Further, let x̄c denote the restriction of x to variables

{v ∈ V | v /∈ c}. By definition, ‖x‖
2
= ‖xc‖

2
+ ‖x̄c‖

2
.

Further, it is clear that yc contributes to the to vector x only

through xc. Therefore, when trying to minimize ‖x‖
2

with

respect to the block yc, we can simply focus on the com-

ponent xc. Let ac denote the contribution of cliques other

than c to the component xc. Since, we are doing block co-

ordinate descent over variables in yc, ac can be treated as a

constant. Further, noting that yc =
∑

j λjqc,j , we have:

xc = yc + ac =
∑

j

λc,jqc,j + ac =
∑

j

λc,j
(

qc,j + ac)

The last equality follows from the fact that
∑

j λc,jqc,j is a

convex combination and hence,
∑

j λc,j = 1. Therefore, in

minimizing ‖xc‖
2

with respect to the variables in the block

yc, we are looking for a convex combination of the points

of the form p = qc,j + ac where each qc,j ∈ B(fc) is an

extreme base of B(fc) and ac is a constant. Hence, we can

use Wolfe’s algorithm (see Section 2.2) for carrying out this

minimization. The key question is how to efficiently carry

out the step 2 of the algorithm. It is easy to see that:

arg min
(q+ac):q∈B(fc)

〈x̂, (q + ac)〉 = ac + arg min
q∈B(fc)

〈x̂, q〉. (2)

Equation (2) suggests we use Edmond’s algorithm (Proce-

dure 2) to select the extreme base q̂ which minimizes the

RHS above, followed by a translation q̂ with ac. Other steps

of the Wolfe’s algorithm can remain as is.

Procedure 3 describes our algorithm for finding the min

norm point. This in turn requires Procedure 4 which min-

imizes ‖xc‖
2

with respect to the variables in the block yc.

We ensure that yc ∈ B(fc) during each minimization. Ev-

ery time ‖xc‖
2

is minimized, the set of extreme bases Sc

5368

Procedure 3 Min Norm Point Algorithm for Sum of Sub-

modular Functions

Input: {fc} such that f =
∑

fc
Output: x = arg min ‖x‖

2
subject to x ∈ B(f).

Initialize

1: for all (c ∈ C) do

2: qc ← Take any extreme base of fc;

3: Sc := {qc};
4: yc := qc
5: end for

6: x :=
∑

c
yc;

Perform Block Coordinate Descent with blocks speci-

fied by Cliques

7: while (‖x‖ decreases by more than δ) do

8: for all (c ∈ C) do

9: MinNormOverAClique(fc,Sc,xc,yc) # Proc. (4)

10: end for

11: end while

involved in the minimiation (see Procedure 4) is stored and

used to initialize the future iteration minimizing xc. This is

important so that we do not waste computations done during

the previous minimization steps. We note that the coordi-

nate descent updates for non-overlapping blocks (i.e., yc’s)

can be done in parallel and exploiting this is a direction for

future work.

3.3. Convergence

Since we are optimizing a convex differentiable function

(‖x‖
2
) over a bounded convex set (i.e., x ∈ (B(f))), block

coordinate descent is guaranteed to converge to the min-

ima of the function [2]. In each coordinate descent step,

we optimize the function over a subset of variables (xc)

using Wolfe’s algorithm. For each descent step, we can

obtain an approximate solution satisfying xc ≤ ‖x
∗
c
‖ +

ǫ in O(|c|2Fc/ǫ
2) number of iterations. Here, Fc =

maxU,v |fc(U∪{v})−f(U)|, where Y ⊆ c, v ∈ c (bounds

are based on Chakrabarty et al. [4]; see Section 2). Existing

work [2] provides convergence bounds for block coordinate

descent when the blocks of variables are non-overlapping

with each other. In our case, c’s can be overlapping and

extending the convergence bounds for our context is a di-

rection for future work.

4. Experiments

In this section, we report our experiments compar-

ing our proposed SoS MinNorm algorithm with the state

of the art. The implementation of our algorithm in

C++, is available at http://www.iiitd.edu.in/

˜ishants/sosminnorm.html. All the tests have

Procedure 4 MinNormOverAClique

Input: Clique function: fc
Input: Set of extreme bases selected in last iteration: Sc

Input: Restriction of current solution vector x on c: xc
Input: Current clique vector: yc
Output: Clique vector y∗

c
∈ B(fc) minimizing ‖xc‖

2

Output: Updated set S∗
c

of extreme bases

1: while (TRUE) do

2: Find new translation ac := xc − yc;

3: Find extreme base q̂c := arg min
qc∈Bfc

〈xc, qc〉 using Ed-

mond’s algorithm as given in Procedure (2)

4: Find translated extreme base p̂c = q̂c + ac.

