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Abstract

Incremental Structure-from-Motion is a prevalent strat-
egy for 3D reconstruction from unordered image collec-
tions.  While incremental reconstruction systems have
tremendously advanced in all regards, robustness, accu-
racy, completeness, and scalability remain the key problems
towards building a truly general-purpose pipeline. We pro-
pose a new SfM technique that improves upon the state of
the art to make a further step towards this ultimate goal.
The full reconstruction pipeline is released to the public as
an open-source implementation.

1. Introduction

Structure-from-Motion (SfM) from unordered images
has seen tremendous evolution over the years. The early
self-calibrating metric reconstruction systems [42, 6, 19,

, 46] served as the foundation for the first systems on
unordered Internet photo collections [47, 53] and urban
scenes [45]. Inspired by these works, increasingly large-
scale reconstruction systems have been developed for hun-
dreds of thousands [1] and millions [20, 62, 51, 50] to re-
cently a hundred million Internet photos [30]. A variety
of SfM strategies have been proposed including incremen-
tal [53, 1, 20, 62], hierarchical [23], and global approaches
[14,61,56]. Arguably, incremental SfM is the most popular
strategy for reconstruction of unordered photo collections.
Despite its widespread use, we still have not accomplished
to design a truly general-purpose SfM system. While the
existing systems have advanced the state of the art tremen-
dously, robustness, accuracy, completeness, and scalability
remain the key problems in incremental SfM that prevent its
use as a general-purpose method. In this paper, we propose
a new SfM algorithm to approach this ultimate goal. The
new method is evaluated on a variety of challenging datasets
and the code is contributed to the research community as an
open-source implementation named COLMAP available at
https://github.com/colmap/colmap.

*This work was done at the University of North Carolina at Chapel Hill.

Jjmf@cs.unc.edu
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Figure 1. Result of Rome with 21K registered out of 75K images.

2. Review of Structure-from-Motion

SfM is the process of reconstructing 3D structure from
its projections into a series of images taken from different
viewpoints. Incremental SfM (denoted as SfM in this paper)
is a sequential processing pipeline with an iterative recon-
struction component (Fig. 2). It commonly starts with fea-
ture extraction and matching, followed by geometric verifi-
cation. The resulting scene graph serves as the foundation
for the reconstruction stage, which seeds the model with
a carefully selected two-view reconstruction, before incre-
mentally registering new images, triangulating scene points,
filtering outliers, and refining the reconstruction using bun-
dle adjustment (BA). The following sections elaborate on
this process, define the notation used throughout the paper,
and introduce related work.

2.1. Correspondence Search

The first stage is correspondence search which finds
scene overlap in the input images Z = {I; | i = 1..N;}
and identifies projections of the same points in overlapping
images. The output is a set of geometrically verified image
pairs C and a graph of image projections for each point.
Feature Extraction. For each image I;, SfM detects sets
Fi = {(x;,f;) | j = 1...Np,} of local features at loca-
tion x; € R? represented by an appearance descriptor f;.
The features should be invariant under radiometric and ge-
ometric changes so that SfM can uniquely recognize them
in multiple images [41]. SIFT [39], its derivatives [59], and
more recently learned features [9] are the gold standard in
terms of robustness. Alternatively, binary features provide
better efficiency at the cost of reduced robustness [29].
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Figure 2. Incremental Structure-from-Motion pipeline.

Matching. Next, SfM discovers images that see the same
scene part by leveraging the features J; as an appearance
description of the images. The naive approach tests every
image pair for scene overlap; it searches for feature cor-
respondences by finding the most similar feature in image
1, for every feature in image I;, using a similarity met-
ric comparing the appearance f; of the features. This ap-
proach has computational complexity O(N?N%i) and is
prohibitive for large image collections. A variety of ap-
proaches tackle the problem of scalable and efficient match-
ing [1, 20, 37, 62, 28, 49, 30]. The output is a set of poten-
tially overlapping image pairs C = {{I,,Ip} | 1.,y €
Z, a < b} and their associated feature correspondences
Map € Fu X Fp.

