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ETH Zürich, Switzerland

{nikolay.savinov,christian.haene,lubor.ladicky,marc.pollefeys}@inf.ethz.ch

Abstract

We propose an approach for dense semantic 3D recon-

struction which uses a data term that is defined as po-

tentials over viewing rays, combined with continuous sur-

face area penalization. Our formulation is a convex re-

laxation which we augment with a crucial non-convex con-

straint that ensures exact handling of visibility. To tackle the

non-convex minimization problem, we propose a majorize-

minimize type strategy which converges to a critical point.

We demonstrate the benefits of using the non-convex con-

straint experimentally. For the geometry-only case, we set

a new state of the art on two datasets of the commonly used

Middlebury multi-view stereo benchmark. Moreover, our

general-purpose formulation directly reconstructs thin ob-

jects, which are usually treated with specialized algorithms.

A qualitative evaluation on the dense semantic 3D recon-

struction task shows that we improve significantly over pre-

vious methods.

1. Introduction

One of the major goals in computer vision is to compute

dense 3D geometry from images. Recently, also approaches

that jointly reason about the geometry and semantic seg-

mentation have emerged [10]. Due to the noise in the input

data often strong regularization has to be performed. Op-

timizing jointly over 3D geometry and semantics has the

advantage that the smoothness for a surface can be chosen

depending on the involved semantic labels and the normal

direction to the surface. Eventually, this leads to more faith-

ful reconstructions that directly include a semantic labeling.

Posing the reconstruction task as a volumetric segmen-

tation problem [4] is a widely used approach. A volume

gets segmented into occupied and free space. In case of

dense semantic 3D reconstruction, the occupied space label

is replaced by a set of semantic labels [10]. To get smooth,

noise-free reconstructions, the final labeling is normally de-

termined by energy minimization. The formulation of the

energy comes with the challenge that the observations are

given in the image space but the reconstruction is volumet-

Figure 1: Left to right: example image, close-ups of [10],

[26] and our proposed approach.

ric. Therefore each pixel of an image contains information

about a ray composed out of voxels. This naturally leads

to energy formulations with potential functions that depend

on the configuration of a whole ray. Including such poten-

tials in a naive way leads to (on current hardware) infeasi-

ble optimization problems. Hence, many approaches try to

approximate such a potential. One often utilized strategy

is to derive a per-voxel unary potential (cost for assigning a

specific label to a specific voxel). However, this is only pos-

sible in a restricted setting and under a set of assumptions

that often do not hold in practice. By modeling the true ray

potential, more faithful reconstructions are obtained [26].

Thus, efficient ways to minimize energies with ray poten-

tials, while at the same time being able to benefit from the

joint formulation of 3D modeling and semantic segmenta-

tion, are desired.

In this work, we propose an energy minimization strat-

egy for ray potentials that can be directly used together with

continuously inspired surface regularization approaches and

hence does not suffer from metrication artifacts [12], com-

mon to discrete formulations on grid graphs. When using

our ray potential formulation for dense semantic 3D re-

construction, it additionally allows for the usage of class-

specific anisotropic smoothness priors. Continuously in-

spired surface regularization approaches are formulated as

convex optimization problems. We identify that a convex

relaxation for the ray potential is weak and unusable in

practice. We propose to add a non-convex term that han-

dles visibility exactly and optimize the resulting energy by
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linearly majorizing the non-convex part. By regularly re-

estimating the linear majorizer during the optimization, we

devise an energy minimization algorithm with guaranteed

convergence.

1.1. Related Work

Visibility relations in 3D reconstructions were studied

for computing a single depth map out of multiple images

[14, 15]. To generate a full consistent 3D model from many

depth maps, a popular approach is posing the problem in

the volume [4]. To handle the noise in the input data a sur-

face regularization term is added [19, 38]. A discrete graph-

based formulation is used in [19] and continuous surface

area penalization in [38]. One of the key questions is how

to model the data term. Starting from depth maps, [19, 38]

model the 2.5D data as per-voxel unary potentials. Such a

modeling utilizes information contained in the depth map

only partially. Using a discrete graph formulation [16, 33]

propose to model the free space between the camera center

and the measured depth with pairwise potentials.