Same as step 2 in Proc. 1

5: if (‖xc‖
2
≤ 〈xc, p̂〉+ ǫ) then

6: break;

7: end if

8: Sc := Sc ∪ q̂c;

9: Pc = {q̂c + ac|qc ∈ Sc}
10: Find xc in affine hull of Pc similar to Proc. 1 step 3

11: If xc is not in convex hull Pc, translate to nearest

point in convex hull and update Sc similar to Proc. 1

step 4.

12: end while

been performed on a standard workstation with 3.0 GHz

CPU and 8 GB RAM running Ubuntu 14.04.

4.1. Experimental Setup

Using the terminology in the standard vision literature,

we refer to our problems as 0/1 labeling problems. Each

pixel can be assigned a value of 0 or 1 corresponding to ex-

clusion and inclusion in a set, respectively. The total label-

ing cost is defined as the sum of labeling costs over pixels

appearing in each clique. Labeling costs for a clique are

referred to as clique potentials which directly correspond to

the functions fc in the sum we want to minimize. Therefore,

if the clique potentials are submodular, then the problem of

finding the minimum cost labeling configuration can be ex-

pressed as an SoS minimization problem.

We compare with the following algorithms:

1. Standard MinNorm point (MinNorm) which does not

use sum of submodular property. We did not find any

public implementation of the MinNorm and have used

or own implementation in C++ for comparison.

2. Generic Cuts (GC) [1]: a flow based approach exploit-

ing sum of submodular structure. We have used the

implementation available on authors’ website.

3. Jegelka et al. [20] approach using decomposition strat-

egy. This algorithm is restricted to a subclass of sub-

5369

http://www.iiitd.edu.in/~ishants/sosminnorm.html
http://www.iiitd.edu.in/~ishants/sosminnorm.html

Problem Size

16 36 64 100 144

SoS-MinNorm 0.000 0.001 0.003 0.005 0.006

MinNorm [12] 0.002 0.023 0.073 0.221 0.776

Table 1: Comparing performance of SoS-MinNorm with the

vanilla Min Norm Point algorithm [12]. We keep clique size =

2 × 2 with edge based costs for this experiment. The numbers

denote the time taken in seconds. The proposed algorithm clearly

outperforms the vanilla appproach.

modular functions for which minS⊆V f(S)−a(S) can

be computed efficiently, where a ∈ RV is a constant

vector. The assumption is exploited in an inner loop

of their algorithm. Since we would like to experiment

with a general class of submodular functions, we have

replaced this step dealing with specialized functions

with a more general QP solver routine from cvxopt li-

brary [6].

4. For object detection experiments we have used the

TextonBoost [42] approach to generate per pixel confi-

dence. To generate simple baseline we use confidence

directly for prediction (without any MRF structure),

which we refer to as output from TextonBoost.

5. We also compare with pairwise cliques formulation us-

ing QPBO [25, 31] for the inference.

The proposed algorithm as well as the compared algo-

rithm [1, 20] give optimal inference for submodular func-

tions tested in this paper. The focus of the experiments in

this paper is therefore on scalability and efficiency.

Fix et al.[9] have suggested an algorithm to learn sub-

modular functions for the inference problems they have

considered. In our experiments the approach fails to scale

beyond clique size 9. Therefore we have used simple hand

tuned clique potentials. It may be noted that the clique po-

tentials are not the focus of this paper and are merely used

as a proxy for real world potentials normally seen in com-

puter vision problems. One of the future directions of our

research is to use our algorithm to learn submodular clique

potentials for large cliques.

Given a clique C of size kw × kh, we consider the fol-

lowing potentials:

• Edge Based Costs: As described by Arora et al. [1],

we generate a submodular potential over a 2×2 clique

c by defining fc(S∩c) as the square root of the number

of edges where an edge is a pair of neighboring ver-

tices (top,down,left and right nodes) assigned different

labels. In order to generate functions of size greater

than 4, we translate the template in a non-overlapping

fashion and add the costs from various templates.