Geometric Verification. The third stage verifies the po-
tentially overlapping image pairs C. Since matching is
based solely on appearance, it is not guaranteed that cor-
responding features actually map to the same scene point.
Therefore, SfM verifies the matches by trying to estimate a
transformation that maps feature points between images us-
ing projective geometry. Depending on the spatial config-
uration of an image pair, different mappings describe their
geometric relation. A homography H describes the trans-
formation of a purely rotating or a moving camera capturing
a planar scene [26]. Epipolar geometry [26] describes the
relation for a moving camera through the essential matrix
E (calibrated) or the fundamental matrix F' (uncalibrated),
and can be extended to three views using the trifocal ten-
sor [26]. If a valid transformation maps a sufficient number
of features between the images, they are considered geo-
metrically verified. Since the correspondences from match-
ing are often outlier-contaminated, robust estimation tech-
niques, such as RANSAC [18], are required. The output
of this stage is a set of geometrically verified image pairs C,
their associated inlier correspondences M, and optionally
a description of their geometric relation G;. To decide on
the appropriate relation, decision criterions like GRIC [57]
or methods like QDEGSAC [21] can be used. The output
of this stage is a so-called scene graph [54, 37, 48, 30] with
images as nodes and verified pairs of images as edges.

2.2. Incremental Reconstruction

The input to the reconstruction stage is the scene graph.
The outputs are pose estimates P = {P. € SE(3) | ¢ =
1...Np} for registered images and the reconstructed scene
structure as a set of points X = {X;, € R* | k = 1...Nx}.

Initialization. SfM initializes the model with a carefully

selected two-view reconstruction [7, 52]. Choosing a suit-
able initial pair is critical, since the reconstruction may
never recover from a bad initialization. Moreover, the ro-
bustness, accuracy, and performance of the reconstruction
depends on the seed location of the incremental process.
Initializing from a dense location in the image graph with
many overlapping cameras typically results in a more robust
and accurate reconstruction due to increased redundancy. In
contrast, initializing from a sparser location results in lower
runtimes, since BAs deal with overall sparser problems ac-
cumulated over the reconstruction process.

Image Registration. Starting from a metric reconstruc-
tion, new images can be registered to the current model by
solving the Perspective-n-Point (PnP) problem [!8] using
feature correspondences to triangulated points in already
registered images (2D-3D correspondences). The PnP prob-
lem involves estimating the pose P, and, for uncalibrated
cameras, its intrinsic parameters. The set P is thus ex-
tended by the pose P of the newly registered image. Since
the 2D-3D correspondences are often outlier-contaminated,
the pose for calibrated cameras is usually estimated using
RANSAC and a minimal pose solver, e.g. [22, 34]. For un-
calibrated cameras, various minimal solvers, e.g. [10], or
sampling-based approaches, e.g. [31], exist. We propose a
novel robust next best image selection method for accurate
pose estimation and reliable triangulation in Sec. 4.2.
Triangulation. A newly registered image must observe
existing scene points. In addition, it may also increase scene
coverage by extending the set of points X through triangu-
lation. A new scene point Xy, can be triangulated and added
to X' as soon as at least one more image, also covering the
new scene part but from a different viewpoint, is registered.
Triangulation is a crucial step in SfM, as it increases the sta-
bility of the existing model through redundancy [58] and it
enables registration of new images by providing additional
2D-3D correspondences. A large number of methods for
multi-view triangulation exist [27, 5, 25, 35, 40, 3, 44, 32].
These methods suffer from limited robustness or high com-
putational cost for use in SfM, which we address by propos-
ing a robust and efficient triangulation method in Sec. 4.3.

