
Optical Flow with Semantic Segmentation and Localized Layers

Laura Sevilla-Lara1 Deqing Sun2,3 Varun Jampani1 Michael J. Black1

1MPI for Intelligent Systems 2NVIDIA, 3Harvard University

{laura.sevilla, varun.jampani, black}@tuebingen.mpg.de deqings@nvidia.com

(a) Initial segmentation [9] (b) Our segmentation (c) DiscreteFlow [38] (d) Semantic Optical Flow

Figure 1: (a) Semantic segmentation breaks the image into regions such as road, bike, person, sky, etc. (c) Existing optical

flow algorithms do not have access to either the segmentations or the semantics of the classes. (d) Our semantic optical flow

algorithm computes motion differently in different regions, depending on the semantic class label, resulting in more precise

flow, particularly at object boundaries. (b) The flow also helps refine the segmentation of the foreground objects.

Abstract

Existing optical flow methods make generic, spatially

homogeneous, assumptions about the spatial structure of

the flow. In reality, optical flow varies across an image de-

pending on object class. Simply put, different objects move

differently. Here we exploit recent advances in static seman-

tic scene segmentation to segment the image into objects of

different types. We define different models of image motion

in these regions depending on the type of object. For exam-

ple, we model the motion on roads with homographies, veg-

etation with spatially smooth flow, and independently mov-

ing objects like cars and planes with affine motion plus de-

viations. We then pose the flow estimation problem using

a novel formulation of localized layers, which addresses

limitations of traditional layered models for dealing with

complex scene motion. Our semantic flow method achieves

the lowest error of any published monocular method in the

KITTI-2015 flow benchmark and produces qualitatively bet-

ter flow and segmentation than recent top methods on a wide

range of natural videos.

1. Introduction

The accuracy of optical flow methods is improving

steadily, as evidenced by results on several recent datasets

[8, 13]. However, even state-of-the-art optical flow meth-

ods still perform poorly with fast motions, in areas of low

texture, and around object (occlusion) boundaries (Fig. 1

(c)). Here we address these issues and improve the estima-

tion of optical flow by using semantic image segmentation.

Like flow, the field of semantic segmentation is also mak-

ing rapid progress, driven by convolutional neural networks

(CNNs) and large amounts of labeled data. Here we use a

state-of-the-art method [9] (Fig. 1 (a)) and find that existing

semantic segmentation methods, while not perfect, are good

enough to significantly improve flow estimation.

We use semantic image segmentation in multiple ways.

First, it provides information about object boundaries. Sec-

ond, different objects move differently; roads are flat, cars

move independently, and trees sway in the wind. This

means that our prior expectations about the image motion

should vary between regions with different class labels.

Third, the spatial relationships between objects provide in-

formation about the relative local depth ordering of regions.

Reasoning about depth order is typically challenging and

we use the semantics to simplify this, improving flow es-

timates at occlusion boundaries. Fourth, object identities

are constant over time, providing a cue that we exploit to

encourage temporal consistency of the optical flow.

To model complex scene motions and to deal well with

motion boundaries, we adopt a layered approach [4, 11, 18,

21, 24, 49, 54, 55, 56]. Layered models, however are typ-

ically global and cannot represent complex occlusion rela-

3889



Figure 2: Localized layered model. An image is seg-

mented into semantic regions (color coded). Different re-

gions are assigned different motion models. Independently

moving objects are shown with a box around them. These

regions require reasoning about occlusion because such ob-

jects move in front of the background. Within each such re-

gion, we make the assumption that two motions are present

(the background and the foreground object). The formula-

tion is similar to previous layered models but here the spa-

tial extent of each layer may vary.

tionships. There have been attempts to formulate locally

layered models [25, 47], but these methods are still spa-

tially homogenous. Here we propose a new model of lo-

calized layers in which the number of layers in the scene

varies spatially. Any pixel of the scene may belong to one

or more layers and these layers may have varying spatial

extent. Local layered models are used as needed to cap-

ture the motion of relevant objects. In regions correspond-

ing to objects that can move, we may find two motions –

the foreground motion of the object against a background

motion. Here we use local two-layer models. Rather than

a small number of global layers, the result is a patchwork

of smaller layered regions on top of background regions as

illustrated in Fig. 2. The approach keeps the complexity

and optimization manageable by using at most two layers

within any patch. And because we can use as many patches

as needed, the approach can model complex motions. This

adaptive, spatially heterogeneous approach extends layered

models to more complex scenes and uses them where they

are most valuable.