Clique Size

2× 2 4× 2 4× 4 4× 6

SoS-MinNorm 0.01 0.01 0.02 0.02

GC [1] 0.00 0.26 731.67 DNR

SoS-Jegelka [20] 861.07 12217.37 TO TO

Table 2: Comparing SoS-MinNorm with GC [1] and SoS-Jegelka

[20] on varying cliques using edge based potential. The problem

size was fixed at 400. The numbers denote the time taken in sec-

onds. DNR shows that the algorithm crashed on the test. TO de-

notes a time out for decomposition approach after 4 hours of run-

ning. SoS-MinNorm significantly outperforms both the existing

algorithms, none of which can scale beyond clique size 16.

Problem Size

100 400 900 1600

SoS-MinNorm 0.01 0.01 0.04 0.09

GC [1] 36 467 2744 2868

Table 3: Comparing SoS-MinNorm with GC [1] for varying prob-

lem sizes. Clique size is fixed at 16. We use edge based potentials

for the experiment. Our approach significantly outperforms both

the other approaches at all the problem sizes. SoS-Jegelka [20]

had a timeout (time more than 4 hours) for all values.

• Count Based Costs: These potentials are inspired by

the ones used by Stobbe and Krause [44]. We define

a submodular potential over c as fc(S) = |S ∩ c||c \
S|. For a fixed c, fc(S) is a concave function of the

number of pixels in c labeled 1. Uniform labeling is

favored while equal number of pixels with 1′s and 0′s
are penalized the most.

As is the standard for several formulations, we also incorpo-

rated additional per pixel costs, called the unary potentials.

The overall function can be defined as follows:

f(S) =
∑

vi∈V

wiI[vi ∈ S] + α
∑

c∈C

fc(c ∩ S).

Unary potentials can be seen as encoding pixel-wise evi-

dence, whereas clique potentials represent labeling priors.

Note that unary costs can equivalently be absorbed in the

cost of a clique, and hence, do not lead to any additional

complications in the model.

4.2. Experiments on Synthetic Problems

We perform our evaluations in two parts. In the first part,

we experiment with synthetically generated submodular po-

tentials. Our synthetic potentials are inspired by those used

in real world vision applications. Synthetic data allows us

to test the scalability of our approach with varying clique

as well image sizes. Synthetic problems are generated over

5370

Original Image TextonBoost [42] Pairwise [35] SoS-MinNorm SoS-MinNorm

(Small Cliques) (Large Cliques)

Figure 1: Pixel level object detection: We generate per pixel confidence using the probabilities generated by TextonBoost [42]. The second

column titled TextonBoost has been generated based upon these confidence alone. The third column, shows the results using cliques of

size of 2 only [35]. For generating higher order cliques to be used with our algorithm, we use region growing as suggested by Stobbe and

Krause [44]. The fourth column shows the results using our algorithm with region growing restricted to 50 resulting in average clique size

of 31. For testing with larger cliques, we allowed region growing until size 300 generating cliques with average size of 230. We used count

based cost. The image size is 100 × 100 and the time for small and large cliques is 0.6 and 53 seconds respectively. The quality of results

seems to improve with increasing clique size.

Image Interaction Result1 Result2 Result3

Figure 2: Interactive object segmentation: The unary cost for the inference is based upon user interaction, whereas the higher order cliques

have been generated using the region growing as is done for the object detection problem. First and second columns show the input image

and user inputs respectively, whereas columns third to fifth show the results using our approach with increasing average clique size. The

image size is 103 × 132 and the time for the 3 results shown are 1.15,0.47 and 0.11 seconds respectively. Similar to the object detection

problem, our experiments show improved visual quality with increasing clique size.

grid graphs of size n = nw × nh. Cliques represent sub-

grids of size k = kw × kh. We vary n and k in our experi-

ments. Unary costs have been generated randomly.

Table 1 compares SoS-MinNorm with vanilla Min Norm

Point algorithm [12]. Clearly, we significantly outperform

the vanilla approach by virtue of exploiting the sum of sub-

modular property.

Next, we compare our approach with GC [1] and SoS-

Jegelka [20]. Both the algorithms are state of the art and

exploit the sum of submodular property of the underlying

function. Table 2 shows the comparison results. Our pro-

posed algorithm clearly outperforms SoS-Jegelka which did

not scale well in our experiments. GC required few hours to

solve the problems with clique size 16. Our algorithm could

solve these problems in less than a minute. Further, the pro-

posed algorithm can easily scale to problems of clique size

32 whereas GC can not go beyond clique size 16.