Bundle Adjustment. Image registration and triangula-
tion are separate procedures, even though their products are
highly correlated — uncertainties in the camera pose propa-
gate to triangulated points and vice versa, and additional tri-
angulations may improve the initial camera pose through in-
creased redundancy. Without further refinement, SfM usu-
ally drifts quickly to a non-recoverable state. BA [58] is the
joint non-linear refinement of camera parameters P, and
point parameters X, that minimizes the reprojection error

B=Y o (I ®eX)-xl5) M

using a function 7 that projects scene points to image space
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and a loss function p; to potentially down-weight outliers.
Levenberg-Marquardt [58, 26] is the method of choice for
solving BA problems. The special structure of parameters
in BA problems motivates the Schur complement trick [&],
in which one first solves the reduced camera system and
then updates the points via back-substitution. This scheme
is commonly more efficient, since the number of cameras is
usually smaller than the number of points. There are two
choices for solving the system: exact and inexact step al-
gorithms. Exact methods solve the system by storing and
factoring it as a dense or sparse matrix [ 13, 38] with a space
complexity of O(N3) and a time complexity of O(N3).
Inexact methods approximately solve the system, usually
by using an iterative solver, e.g. preconditioned conjugate
gradients (PCG), which has O(Np) time and space com-
plexity [4, 63]. Direct algorithms are the method of choice
for up to a few hundred cameras but they are too expen-
sive in large-scale settings. While sparse direct methods re-
duce the complexity by a large factor for sparse problems,
they are prohibitive for large unstructured photo collections
due to typically much denser connectivity graphs [54, 4].
In this case, indirect algorithms are the method of choice.
Especially for Internet photos, BA spends significant time
on optimizing many near-duplicate images. In Sec. 4.5, we
propose a method to identify and parameterize highly over-
lapping images for efficient BA of dense collections.

3. Challenges

While the current state-of-the-art SfM algorithms can
handle the diverse and complex distribution of images in
large-scale Internet photo collections, they frequently fail to
produce fully satisfactory results in terms of completeness
and robustness. Oftentimes, the systems fail to register a
large fraction of images that empirically should be registra-
ble [20, 30], or the systems produce broken models due to
mis-registrations or drift. First, this may be caused by cor-
respondence search producing an incomplete scene graph,
e.g. due to matching approximations, and therefore provid-
ing neither the necessary connectivity for complete models
nor sufficient redundancy for reliable estimation. Second,
this may be caused by the reconstruction stage failing to
register images due to missing or inaccurate scene structure
— image registration and triangulation have a symbiotic re-
lationship in that images can only be registered to existing
scene structure and scene structure can only be triangulated
from registered images [64]. Maximizing the accuracy and
completeness of both at each step during the incremental
reconstruction is a key challenge in SfM. In this paper, we
address this challenge and significantly improve results over
the current state of the art (Sec. 5) in terms of completeness,
robustness, and accuracy while boosting efficiency.

4. Contributions

This section presents a new algorithm that improves on
the main challenges in SfM. First, we introduce a geo-
metric verification strategy that augments the scene graph
with information subsequently improving the robustness of
the initialization and triangulation components. Second, a
next best view selection maximizing the robustness and ac-
curacy of the incremental reconstruction process. Third,
a robust triangulation method that produces significantly
more complete scene structure than the state of the art at
reduced computational cost. Fourth, an iterative BA, re-
triangulation, and outlier filtering strategy that significantly
improves completeness and accuracy by mitigating drift ef-
fects. Finally, a more efficient BA parameterization for
dense photo collections through redundant view mining.
This results in a system that clearly outperforms the cur-
rent state of the art in terms of robustness and completeness
while preserving its efficiency. We contrast our contribu-
tions to the current state-of-the-art systems Bundler (open-
source) [52] and VisualSFM (closed-source) [62]. The pro-
posed system is released as an open-source implementation.