Each layer or region is represented by a motion model

and the type of model varies depending on the semantic la-

bel of the region. For regions that are likely to be planar we

model their motion with a homography; this includes roads,

sky, and water. For regions corresponding to independently

moving objects, we treat their motion as affine but allow it

to deviate from this assumption; these classes include ob-

jects like cars, planes, boats, horses, bicycles, and people.

There are still other classes like vegetation and buildings

that are diverse in their 3D shape and motion and are con-

sequently not well modeled by a simple parametric motion.

Consequently, we model these classes with a classical spa-

tially varying dense flow field. The motion of the scene is

then described by composing the motions of all the seman-

tic regions (Fig. 4).

We call the algorithm semantic optical flow (SOF) be-

cause it exploits scene semantics to improve flow estima-

tion. The approach achieves the lowest error on the KITTI-

2015 flow dataset [37], when compared with all published

monocular flow methods.1 We also test the method on a

challenging range of sequences from the Internet. There

are several reasons for the improvements. First our motion

models provide a form of long-range regularization in areas

like roads. Since these are well modeled by a homography,

accuracy improves. Second, this region-based regulariza-

tion helps flow estimation in homogeneous regions, which

contain few motion cues. Third, the localized layer formu-

lation improves the segmentation and flow around motion

boundaries. Key here is that the object segmentation gives a

good initialization for layered flow segmentation and gives

a good hypothesis for which surface is in front and which is

behind; this improves occlusion estimation.

While we focus on improving optical flow, we note that

motion can also help with scene segmentation. While cur-

rent semantic segmentation methods are good, they still

struggle to separate object boundaries from appearance

boundaries (Fig. 1 (a)). Layered optical flow estimation seg-

ments the region and provides additional information about

object boundaries (Fig. 1 (b)). When computed over several

frames, this segmentation can be quite precise.

In summary, we make two contributions. First, we

present the first optical flow method that uses semantic in-

formation about scenes, objects, and their segmentation,

producing the lowest error among all monocular methods

on the KITTI flow benchmark. Second, we show how lay-

ered optical flow estimation can be extended to cope with

complex scenes. Our results confirm that knowing what and

where things are helps the estimation of how they move.

2. Related Work

Motion estimation and segmentation. There is a long

history of simultaneously estimating optical flow and its

segmentation [36, 40]. Many methods focus on segmen-

tation using motion information alone; we do not consider

these here. More relevant are methods that use image seg-

mentation to aid optical flow. Previous work [7, 59] seg-

ments the scene into patches according to color or other

cues, and then fits parametric flow models within these.

Like us they vary the type of model in each region but we

go beyond this to use semantic information to determine the

appropriate model. Sun et al. [47] first segment the scene

into superpixels and then reason about the occlusion rela-

tionships between neighboring superpixels (cf. [58]). These

methods are generic in the sense that they do not know any-

thing about the objects being segmented but rather seek a

partitioning of the scene into coherently moving regions.

1The most accurate methods use stereo motion sequences and exploit

the stereo to estimate scene structure.

23890



Combining flow models. Here we use different flow

models to represent the motion of different parts of the

scene. These are combined within our localized layer for-

mulation to define the flow for the whole image. Previous

work has explored the combination of different flow algo-

rithms [31, 34]. Irani and Anandan [19] develop a theory

for modeling motion in general scenes with varying levels

of complexity. The above methods, however, are generic

in the sense that they do not use any semantic information

about objects to select among the possible models.