Another approach to modeling the data term is to di-

rectly use a photo-consistency-based smoothness term [29,

11, 13]. To resolve the visibility relations, image silhouettes

are used. This is done either in the optimization as a con-

straint, meaning that the reconstruction needs to be consis-

tent with the image silhouettes [29, 13], or by deriving per-

voxel occupancy probability [11]. Silhouette consistency is

achieved through a discrete graph-cut optimization in [29],

and with a convex-relaxation-based approach in the contin-

uous domain in [13]. The resulting relaxed problem in the

latter case is not tight and hence does not generate binary

solutions. Therefore, to guarantee silhouette consistency a

special thresholding scheme is required. Handling visibility

has also been done in mesh-based photo-consistency mini-

mization [5].

To fully address the 2.5D nature of the input data, the

true ray potential should be used, meaning the data cost

depends on the first occupied voxel along the ray. What

happens behind is unobserved and hence has no influence.

This was formulated in [25, 9, 21, 22, 31] as a problem of

finding a voxel labeling in terms of color and occupancy

such that the first occupied voxel along a ray has a similar

color as the pixel it projects to. One of the limitations all

these works share is that they only compare colors of sin-

gle pixels, which often does not give a strong enough sig-

nal to recover weakly textured areas. We use depth maps

that are computed based on comparing image patches and

interpret them as noisy input data containing outliers. We

use regularization to handle the noise and outliers in the in-

put data, but in contrast to other approaches with ray po-

tentials that use a purely discrete graph-based formulation

[9, 21, 22] our proposed method is the first one that com-

bines true ray potentials with a continuous surface regular-

ization term. This allows us to set a new state of the art on

two commonly used benchmark datasets. Unlike in any pre-

vious volumetric depth map fusion approach, thin surfaces

do not pose problems in our formulation, due to an accurate

representation of the input data.

Most earlier formulations of ray potentials are for purely

geometry-based 3D reconstruction. Ours is more general

and also allows to incorporate semantic labels. [26] shows

that by using a discrete graph-based approach the true multi-

label ray potential can be used as data term. Several artifacts

present in the unary potential approximation [10] can be re-

solved using a formulation over rays. However, utilizing

a discrete graph-based approach it is not directly possible

to use the class-specific anisotropic regularization proposed

in [10]. We bridge this gap and show how the full multi-

label ray potential can be used together with continuously

inspired anisotropic surface regularization [2, 37].

2. Formulation

In this section we will introduce the mathematical for-

mulation that we are using to represent the dense semantic

3D reconstruction as an optimization problem. The prob-

lem is posed over a 3D voxel volume Ω ⊂ N
3. We denote

the label f = 0 as the free space label and introduce the

set L = {0, 1, . . . , L} of L semantic labels, which repre-

sent the occupied space, plus the free space label. The final

goal of our method is to assign a label ℓ ∈ L to each of

the voxels. The label assignment is formalized using indi-

cator variables xℓs ∈ {0, 1} indicating if label ℓ is assigned

at voxel s ∈ Ω, (xℓs = 1) or not.

We denote the vector of all per-voxel indicator variables

as x. Finally, the energy that we are minimizing in this

paper has the form

E(x) = ψR(x) + ψS(x)

subject to
∑

ℓ∈L

xℓs = 1, xℓs ∈ {0, 1}, (1)

where
∑

ℓ∈L x
ℓ
s = 1 guarantees that exactly one label is

assigned to each voxel. The objective contains two terms.

The term ψR(x), the ray potential, contributes the data to

the optimization problem. This is in contrast to many other

formulations where the data term is specified as local per-

voxel preferences for the individual labels. The second

term ψS(x) is a smoothness term, which penalizes the sur-

face area of the transitions between different labels. For

this term, we utilize formulations originating from con-

vex continuous multi-label segmentation [2]. As we will

see in Sec. 4 this smoothness term allows for class-specific

anisotropic penalization of the interfaces between all labels.

Due to the continuous nature of the regularization term, it

does not suffer from metrication artifacts like most of the

graph-based formulations. The straightforward way to uti-

lize such a smoothness term would be to use a convex relax-
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Figure 2: Variable Types: (left) the global xℓs, indicate the

label assigned to each voxel, (right) the per-ray variables yℓri
describe the visible surface.

ation of the ray potential. Unfortunately, convex relaxations

of the ray potential do not seem to lead to strong formu-

lations (c.f . Fig.4). In this paper we show how to resolve

this problem by adding a non-convex constraint. In Sec. 3

we introduce the convex relaxation formulation of the ray

potential and its non-convex extension. The regularization

term and optimization strategy are discussed in Sec. 4.