4.1. Scene Graph Augmentation

We propose a multi-model geometric verification strat-
egy to augment the scene graph with the appropriate geo-
metric relation. First, we estimate a fundamental matrix. If
at least N inliers are found, we consider the image pair
as geometrically verified. Next, we classify the transfor-
mation by determining the number of homography inliers
Ny for the same image pair. To approximate model se-
lection methods like GRIC, we assume a moving camera
in a general scene if Ny /Np < egp. For calibrated im-
ages, we also estimate an essential matrix and its number
of inliers Ng. If Ng/Np > egp, we assume correct cali-
bration. In case of correct calibration and Ny /Np < egyp,
we decompose the essential matrix, triangulate points from
inlier correspondences, and determine the median triangu-
lation angle «,,,. Using a,,, we distinguish between the
case of pure rotation (panoramic) and planar scenes (pla-
nar). Furthermore, a frequent problem in Internet photos are
watermarks, timestamps, and frames (WTFs) [60, 30] that
incorrectly link images of different landmarks. We detect
such image pairs by estimating a similarity transformation
with Ng inliers at the image borders. Any image pair with
Ng/Np > espV Ng/Ng > esg is considered a WTF and
not inserted to the scene graph. For valid pairs, we label the
scene graph with the model type (general, panoramic, pla-
nar) alongside the inliers of the model with maximum sup-
port Nz, Ng, or Nr. The model type is leveraged to seed
the reconstruction only from non-panoramic and preferably
calibrated image pairs. An already augmented scene graph
enables to efficiently find an optimal initialization for a ro-
bust reconstruction process. In addition, we do not triangu-
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late from panoramic image pairs to avoid degenerate points
and thereby improve robustness of triangulation and subse-
quent image registrations.

4.2. Next Best View Selection

Next best view planning has been studied in the fields
of computer vision, photogrammetry, and robotics [12].
Choosing the next best view in robust SfM aims to mini-
mize the reconstruction error [17, 24]. Here, we propose an
efficient next best view strategy following an uncertainty-
driven approach that maximizes reconstruction robustness.

Choosing the next best view is critical, as every decision
impacts the remaining reconstruction. A single bad deci-
sion may lead to a cascade of camera mis-registrations and
faulty triangulations. In addition, choosing the next best
view greatly impacts both the quality of pose estimates and
the completeness and accuracy of triangulation. An accu-
rate pose estimate is essential for robust SfM, as point tri-
angulations may fail if the pose is inaccurate. The decision
about choosing the next best view is challenging, since for
Internet photo collections there is usually no a priori infor-
mation about scene coverage and camera parameters, and
therefore the decision is based entirely on information de-
rived from appearance [ 17], two-view correspondences, and
the incrementally reconstructed scene [53, 24].

A popular strategy is to choose the image that sees most
triangulated points [52] with the aim of minimizing the un-
certainty in camera resection. Haner et al. [24] propose an
uncertainty-driven approach that minimizes the reconstruc-
tion error. Usually, the camera that sees the largest number
of triangulated points is chosen, except when the configu-
ration of observations is not well-conditioned. To this end,
Lepetit et al. [34] experimentally show that the accuracy of
the camera pose using PnP depends on the number of ob-
servations and their distribution in the image. For Internet
photos, the standard PnP problem is extended to the estima-
tion of intrinsic parameters in the case of missing or inac-
curate prior calibration. A large number of 2D-3D corre-
spondences provides this estimation with redundancy [34],
while a uniform distribution of points avoids bad configura-
tions and enables reliable estimation of intrinsics [41].

The candidates for the next best view are not the yet
registered images that see at least N; > 0 triangulated

points. Keeping track of this statistic can be efficiently
implemented using a graph of feature tracks. For Internet
datasets, this graph can be very dense, since many images
may see the same structure. Hence, there are many candi-
date views to choose from at each step in the reconstruction.
Exhaustive covariance propagation as proposed by Haner et
al. is not feasible, as the covariance would need to be com-
puted and analyzed for each candidate at each step. Our
proposed method approximates their uncertainty-driven ap-
proach using an efficient multi-resolution analysis.