Occlusion reasoning and figure-ground. One goal of

optical flow estimation is the detection of motion disconti-

nuities that may signal the presence of an object (surface)

boundary (see [52] for an overview). Previous methods

focus on generic constraints without taking into account

object-specific information [6, 46, 50, 52]. In these cases

the goal is to detect boundaries that may be useful later for

object detection. We turn this around by performing object

detection and then using this to detect motion boundaries

more accurately.

Layered optical flow. Layered flow estimation has a

long history [4, 11, 18, 21, 24, 54, 55] and recent improve-

ments have made the approach more competitive on stan-

dard benchmarks [49] and more computationally tractable

[56]. The most recent work integrates image segmentation

cues with motion cues to produce an accurate segmenta-

tion at motion boundaries. In particular, we build on [49],

which uses a fully connected graphical model (cf. [26]) to

exploit long-range image cues for layer segmentation. Un-

like previous work, we apply the model locally within im-

age patches around segmented objects that can move.

Traditional layered models have limitations and are most

applicable to simple scenes with a small number of moving

objects. Occlusion relationships in the world are complex

and 2D motion layers are too restrictive to capture the 3D

spatial occlusion relationships in real scenes. Also, while

the depth order of layers is important, this may be ambigu-

ous in two frames [48]. Reasoning about layer depth order

is combinatorial (K! for K layers), which becomes infeasi-

ble in realistic scenarios. To address these issues, locally

layered models of motion have been proposed [25, 47].

These models, again, are generic and do not know about

objects. Here we find the problem of depth order reasoning

is often simplified when we have semantic information. For

example, we assume that independently moving objects like

cars are in front of static objects like roads. When the as-

sumption holds, as it often does, this simplifies layered flow

estimation and produces accurate motion boundaries.

Several methods decompose scenes into layers corre-

sponding to objects [22, 24, 28, 53, 60]. What these meth-

ods mean by “object,” however, is a region of the image

that moves coherently and differently from the background;

there is no notion of what this object is. In contrast, Isola

and Liu [20] represent static images of scenes as a patch-

work of objects layered on top of each other but they do not

consider image motion.

Video segmentation. There is significant and increasing

interest in the field [12, 14, 32, 41, 42, 57] but the definition

of the problem varies between identifying coherent motions

or coherent objects regions. Like the approaches above,

these methods are generic in that they focus on bottom-up

analysis of regions and motion. They typically use opti-

cal flow as a cue to track superpixels over time to establish

temporal coherence. They usually do not use high-level ob-

ject recognizers or try to improve optical flow. Taylor et

al. [51] incorporate object detections and use temporal in-

formation to reason about occlusions to improve their seg-

mentation results, but do not compute optical flow. Lalos et

al. [30] compute optical flow for an object of interest using

a tracking-by-detection approach. Unlike us, they only esti-

mate object displacement (not full flow), ignore background

motion, and do not take object identity into account.

Semantic segmentation in other low-level vision prob-

lems. Object class influences the way things move, but also

influences their shape. Recent work uses semantic segmen-

tation to resolve ambiguities in stereo [15], to guide 3D re-

construction [16, 29], and to constrain the motion of the 3D

scene by enforcing class label coherence over time [44].

3. Model and Methods

Using a semantic segmentation of the scene allows us to

model the motion of different regions of the image differ-

ently. We define the motion in the scene compositionally in

terms of the motion of the regions. Below we discuss how

we compute the motion for each segmented region and then

how we combine these into a coherent flow field.

Classes. We define three classes of objects (Things,

Planes, and Stuff) that exhibit different types of motion (see

Fig. 2). (1) Things [2, 17] correspond to objects with a de-

fined spatial extent, that can move independently, are typi-

cally seen in the foreground and may be rigid or non-rigid.

Things include aeroplane, bicycle, bird, boat, bus, car, cat,

cow, dog, horse, motorbike, sheep, train and person. (2)

Planes are regions like ‘roads’ that have a broad spatial ex-

tent, are roughly planar, and are typically in the background.