3. Ray Potential

The main idea of the ray potential [26] is that for each

ray, originating from an image pixel, a cost is induced that

only depends on the position of the first non-free space la-

bel along the viewing ray or the ray is all free space. This

means that the potential can take only linearly many (in the

number of voxels along a ray) values, which is the reason

why optimization of such potentials is tractable. Note that

this is not a restriction we impose, it represents the fact that

it is impossible to see behind occupied space. We denote

the cost of having the first occupied space label at position i

with label ℓ ∈ L as cℓri and the cost of having the whole ray

free space as cfr .

The vector of indicator variables xℓs belonging to ray

r ∈ R is denoted as xr. To index positions along a ray,

we denote sri ∈ Ω as the positions of all the voxels be-

longing to ray r ∈ R, where i ∈ {0, · · · , Nr} denotes the

position index along the ray. Note that there exists only one

xℓs variable per label for each voxel s ∈ Ω, if sri evaluates

to the same position for different rays it refers to the same

variable. Now we can state the ray potential part of the en-

ergy as a sum of potentials over rays

ψR(x) =
∑

r∈R

ψr(xr) (2)

ψr(xr) =





∑

ℓ∈L\{f}

Nr
∑

i=0

cℓri

(

min
j≤i−1

xfsrj

)

xℓsri



+ cfr min
j≤Nr

xfsrj

with L\{f} meaning the set of all labels excluding the free

space label. The term (minj≤i−1 x
f
sri

)xℓsri is 1 iff the first

occupied label along the ray r is ℓ at position i. Similarly,

xfsi

x1si

x2si

0

1

0

1

0

1

y
f
i

y1i

y2i

0

1

0

1

0

1

Figure 3: Example of variable assignments along a single

viewing ray for a three-label problem.

minj≤Nr
xfsrj equals 1 iff the whole ray r is free space.

Thus, in Eq. 2 only one term is non-zero, and its coefficient

equals the desired cost of the ray configuration.

To make the derivations throughout the paper compact,

we omit the last term without loss of generality by shifting

the costs by a constant, cℓri ← cℓri − c
f
r and cfr ← 0.

3.1. Visibility Variables

Before we state a convex relaxation of the ray potential,

which we eventually augment with a non-convex constraint,

we rewrite the potential using visibility variables. First, we

introduce the visibility variables yℓri indicating that the ray

r only contains free space up to the position i − 1 and the

label assigned at position i is ℓ ∈ L.

yℓri = min(yfr,i−1, x
ℓ
sri

) (3)

To anchor the definition we assume that the -1st voxel of the

ray has free space assigned, y
f
r,−1 = 1. Note that if we in-

sert all the nested definitions for a free space variable we get

y
f
ri = minj≤i x

f
srj

. Note that this variables are per-ray local

variables and multiple ones can exist per voxel in case mul-

tiple rays cross that voxel in contrast to the global per-voxel

variables xs, which exist only once per voxel (c.f . Fig. 2).

In the remainder of Sec. 3 we will drop the index r at most

places for better readability. We now state a reformulation

of the ray potential as

ψr(xr) =
∑

ℓ∈L

N
∑

i=0

cℓiy
ℓ
i (4)

subject to yℓi = min(yfi−1, x
ℓ
si
) ∀ℓ ∈ L, ∀i,

Here we introduced costs along the ray also for the free

space label c
f
i = 0, ∀i. This does not change the poten-

tial but is required for our next step, where we reformulate

the non-convex equality constraints as a series of inequality

constraints. To make sure that the corresponding equalities

are still satisfied in the optimum, we show that the costs cℓi
can be replaced by non-positive ones without changing the
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Figure 4: Evaluation of the convex relaxation for two-label

problem: (left) a reconstruction of the model obtained by

our non-convex procedure, slices through the volume (0
black, 1 white, 0.5 grey) in the non-convex formulation

(middle) and the convex formulation (right).

minimizer of the energy. This means that the yℓi are bounded

from above by the linear inequality constraints and are tight

from below through the minimization of the cost function,

so the resulting constraints model the same optimization

problem. The inequality constraints read as follows

0 ≤ yℓi ≤ y
f
i−1, yℓi ≤ x

ℓ
si

∀ℓ ∈ L (5)

To derive the transformation to non-positive costs, we first

notice that after applying min(yfi−1, ·) to both sides of the

constraint
∑

ℓ∈L x
ℓ
si

= 1 from Eq. 1, we can plug in the

constraints of Eq. 4 to obtain

y
f
i−1 =

∑

ℓ∈L

yℓi . (6)

Intuitively, this means if position i−1 is in the observed vis-

ible free space then the next position is either free space or

one of the occupied space labels and if i− 1 is in the occu-

pied space then all the yℓi are 0 (see Fig. 3). The cost trans-

formation is done for every ray separately. Starting with the

last position i = N , we add the following expression, which

always evaluates to 0, to the ray potential.