We also compared our algorithm with GC and SoS-

Jegelka using different problem sizes. We fixed the clique

size at k = 16 (maximum possible to which GC can scale).

The image size was varied from 100 to 1600. Table 3 shows

the results. Our approach is at least an order of magnitude

faster than GC at all problem sizes. SoS-Jegelka timed out

(process killed externally after 4 hours) at this clique size

for all problem sizes.

4.3. Comparison on Real Datasets

The contribution of this paper is essentially algorithmic

in nature and our algorithm can be used for any problem

formulated as binary MRF-MAP or structured prediction

problem with sum of submodular structure. However, we

have done some indicative experiments with pixel level ob-

ject detection and interactive object segmentation problems

to show the efficacy of our approach on real datasets.

We experimented with pixel level object detection us-

ing the dataset provided by [32]. We generate per pixel

confidence using the probabilities generated by Texton-

Boost [42]. We use these probabilities for setting unary

potentials in our formulation. We compare with the formu-

lation using unary cost alone (thresholding) and pairwise

cliques approach [35]. We experimented with multiple val-

ues for the relative weighing of clique potential for the pair-

wise approach and chose the one which gave the best visual

results. For generating higher order cliques to be used with

5371

ǫ = 108 ǫ = 107 ǫ = 106 ǫ = 105 ǫ = 104

(0.03, 922,-757) (0.08, 863,-593) (0.15, -95,-190) (0.46, -175,-178) (3.66, -177,-177)

Figure 3: Our algorithm can be used for faster approximate inference by changing the value of ǫ in Step 5 Procedure 4. The number

below the each figure shows time taken (in seconds), followed by primal and dual values (in thousands). We have used count based clique

potential with clique size ∼ 250. The approximation strategy should be useful for applications with limited time budget.

our algorithm, we first grow regions using HSV channels as

suggested by Stobbe and Krause [44]. The image was di-

vided into 5 × 5 grids and each grid intersection was taken

as a seed for region growing. To cover any remaining re-

gions, we then generate 50 random seeds and grow regions

from them. Any seed appearing in already grown region

was ignored. To show the improvement using higher order

clique we use cliques of two different sizes. For generat-

ing smaller cliques, the region growing was restricted to 50

resulting in average clique size of 31. For larger cliques,

region growing was allowed until 300, generating cliques

with average size of 230. We use count based cost for this

experiment. Figure 1 compares the results of TextonBoost,

Pairwise Cliques and our algorithm using small and large

cliques. Not only, our algorithm can scale to such large

sized cliques, the quality of results seems to improve with

increasing clique size.

Next we have experimented with interactive object seg-

mentation as used by Jegelka et al.. [20]. The setup resem-

bles the method proposed by Rother et al.[40]. From infer-

ence perspective, we generate the higher order cliques in the

same way as described for object detection. However, the

unary costs are now based upon the user interaction. Figure

2 shows the result. Similar to object detection, we see an

improvement with increasing clique size with our method.

4.4. Approximation Strategy

Our algorithm is guaranteed to converge to the optimum

for all submodular functions. However, the convergence

may be slow for large problems. The algorithm can be po-

tentially used as an approximation algorithm also. For op-

timal inference ǫ in Step 5 Procedure 4 should be a very

small value. Increasing the value of ǫ can lead to faster

convergence but may cause algorithm to terminate before

optimality is reached. We have experimented with various

values of ǫ for the pixel level object detection experiment.

Figure 3 shows the results. As expected the time taken for

the inference improves as we increase the value of ǫ. Cor-

respondingly, we observe increasing primal dual gap with

increasing values of ǫ. Interestingly, the visual quality of

results also degrades gradually. This indicates the possibil-

ity of using ǫ as a tunable parameter for controlling quality

vs time taken in problems with limited time budget.