Other classes that we treat as planes are ‘sky’ and ‘water’.

Water is treated as a plane because the air/water boundary is

often planar. (3) Stuff [3] corresponds to classes that exhibit

textural motion or objects like ‘buildings’ and ‘vegetation’

that may have a complicated 3D shape, exhibit complex par-

allax, and for which we have no compact motion represen-

tation. Regions of unknown class are modeled as Stuff.

3.1. Preprocessing

Segmentation. We used Caffe [23] to train the seman-

tic segmentation model DeepLab [9], substituting all fully-

33891



Figure 3: The method in pictures. (a) Image with the seg-

mentation into road (blue), car (green), sky (yellow), grass

(grey), and “unknown” (clear) superimposed. (b) Initial

dense flow computed with DiscreteFlow [38]. The follow-

ing images show intermediate results in the extracted car re-

gion. (c) Our final Thing segmentation. (d) Our final flow.

(e) Estimated foreground motion. (f) Estimated background

motion. (g) Estimated flow for the localized region. (h) Fi-

nal layer segmentation (blue is foreground).

connected layers in the VGG network [45] with convolu-

tional layers. We modified the output layer to predict the 22

classes described above and used the atrous [35] algorithm

to get denser predictions. We initialized the network with

the VGG model and fine-tuned it with standard stochastic

gradient descent using a fixed momentum of 0.9 and weight

decay of 0.0005 during 200K iterations. The learning rate

is 0.0001 for the first 100K iterations and is reduced by 0.1

after every 50K steps. To improve performance [9, 27] we

used a densely connected conditional random field (Dense-

CRF). The unaries are the CNN output and the pairwise po-

tentials are a position kernel and a bilateral kernel with both

position and RGB values. The standard deviation of the

filter kernels and their relative weights are cross-validated.

The inference in the Dense-CRF model is performed using

10 steps of meanfield. To train the network, we selected 22

of the 540 classes from the Pascal-Context dataset [39].

Thing matching. Given the segmentation in each frame,

we compute connected components to obtain regions con-

taining putative objects (Things). Regions smaller than 200

pixels are treated as Stuff. For each Thing found in the

first frame, we find its corresponding region in subsequent

frames and create a bounding box for layered flow estima-

tion that fully surrounds the object regions across all frames.

This defines the spatial extent of the layered flow estimation

(Fig. 3). Below we estimate the flow of Things using T = 5
frames at a time unless otherwise stated. Figure 2 shows a

few Thing regions in one frame. If a Thing region is not

found over the entire sub-sequence, it is treated as Stuff.

Initial flow. We also compute an initial dense flow field,

û using the DiscreteFlow method [38] based on [43]. We

use this in several ways as described below.

3.2. Motion Models

The motion of Planes. We model planar regions using

homographies. Given the initial flow vectors û(x), x ∈
Ri in region i, we use RANSAC to robustly estimate the

parameters, hi of the homography. The planar motion then

defines the flow uPlane(x;hi) for every pixel x ∈ Ri.

The motion of Stuff. For Stuff we have no class-specific

motion model and set the flow in every Stuff region i to be

the initial flow; that is uStuff(x) = û(x) for x ∈ Ri.

The motion of Things. In Thing regions we expect oc-

clusions and disocclusions, complex geometry, and defor-

mations. Thus, we assume the motion of a Thing can be

described as affine plus a smooth deformation from affine.

This may sound restrictive but we build on the work of

[49], where they show positive results applying this mo-

tion model to the entire scene. Our Thing regions are much

smaller than the entire scene, and the motion within this re-

gion is more likely to satisfy the assumptions. We allow the

motion of Things to deviate from affine and the amount of

deviation depends on the object class. For example, cars are

more rigid than people and their motion is more affine. Con-

sequently we assume that the motion of cars will be more

affine and penalize deviations from this assumption more.

While we are interested in the motion of the Thing, be-

cause we assume Things are in front of backgrounds, it is

actually important to also consider the motion of the back-

ground. Specifically, estimating an accurate foreground

segmentation requires that we reason about the motion of

both foreground and background. We do this using a local

layered model based on [49].