(

max
ℓ′∈L

cℓ
′

i

)

(

y
f
i−1 −

∑

ℓ∈L

yℓi

)

= 0 (7)

This moves one non-negative term to the previous position

and make all the cℓi for the current position non-positive.

c
f
i−1 ← c

f
i−1 +max

ℓ′∈L
cℓ

′

i

cℓi ← cℓi −max
ℓ′∈L

cℓ
′

i ∀ℓ ∈ L (8)

This is done iteratively for all i ∈ {N, . . . , 0}, leaving just

a constant, which can be omitted.

3.2. Convex Relaxation and Visibility Consistency

So far our derivation has been done using binary vari-

ables xℓs ∈ {0, 1} and hence also all the yℓi ∈ {0, 1}. To

minimize the energy, we relax this constraint by replacing

xℓs ∈ {0, 1} with xℓs ∈ [0, 1] in Eq. 1. This directly leads to

a convex relaxation of the ray potential. Unfortunately, this

relaxation is weak and therefore inapplicable in practice. In

Fig. 4 we evaluate the convex relaxation on a two-label ex-

ample (Lemon dataset), using surface area penalization via

a total variation (TV) smoothness prior. The convex relax-

ation fails entirely, producing variable assignments to the

xℓs that are 0.5 up to machine precision and hence no mean-

ingful solution can be extracted. A comparison of the ener-

gies reveals that there is a significant difference between the

non-convex and the convex solution (626614 and 431893,

respectively), which indicates that the relaxed problem is far

from the original binary one. Most importantly, our earlier

convex formulation [26] shares this behavior of not making

a decision for any voxel, when run without initialization on

a two-label problem. The aspects of initialization, heuris-

tic assignment of unassigned variables, move making algo-

rithm, and a coarse-to-fine scheme are essential elements of

the algorithm in [26].

The reason for the weak relaxation is that Eq. 6 is unsat-

isfied for the solution of the convex relaxation. This equa-

tion ensures that the per camera local view is consistent

with the global model (c.f . Fig. 2). Concretely, the equation

states that the change in visibility is directly linked to the

cost that can be taken by the potential e.g. a surface can only

be placed iff the occupancy along the ray changes. Hence

we propose a formulation that directly enforces this con-

straint, which we will call visibility consistency constraint.

Eq. 6 can be reformulated using the definition of y
f
i as

∑

ℓ∈L\{f}

yℓi = y
f
i−1 − y

f
i = y

f
i−1 −min(yfi−1, x

f
si
)

= max(0, yfi−1 − x
f
si
). (9)

This means that we can only have an occupied space label

ℓ ∈ L\{f} assigned as the visible surface at position i, if

position i does not have free space assigned and y
f
i−1 =

1 and hence the whole ray from the camera center to the

position i− 1 has free space assigned (see Fig. 3).

Since we minimize the objective with non-positive cℓi ,

the visibility consistency constraint is equivalent to the in-

equality

∑

ℓ∈L\{f}

yℓi ≤ max(0, yfi−1 − x
f
si
). (10)

Our final formulation for the ray potential is

ψr(xr) =
∑

ℓ∈L

N
∑

i=0

cℓiy
ℓ
i (11)

s.t. yℓi ≤ y
f
i−1, y

ℓ
i ≤ x

ℓ
si
, yℓi ≥ 0 ∀ℓ ∈ L, ∀i

∑

ℓ∈L\{f}

yℓi ≤ max(0, yfi−1 − x
f
si
) ∀i

The above potential is non-convex because of the non-

convex inequality which describes visibility consistency.
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We follow the strategy of using a surrogate convex con-

straint for the non-convex one that majorizes the objective

of the non-convex program. The majorization, as we will

see in Sec. 4, happens during the iterative optimization.