We must simultaneously keep track of the number of
visible points and their distribution in each candidate im-
age. More visible points and a more uniform distribution
of these points should result in a higher score S [31], such
that images with a better-conditioned configuration of visi-
ble points are registered first. To achieve this goal, we dis-
cretize the image into a fixed-size grid with K bins in both
dimensions. Each cell takes two different states: empty and
full. Whenever a point within an empty cell becomes vis-
ible during the reconstruction, the cell’s state changes to
full and the score S; of the image is increased by a weight
w;. With this scheme, we quantify the number of visible
points. Since cells only contribute to the overall score once,
we favor a more uniform distribution over the case when
the points are clustered in one part of the image (i.e. only a
few cells contain all visible points). However, if the number
of visible points is N; < K7, this scheme may not cap-
ture the distribution of points well as every point is likely to
fall into a separate cell. Consequently, we extend the pre-
viously described approach to a multi-resolution pyramid
with [ = 1...L levels by partitioning the image using higher
resolutions K; = 2! at each successive level. The score
is accumulated over all levels with a resolution-dependent
weight w; = K7. This data structure and its score can be
efficiently updated online. Fig. 3 shows scores for differ-
ent configurations, and Sec. 5 demonstrates improved re-
construction robustness and accuracy using this strategy.

4.3. Robust and Efficient Triangulation

Especially for sparsely matched image collections, ex-
ploiting transitive correspondences boosts triangulation
completeness and accuracy, and hence improves subsequent
image registrations. Approximate matching techniques usu-
ally favor image pairs similar in appearance, and as a re-
sult two-view correspondences often stem from image pairs
with a small baseline. Leveraging transitivity establishes
correspondences between images with larger baselines and
thus enables more accurate triangulation. Hence, we form
feature tracks by concatenating two-view correspondences.

A variety of approaches have been proposed for multi-
view triangulation from noisy image observations [27, 40,

]. While some of the proposed methods are robust to a
certain degree of outlier contamination [25, 35, 3, 44, 32],
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to the best of our knowledge none of the approaches can
handle the high outlier ratio often present in feature tracks
(Fig. 6). We refer to Kang et al. [32] for a detailed overview
of existing multi-view triangulation methods. In this sec-
tion, we propose an efficient, sampling-based triangula-
tion method that can robustly estimate all points within an
outlier-contaminated feature track.

Feature tracks often contain a large number of out-
liers due to erroneous two-view verification of ambiguous
matches along the epipolar line. A single mismatch merges
the tracks of two or more independent points. For example,
falsely merging four feature tracks with equal length results
in an outlier ratio of 75%. In addition, inaccurate camera
poses may invalidate track elements due to high reprojec-
tion errors. Hence, for robust triangulation, it is necessary
to find a consensus set of track elements before performing
a refinement using multiple views. Moreover, to recover the
potentially multiple points of a feature track from a faulty
merge, a recursive triangulation scheme is necessary.

Bundler samples all pairwise combinations of track el-
ements, performs two-view triangulation, and then checks
if at least one solution has a sufficient triangulation angle.
If a well-conditioned solution is found, multi-view triangu-
lation is performed on the whole track, and it is accepted
if all observations pass the cheirality constraint [26]. This
method is not robust to outliers, as it is not possible to re-
cover independent points merged into one track. Also, it has
significant computational cost due to exhaustive pairwise
triangulation. Our method overcomes both limitations.

To handle arbitrary levels of outlier contamination, we
formulate the problem of multi-view triangulation using
RANSAC. We consider the feature track 7 = {7}, | n =
1...N7} as a set of measurements with an a priori un-
known ratio € of inliers. A measurement 7,, consists of
the normalized image observation X,, € R? and the cor-
responding camera pose P,, € SE(3) defining the pro-
jection from world to camera frame P = [RT —RTt]
with R € SO(3) and t € R3. Our objective is to maxi-
mize the support of measurements conforming with a well-
conditioned two-view triangulation