Formally, given a sequence of images {It, 1 ≤ t ≤ T},

we want to jointly estimate the motion (utk,vtk) for every

pixel, in each layer, at every frame, as well as group pix-

els that move together into layers denoted by gtk, where

k ∈ {1, 2}. We only consider two layers, and thus we only

need to estimate the foreground segmentation, gt1, as the

background layer is constant. We formulate the local lay-

ered energy term (Eq. 1) similar to Sun et al. with some

modifications described below and refer the reader to [49]

for further details. The method estimates the motion of both

layers and the segmentation of the foreground region.

The general formulation incorporates occlusion reason-

ing in the motion estimation using layered segmentation

(data term), enforces temporal consistency of layer segmen-

tation (time term) according to the motion, couples seman-

tic segmentation and layered segmentation (layer term), and

encourages spatial contiguity of layered segmentation using

a fully-connected CRF model (space term).

The data term imposes appearance constancy when cor-

responding pixels are visible at the same layer, and a con-

stant penalty otherwise. It reasons about occlusions by com-

43892



EThing(u,v,g,Θ;I, ĝ)=
2

∑

k=1

{

T−1
∑

t=1

{Edata(utk,vtk,gtk;It, It+1)+λmotionEmotion(utk,vtk,gtk,Θtk) (1)

+λtimeEtime(utk,vtk,gt,k,gt+1,k)}+
T
∑

t=1

{λlayerElayer(gtk; ĝtk)+λspaceEspace(gtk)}
}

.

paring the layer assignment of corresponding pixels:

Edata(utk,vtk,gtk; It, It+1) =
∑

p

ρD(Ipt −I
q
t+1)δ(g

p
t1=g

q
t+1,1)+

λDδ(gpt1 6=g
q
t+1,1), (2)

where q=(x+u
p

tk, y+v
p

tk) denotes the corresponding pixel

according to the motion for pixel p, for every pixel in the

image, ρD is a robust penalty function, and λD is a constant

penalty for occluded pixels and pixels of different objects.

The indicator function δ(x) is 1 if the expression x is true,

and 0 otherwise.

The motion term encodes two assumptions. First,

neighboring pixels should have similar motion if they be-

long to the same layer. Second, pixels from each layer k

should share a global motion model ū(Θtk), where Θtk are

parameters that change over time and depend on the object

class k:

Emotion(utk,vtk,gtk,Θtk)=
∑

p

∑

r∈Np

ρ(up

tk−ur
tk)δ(g

p

tk=grtk)+

λaff

∑

p

ρaff(u
p

tk−ūp(Θtk)) (3)

where the set Np contains the four nearest neighbors of

pixel p. The motion term for the vertical flow field vt is

defined similarly.

The time term encourages corresponding pixels over

time to have the same layer label

Etime(utk,vtk,gtk,gt+1k)=
∑

p

δ(gptk 6=g
q

t+1k), (4)

where q is the corresponding pixel at the next frame for p

according to the motion (utk,vtk).
The space term encourages spatial contiguity of layer

segmentation:

Espace(gtk) =
∑

p

∑

r6=p

wp
rδ(g

p

tk 6=grtk), (5)

where the weight wp
r is the same as in Sun et al. [49]. This

term fully connects each pixel with all other pixels in the

localized region. In our implementation, we modify the ap-

proach in [49] and apply this, not over the whole frame, but

over a detected object region.

The major difference from Sun et al. [49] is that we have

a semantic segmentation for the foreground and this seg-

mentation is usually reasonably good. Consequently we de-

fine a new coupling term, Elayer, that enforces similarity

between the foreground layer segmentation and the seman-

tic segmentation:

Elayer(gtk; ĝtk) =
∑

p

δ
(

g
p

tk 6= ĝ
p

tk

)

, (6)

where ĝt is the segmentation mask of the foreground Thing.