Therefore, at each iteration, we have a current assignment

to the variables, which we denote by x(n) and y(n). Here

we introduced the notation that variable assignments at iter-

ation n are denoted with a superscript (n). Replacing

∑

ℓ∈L\{f}

yℓi ≤ max{0, yfi−1 − x
f
si
}

by
∑

ℓ∈L\{f}

yℓi ≤ g(x
f
si
, y

f
i−1|x

f,(n)
si

, y
f,(n)
i−1 ) (12)

with the linear majorizer,

g(xfsi , y
f
i−1|x

f,(n)
si

, y
f,(n)
i−1 )

=

{

0 if y
f,(n)
i−1 ≤ x

f,(n)
si

y
f
i−1 − x

f
si

if y
f,(n)
i−1 > x

f,(n)
si

(13)

leads to a surrogate linear (and therefore convex) ray po-

tential, which we will denote by ψ
(n)
r (x,y|x(n),y(n)). The

variables x(n) and y(n) denote the position of the lineariza-

tion. We handle the corner case where both branches are

feasible to always take the first branch. In numerical exper-

iments we observed that this choice is not critical, it makes

no significant difference which branch is used in this case.

Next we state a Lemma that will be a crucial part of the

optimization strategy detailed in Sec. 4.

Lemma 1. Given x(n), with x(n) ≥ 0 point-wise, we can

find ỹ(n) such that all the constraints of the ray potential

Eq. 11 are fulfilled and the value of the potential is minimal.

Intuitively, the lemma states that given the global per-

voxel variable assignments xℓs, an assignment to the per-ray

variables yℓi can be found. This is not surprising given that

the whole information about the scene is contained in the

variables xℓs (c.f . Fig. 2). We prove the lemma by giving a

construction.

Proof. We provide an algorithm that computes ỹ(n) for

each ray individually. First we set ỹ
f,(n)
i = minj≤i x

f,(n)
sj ,

which satisfies ỹ
f,(n)
i ≤ ỹ

f,(n)
i−1 , ỹ

(n)
iℓ ≥ 0. Now we

iteratively increase ỹ
ℓ,(n)
i such that

∑

ℓ∈L\{f} ỹ
ℓ,(n)
i ≤

max(0, ỹ
f,(n)
i−1 − x

f
si
) and ỹ

ℓ,(n)
i ≤ xℓsi . For an optimal as-

signment we do this procedure in an increasing order of cℓi .

The observation holds by construction.

4. Energy Minimization Strategy

Before we discuss the proposed energy minimization,

we complete the formulation by including the regulariza-

tion term.

4.1. Regularization Term

There are several choices of regularization terms for con-

tinuously inspired multi-label segmentation that can be in-

serted into our formulation [36, 2, 30, 37]. They are all

convex relaxations and are originally posed in the con-

tinuum and discretized for numerical optimization. The

main differences are the strength of relaxation and general-

ity of the allowed smoothness priors. We directly describe

the strongest, most general version, which allows for non-

metric and anisotropic smoothness [37]. We only state the

smoothness term and explain the meaning of the individual

variables. For a thorough mathematical derivation we refer

the reader to the original publications [37, 10].

ψS(x, z) =
∑

s∈Ω

ψs(x, z) with (14)

ψs(x, z) =
∑

ℓ,m:ℓ<m

φℓms (zℓms − zmℓ
s )

s.t. xℓs =
∑

m

(

zℓms
)

k
, xℓs =

∑

m

(

zmℓ
s−ek

)

k
, ∀k, zℓms ≥ 0.

The variables zℓms ∈ R
3 describe the transitions between

the assigned labels. They indicate how much change there

is from label ℓ to label m along the direction they point to

and are hence called label transition gradients. For exam-

ple, if there is a change from label ℓ to label m at voxel s

along the first canonical direction, the corresponding zℓms is

[1, 0, 0]T . The zℓms need to be non-negative in order to al-

low for general, non-metric smoothness priors [37]. There-

fore the difference zℓms − zmℓ
s is used to allow for arbitrary

transition directions. The variable ek denotes the canonical

basis vector for the k-th component, i.e. e1 = [1, 0, 0]T .

φℓms : R
3 → R

+
0 are convex positively 1-homogeneous

functions that act as anisotropic regularization of a surface

between label ℓ and m. Note that the regularization term

takes into account label combinations. This enables us to

select class-specific smoothness priors, which depend on

the surface direction and the involved labels and are inferred

from training data [10]. For example, a surface between

ground and building is treated differently from a transition

between free space and building. The following lemma will

be necessary for our optimization strategy.