Xab ~ T (Xq, Xp, Po, Pp) with a # b, (2)

where 7 is any chosen triangulation method (in our case
the DLT method [26]) and X, is the triangulated point.
Note, that we do not triangulate from panoramic image pairs
(Sec. 4.1) to avoid erroneous triangulation angles due to in-
accurate pose estimates. A well-conditioned model satisfies
two constraints. First, a sufficient triangulation angle o

ta — Xab . tb - Xab
||ta - Xab||2 ||tb - XabHQ

3)

Ccosx =

Second, positive depths d, and d; w.r.t. the views P, and

Py, (cheirality constraint), with the depth being defined as

d= [p31 P32 P33 P34} [ng 1]T7 4)

where p,,,,, denotes the element in row m and column n of
P. A measurement 7, is considered to conform with the
model if it has positive depth d,, and if its reprojection error

ol

y'/7

x/
with |4/

_ Xab
Pn{ X ] )

Ep =

is smaller than a certain threshold t. RANSAC maximizes
KC as an iterative approach and generally it uniformly sam-
ples the minimal set of size two at random. However, since
it is likely to sample the same minimal set multiple times for
small N, we define our random sampler to only generate
unique samples. To ensure with confidence 7 that at least
one outlier-free minimal set has been sampled, RANSAC
must run for at least K iterations. Since the a priori inlier
ratio is unknown, we set it to a small initial value ¢y and
adapt K whenever we find a larger consensus set (adaptive
stopping criterion). Because a feature track may contain
multiple independent points, we run this procedure recur-
sively by removing the consensus set from the remaining
measurements. The recursion stops if the size of the lat-
est consensus set is smaller than three. The evaluations in
Sec. 5 demonstrate increased triangulation completeness at
reduced computational cost for the proposed method.

4.4. Bundle Adjustment

To mitigate accumulated errors, we perform BA after im-
age registration and triangulation. Usually, there is no need
to perform global BA after each step, since incremental SfM
only affects the model locally. Hence, we perform local BA
on the set of most-connected images after each image reg-
istration. Analogous to VisualSFM, we perform global BA
only after growing the model by a certain percentage, re-
sulting in an amortized linear run-time of SfM.

Parameterization. To account for potential outliers, we
employ the Cauchy function as the robust loss function p;
in local BA. For problems up to a few hundred cameras, we
use a sparse direct solver, and for larger problems, we rely
on PCG. We use Ceres Solver [2] and provide the option
to share camera models of arbitrary complexity among any
combination of images. For unordered Internet photos, we
rely on a simple camera model with one radial distortion
parameter, as the estimation relies on pure self-calibration.

Filtering. After BA, some observations do not conform
with the model. Accordingly, we filter observations with
large reprojection errors [53, 62]. Moreover, for each point,
we check for well-conditioned geometry by enforcing a
minimum triangulation angle over all pairs of viewing rays
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[53]. After global BA, we also check for degenerate cam-
eras, e.g. those caused by panoramas or artificially enhanced
images. Typically, those cameras only have outlier obser-
vations or their intrinsics converge to a bogus minimum.
Hence, we do not constrain the focal length and distortion
parameters to an a priori fixed range but let them freely
optimize in BA. Since principal point calibration is an ill-
posed problem [15], we keep it fixed at the image center for
uncalibrated cameras. Cameras with an abnormal field of
view or a large distortion coefficient magnitude are consid-
ered incorrectly estimated and filtered after global BA.

Re-Triangulation. Analogous to VisualSfM, we perform
re-triangulation (RT) to account for drift effects prior to
global BA (pre-BA RT). However, BA often significantly
improves camera and point parameters. Hence, we propose
to extend the very effective pre-BA RT with an additional
post-BA RT step. The purpose of this step is to improve
the completeness of the reconstruction (compare Sec. 4.3)
by continuing the tracks of points that previously failed to
triangulate, e.g., due to inaccurate poses etc. Instead of
increasing the triangulation thresholds, we only continue
tracks with observations whose errors are below the filter-
ing thresholds. In addition, we attempt to merge tracks and
thereby provide increased redundancy for the next BA step.