Initialization and optimization. The layer method re-

quires an initialization of the foreground region g, an initial

flow û, and parametric motions of both layers ū(Θ).
The initial flow is typically inaccurate at the boundaries

and we do not want this to corrupt the initialization. Con-

sequently we compute the initial affine motion ignoring the

pixels close to the object boundary both in the background

and foreground. We then optimize Eq. 1 using the method

in [49]. This refines the flow of each layer and the segmen-

tation (Fig. 3). The segmentation is quite accurate because

it uses backward and forward flow and image evidence with

the fully connected model in the region (see [49]). The

method [49] uses heuristics to reason about depth ordering.

Here we use the class category to decide the depth ordering

and assume that Things are always foreground.

3.3. Composing the Flow Field

Each Plane and Stuff region gives exactly one flow value

per pixel. If these pixels are not occluded by a localized

layer, then their flow becomes the final flow value. The lo-

calized layers estimate the flow of the foreground and back-

ground pixels within an object region. These regions may

extend over Plane and Stuff regions, giving multiple pos-

sible flow values for these overlapped pixels. We select a

single value for each such pixel as follows (Fig. 4). The

foreground flow is directly pasted onto the flow field (blue

region). When the background region of a localized layer

overlaps a Plane, we keep the planar motion (yellow re-

gion). When the background overlaps a Stuff region, we

take a weighted average of the Stuff flow and the layer flow

53893



Figure 4: Compositing the flow. The motion of Stuff,

Planes (yellow) and regions around Things (red and blue)

is composited to produce the final flow estimation.

(red region). The weight for the layer flow is high near the

foreground and decays to zero at the region boundary. Thus

we favor the layered flow estimate near the foreground be-

cause it tends to be more accurate at boundaries. We found

this approach faster and better than FusionFlow [31].

4. Experiments

We test our Semantic Optical Flow (SOF) method in two

different datasets: natural Youtube sequences and KITTI

2015 [37]. Standard optical flow benchmarks do not con-

tain the variety of objects that a semantic segmentation

method can recognize. Thus, we collected a suite of nat-

ural videos from YouTube, containing objects of the Pascal

VOC classes that move. Although there is no ground truth

to provide a quantitative analysis, the difference of quality

is clearly visible in planar regions and at motion boundaries.

All sequences will be made publicly available [1]. In addi-

tion, we test our method on the KITTI 2015 dataset, where

existing semantic segmentation methods perform reason-

ably well. We do not include results on the Sintel dataset be-

cause semantic segmentation does not produce reasonable

results. This is probably due to the fact that the statistics

of synthetically generated images are different from those

of natural images, like the ones in the enriched Pascal VOC

dataset. We tried training the same network using the Sin-

tel training set (manually annotated), and we found that the

network did not perform well, presumably due to a short-

age of training data. In the Middlebury dataset [5] the se-

mantic segmentation results produce mostly the ‘unknown’

class, or they correspond to classes without a specific mo-

tion model (i.e. building), or they are very small regions

and we do not consider them. Thus, on Middlebury our re-

sults are identical to the initial flow (DiscreteFlow) in all

sequences but in one, where our accuracy is 0.004 better.

4.1. KITTI 2015

We quantitatively evaluate our method on the KITTI

2015 benchmark (Fig. 5) using T = 2 frames as input.

Method
Fl-all

(All px)

Fl-bg

(All px)

Fl-fg

(All px)

Fl-all

(Nocc)

Fl-bg

(Nocc)

Fl-fg

(Nocc)

Full 24.26% 23.09% 30.11% 15.35 % 12.97% 26.10%

Discrete 22.38% 21.53% 26.68% 12.18% 9.96% 22.17%

SOF 16.81% 14.63% 27.73% 10.86% 8.11% 23.28%

Table 1: Results for the test set of KITTI 2015. We compare

with DiscreteFlow [38] and FullFlow [10], which is the next

most accurate published monocular method.