5. Conclusion

Many problems in computer vision modelled as MRF-

MAP labeling problems can be reduced to minimizing a

sum of submodular functions. The state of the art algo-

rithms suggested in computer vision scale well with image

size but not with clique size. On the other the algorithms

proposed in mathematical optimization community scales

well with clique size but not with image size. In this paper

we have tried to take the best of both the worlds. We sug-

gest a new algorithm which adapts Min Norm Point algo-

rithm for minimizing a sum of submodular functions. Being

based upon min norm, the algorithm scales well with clique

size, whereas by exploiting sum of submodular structure,

the algorithm works well with large problem sizes also. In

our experiments, we have run it for inference problems with

number of nodes running into many thousands and clique

size of multiple hundreds. The algorithm achieves state of

the art accuracy both in terms of efficiency (time taken for

the inference) as well as scalability (with image and clique

size).

Recent research in computer vision has shown the poten-

tial of the MRF-MAP formulation using submodular func-

tions learnt from the training samples [9]. The techniques

do not scale to large clique sizes. Learning higher order

clique potentials is an area of our future research.

Acknowledgement

We would like to thank anonymous reviewers for their

useful comments and suggestions towards improving some

of the theoretical results presented in the paper.

References

[1] C. Arora, S. Banerjee, P. Kalra, and S. Maheshwari. General-

ized flows for optimal inference in higher order MRF-MAP.

5372

IEEE TPAMI, 37(7):1323–1335, 2015. 2, 5, 6, 7
[2] A. Beck and L. Tetruashvili. On the convergence of block

coordinate descent type methods. SIAM journal on Opti-

mization, 23(4):2037–2060, 2013. 5
[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-

mate energy minimization via graph cuts. IEEE TPAMI,

23(11):1222–1239, 2001. 1
[4] D. Chakrabarty, P. Jain, and P. Kothari. Provable submodu-

lar minimization using wolfe’s algorithm. In Proc. of NIPS,

pages 802–809, 2014. 3, 5
[5] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bi-

layer segmentation of live video. In Proc. of CVPR, pages

53–60, 2006. 1
[6] J. Dahl and L. Vandenberghe. Cvxopt, 2007. http://

mloss.org/software/view/34/. 6
[7] A. Ene and H. L. Nguyen. Random coordinate descent

methods for minimizing decomposable submodular func-

tions. arXiv preprint arXiv:1502.02643, 2015. 1, 2
[8] A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut

algorithm for higher-order markov random fields. In Proc.

of ICCV, pages 1020–1027, 2011. 1
[9] A. Fix, T. Joachims, S. M. Park, and R. Zabih. Structured

learning of sum-of-submodular higher order energy func-

tions. In Proc. of ICCV, pages 3104–3111, 2013. 6, 8
[10] A. Fix, C. Wang, and R. Zabih. A primal-dual algorithm for

higher-order multilabel markov random fields. In Proc. of

CVPR, pages 1138–1145, 2014. 1
[11] D. Freedman and P. Drineas. Energy minimization via graph

cuts: Settling what is possible. In Proc. of CVPR, pages 939–

946, 2005. 1
[12] S. Fujishige and S. Isotani. A submodular function mini-

mization algorithm based on the minimum-norm base. Pa-

cific Journal of Optimization, 7:3–17, 2011. 2, 3, 6, 7
[13] A. C. Gallagher, D. Batra, and D. Parikh. Inference for order

reduction in markov random fields. In Proc. of CVPR, pages

1857–1864, 2011. 1
[14] S. Geman and D. Geman. Stochastic relaxation, gibbs dis-

tributions, and the bayesian restoration of images. IEEE

TPAMI, 6(6):721–741, 1984. 1
[15] T. Hazan and A. Shashua. Norm-product belief propagation:

Primal-dual message-passing for approximate inference. In-

formation Theory, 56(12):6294–6316, 2010. 1
[16] R. J. ian and T. S. Huang. Object detection using hierarchical

MRF and MAP estimation. In Proc. of CVPR, pages 186–

192, 1997. 1
[17] H. Ishikawa. Transformation of general binary MRF mini-

mization to the first-order case. IEEE TPAMI, 33(6):1234–

1249, 2011. 1
[18] H. Ishikawa. Higher-order clique reduction without auxiliary

variables. In Proc. of CVPR, pages 1362–1369, 2014. 1
[19] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial

strongly polynomial algorithm for minimizing submodular

functions. Journal of the ACM (JACM), 48(4):761–777,

2001. 2
[20] S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-

friendly submodular optimization. In Proc. of NIPS, pages

1313–1321, 2013. 1, 2, 5, 6, 7, 8
[21] F. Kahl and P. Strandmark. Generalized roof duality for

pseudo-boolean optimization. In Proc. of ICCV, pages 255–

262, 2011. 1

[22] P. Kohli, P. H. Torr, et al. Robust higher order potentials for

enforcing label consistency. IJCV, 82(3):302–324, 2009. 1
[23] V. Kolmogorov. Minimizing a sum of submodular functions.