Iterative Refinement. Bundler and VisualSfM perform
a single instance of BA and filtering. Due to drift or the
pre-BA RT, usually a significant portion of the observations
in BA are outliers and subsequently filtered. Since BA is
severely affected by outliers, a second step of BA can sig-
nificantly improve the results. We therefore propose to per-
form BA, RT, and filtering in an iterative optimization until
the number of filtered observations and post-BA RT points
diminishes. In most cases, after the second iteration re-
sults improve dramatically and the optimization converges.
Sec. 5 demonstrates that the proposed iterative refinement
significantly boosts reconstruction completeness.

4.5. Redundant View Mining

BA is a major performance bottleneck in SfM. In this
section, we propose a method that exploits the inherent
characteristics of incremental SfM and dense photo collec-
tions for a more efficient parameterization of BA by cluster-
ing redundant cameras into groups of high scene overlap.

Internet photo collections usually have a highly non-
uniform visibility pattern due to varying popularity of
points of interest. Moreover, unordered collections are usu-
ally clustered into fragments of points that are co-visible in
many images. A number of previous works exploit this fact
to improve the efficiency of BA, including Kushal et al. [33]
who analyze the visibility pattern for efficient precondition-
ing of the reduced camera system. Ni et al. [43] partition
the cameras and points into submaps, which are connected
through separator variables, by posing the partitioning as a

graph cut problem on the graph of connected camera and
point parameters. BA then alternates between fixing the
cameras and points and refining the separator variables, and
vice versa. Another approach by Carlone et al. [11] col-
lapses multiple points with a low-rank into a single factor
imposing a high-rank constraint on the cameras, providing a
computational advantage when cameras share many points.

Our proposed method is motivated by these previous
works. Similar to Ni et al., we partition the problem into
submaps whose internal parameters are factored out. We
have three main contributions: First, an efficient camera
grouping scheme leveraging the inherent properties of SfM
and replacing the expensive graph-cut employed by Ni et
al. Second, instead of clustering many cameras into one
submap, we partition the scene into many small, highly
overlapping camera groups. The cameras within each group
are collapsed into a single camera, thereby reducing the cost
of solving the reduced camera system. Third, as a con-
sequence of the much smaller, highly overlapping camera
groups, we eliminate the alternation scheme of Ni et al. by
skipping the separator variable optimization.

SfM groups images and points into two sets based on
whether their parameters were affected by the latest incre-
mental model extension. For large problems, most of the
scene remains unaffected since the model usually extends
locally. BA naturally optimizes more for the newly ex-
tended parts while other parts only improve in case of drift
[62]. Moreover, Internet photo collections often have an un-
even camera distribution with many redundant viewpoints.
Motivated by these observations, we partition the unaffected
scene parts into groups G = {G,. | r = 1...Ng} of highly
overlapping images and parameterize each group G, as a
single camera. Images affected by the latest extension are
grouped independently to allow for an optimal refinement
of their parameters. Note that this results in the standard
BA parameterization (Eq. 1). For unaffected images, we
create groups of cardinality N¢_. We consider an image as
affected if it was added during the latest model extension or
if more than a ratio ¢, of its observations have a reprojection
error larger than r pixels (to refine re-triangulated cameras).

Images within a group should be as redundant as possible
[43], and the number of co-visible points between images
is a measure to describe their degree of mutual interaction
[33]. For a scene with Nx points, each image can be de-
scribed by a binary visibility vector v; € {0, 1}Vx, where
the n-th entry in v; is 1 if point X, is visible in image ¢ and
0 otherwise. The degree of interaction between image a and
b is calculated using bitwise operations on their vectors v;

Vab = IVa AVl / |Iva V V]| - (6)

To build groups, we sort the images as Z = {I;||v;|| >
[[Vit1]l}. We initialize a group G, by removing the first im-
age I, from Z and finding the image [;, that maximizes V.
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