A numerical comparison between DiscreteFlow, FullFlow

[10], and our method is shown in Table 1. Our method sig-

nificantly reduces the overall percentage of outliers com-

pared with DiscreteFlow (from 22.38% to 16.81%). The

improvements mainly come from 1) our refined motion for

the Planes; and 2) correctly interpolated motion for the oc-

cluded background regions. Figure 6 shows several exam-

ples where our method fixes large errors of the foreground

cars in the initial DiscreteFlow results.

Our method has a slightly higher percentage of outliers

in the foreground region. This reveals a tradeoff between

segmentation and flow accuracy. The more we restrict the

foreground to affine motion, the better the segmentation but

the worse the flow estimate. Also our method only assumes

two major motions are present in the detected region, and it

may fail when the assumption does not hold (Fig. 7). This

is due to our segmentation method giving a class segmen-

tation and grouping multiple objects together. To address

this, we either need instance-level segmentation of Things

or a formulation that deals with more than two layers [48].

The execution time of our method depends on the size

of the image, the number of objects, and the size of these.

An upper bound for the total time is 6 minutes for a frame

of KITTI 2015. Specifically, the initial semantic segmen-

tation takes 10 seconds, the initial motion estimation from

DiscreteFlow takes 3 minutes, the motion of Planes takes 2

seconds, and the motion of Things depends on the size of

the object, but takes on average 1-2 minutes.

4.2. Natural Sequences.

Figure 8 shows examples on natural sequences down-

loaded from YouTube. We estimate the flow using non-

overlapping 5-frame subsequences. Our method improves

over the state-of-the-art optical flow estimation method. It

corrects errors in large planar regions and produces more

accurate motion boundaries. It is also able to refine the se-

mantic segmentation, especially at object boundaries and in

thin regions. These results demonstrate the benefits of our

approach when reliable semantic segmentation is available.

5. Conclusion and Future work

We have defined a method for using semantic segmenta-

tion to improve optical flow estimation. Our semantic op-

63894



Figure 5: Examples of Semantic Optical Flow on KITTI 2015. From left to right: Initial segmentation; Optical flow esti-

mation from SOF; Comparison of outliers between DiscreteFlow and SOF (black pixels indicate neither algorithm produced

an outlier in that location, yellow pixels indicate both methods produced an outlier, green pixels indicate DiscreteFlow was

incorrect SOF was correct, and red pixels indicate DiscreteFlow was correct but SOF was not). Notice that much of the gain

from SOF is on the road, especially at occluded regions, and on the areas close to cars.

Figure 6: Comparison of details recovered by Semantic

Optical Flow. From left to right: Initial segmentation; SOF

segmentation; Optical flow estimation from DiscreteFlow;

Optical flow estimation from SOF; Ground truth flow.

tical flow method uses object class labels to determine the

appropriate motion model to apply in each region. We clas-

sify a scene into Things, which move independently, Planes,

which are large, roughly planar regions, and Stuff, which is

Figure 7: Failure case. From left to right: Initial segmen-

tation; SOF segmentation; Flow estimation from Discrete-

Flow; Flow estimation from SOF; Ground truth flow. Our

layered method assumes two dominant motions in the re-

gion, failing if there are more than two motions.

everything else. We focus on the estimation of Things us-

ing a localized layer model in which we only apply layered

optical flow in constrained regions around objects of inter-

est. We introduce a novel constraint to prefer layered seg-

mentations that resemble our semantic segmentation. A key

insight is that a detected object region is likely to contain at

most two motions and the object is likely to be in front.

We show that using motion we are able to visually improve

the segmentation, sometimes dramatically. We tested the

method on the KITTI-2015 flow benchmark and have the

lowest error of any monocular method by a significant mar-

gin at the time of writing. We also tested on a wide range

of other videos containing more varied classes and see clear

qualitative improvement in terms of flow and segmentation.

This work confirms the benefit of using high quality seg-

mentation for optical flow and for exploiting knowledge of

the class labels in estimating flow. This opens several doors

for future work. In particular, it may be possible to formu-

late our localized layer model as a single objective function

and optimize it as such; this may improve results further.

73895