Discrete Applied Mathematics, 160(15):2246–2258, 2012. 2
[24] V. Kolmogorov. A new look at reweighted message passing.

IEEE TPAMI, 37(5):919–930, 2015. 1
[25] V. Kolmogorov and C. Rother. Minimizing nonsubmod-

ular functions with graph cuts-a review. IEEE TPAMI,

29(7):1274–1279, 2007. 2, 6
[26] V. Kolmogorov and R. Zabih. What energy functions can be

minimized via graph cuts? IEEE TPAMI, 26(2):147–159,

2004. 1
[27] N. Komodakis and N. Paragios. Beyond pairwise energies:

Efficient optimization for higher-order MRFs. In Proc. of

CVPR, pages 2985–2992, 2009. 1
[28] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.

Graphcut textures: Image and video synthesis using graph

cuts. In Proc. of SIGGRAPH, pages 277–286, 2003. 1
[29] Y. T. Lee, A. Sidford, and S. C.-w. Wong. A faster cutting

plane method and its implications for combinatorial and con-

vex optimization. arXiv preprint arXiv:1508.04874, 2015. 2
[30] U. Mudenagudi, S. Banerjee, and P. K. Kalra. Space-time

super-resolution using graph-cut optimization. IEEE TPAMI,

33(5):995–1008, 2011. 1
[31] A. C. Müller and S. Behnke. pystruct - learning structured

prediction in python. Journal of Machine Learning Re-

search, 15:2055–2060, 2014. 6
[32] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic

object recognition with boosting. IEEE TPAMI, 28(3):416–

431, 2006. 7
[33] J. B. Orlin. A faster strongly polynomial time algorithm for

submodular function minimization. Mathematical Program-

ming, 118(2):237–251, 2009. 2, 3
[34] J. Pearl. Probabilistic reasoning in intelligent systems: net-

works of plausible inference. Morgan Kaufmann, 2014. 1
[35] W. Pieczynski and A.-N. Tebbache. Pairwise markov ran-

dom fields and segmentation of textured images. Machine

Graphics and Vision, 9(3):705–718, 2000. 7
[36] B. Potetz and T. S. Lee. Efficient belief propagation for

higher-order cliques using linear constraint nodes. CVIU,

112(1):39–54, Oct. 2008. 1
[37] S. Ramalingam, C. Russell, L. Ladicky, and P. H. Torr.

Efficient minimization of higher order submodular func-

tions using monotonic boolean functions. arXiv preprint

arXiv:1109.2304, 2011. 1, 2
[38] S. Roth and M. J. Black. Fields of experts. IJCV, 82(2):205–

229, 2009. 1
[39] C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing sparse

higher order energy functions of discrete variables. In Proc.

of CVPR, pages 1382–1389, 2009. 1, 2
[40] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. ACM

Transactions on Graphics (TOG), 23(3):309–314, 2004. 1, 8
[41] A. Schrijver. A combinatorial algorithm minimizing sub-

modular functions in strongly polynomial time. Journal of

Combinatorial Theory, Series B, 80(2):346–355, 2000. 2
[42] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-

boost: Joint appearance, shape and context modeling for

multi-class object recognition and segmentation. In Proc.

of ECCV, pages 1–15, 2006. 6, 7

5373

http://mloss.org/software/view/34/
http://mloss.org/software/view/34/

[43] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to

dual decomposition for inference. Optimization for Machine

Learning, 1:219–254, 2011. 1
[44] P. Stobbe and A. Krause. Efficient minimization of de-

composable submodular functions. In Proc. of NIPS, pages

2208–2216, 2010. 2, 6, 7, 8
[45] D. Tarlow, I. E. Givoni, and R. S. Zemel. Hop-map: Effi-

cient message passing with high order potentials. In Proc. of

AISTATS, 2010. 1
[46] P. Wolfe. Finding the nearest point in a polytope. Mathemat-

ical Programming, 11, 1976. 3
[47] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global

stereo reconstruction under second order smoothness priors.

In Proc. of CVPR, pages 1–8, 2008. 1

5374