Lemma 2. Given x(n), z(n), with x
ℓ,(n)
s ≥ 0 ∀s, ℓ an as-

signment z̃(n) can be determined that fulfills the constraints

of the regularization term.

For the full proof of the lemma we refer the reader to the

supplementary material, here we only state the main idea of

the proof. In a first step we project our current solution onto

the space spanned by the equality constraints. This leads to

an initialization of the z̃(n) which fulfills the equality con-

straints but might lead to negative assignments to the zℓms .
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To get a non-negative solution, we notice that as long as

there is a zℓ
′,m′

s which is negative we can find ℓ′′ and m′′

such that we can increase zℓ
′,m′

s by ǫ along with changing

zℓ
′′,m′

s , zℓ
′,m′′

s , zℓ
′′,m′′

s by the same ǫ in order not to affect

the equality constraints.

4.2. Optimization

The goal of this section is to minimize the proposed en-

ergy using the non-convex ray potential Eq. 11. Optimizing

non-convex functionals is an inherently difficult task. One

often successfully utilized strategy is the so called majorize-

minimize strategy (for example [18]). The idea is to ma-

jorize the non-convex functional in some way with a surro-

gate convex one. Alternating between minimizing the sur-

rogate convex energy, which we will call the minimization

step in the following, and recomputing the surrogate con-

vex majorizer, which we will denote the majorization step,

leads to an algorithm that decreases the energy at each step

and hence converges.

Note that we already discussed the majorization step of

the ray potential in Sec. 3, Eq. 13. Together with the regu-

larizer we end up with a surrogate convex but non-smooth

program.

E(n)(x,y, z) = ψ
(n)
R (x,y|x(n),y(n)) + ψS(x, z) (15)

s.t.
∑

ℓ∈L

xℓs=1 ∀s, xℓs ∈ [0, 1] ∀s ∈ Ω, ∀ℓ ∈ L.

This energy can be globally minimized using the iterative

first order primal-dual algorithm [24]. However, there is

no guarantee that the energy during the iterative minimiza-

tion decreases monotonically nor that the constraints are

fulfilled before convergence. One solution is to run the con-

vex optimization until convergence however in practice this

leads to slow convergence. Therefore, we follow a different

strategy where we regularly run the majorization step dur-

ing the optimization of the energy. Before we can state the

final algorithm we present the following lemma.

Lemma 3. Given x(n),y(n), z(n), in the optimization prob-

lem Eq. 15, which do not necessarily fulfill the constraints.

A feasible solution x̃(n), ỹ(n), z̃(n) to the ray potential

Eq. 11 and the regularization term Eq. 14 can be con-

structed in a finite number of steps.

Proof. To fulfill the constraints
∑

ℓ∈L x
ℓ
s = 1 and xℓs ∈

[0, 1] we project the variables x(n) individually per voxel s

to the unit probability simplex [6]. Subsequent application

of Lemma 1 and 2 leads to the desired result.

Our final majorize-minimize optimization strategy can

now be stated as follows.

Majorization step Using the current variables

x(n),y(n), z(n) and Lemma 3 a feasible solution

x̃(n), ỹ(n), z̃(n) can be found. If the new energy

is lower or equal than the last known energy the

linearization Eq. 13 is applied and the new opti-

mization problem is passed to the minimization step.

Otherwise the whole majorization step is skipped and

the old variables x(n),y(n), z(n) are passed to the

minimization step.

Minimization step The primal-dual algorithm [24] is run

on the surrogate convex program for a fixed number of

p iterations. For guaranteed convergence, the primal

dual gap η can be evaluated and the minimization step

can be restarted until we have η ≤ f(n) with a func-

tion f(n)→ 0 for n→∞. In practice, we get a good

convergence behavior without a restart.

The majorization step either does no changes to the opti-

mization state or finds a better or equal solution with a new

linearization of the non-convex part because the lineariza-

tion does not change the energy. If no changes are done this

can be due to two reasons. Either the current solution was

worse than the last known one, or the majorization stayed

the same. In the latter case the primal-dual gap could reveal

convergence and as a consequence we know that we arrived

at a critical point or corner point of the original non-convex

energy. In any other case the minimization step is run again

and due to the convexity of the surrogate convex function

a better solution or the optimality certificate will be found.

The above procedure could stop at a non-critical point1 due

to the kink in the maximum in Eq. 12. To guarantee conver-

gence to a critical point, the visibility consistency constraint

Eq. 6 can be smoothed slightly e.g. using [23]. Again, in our

experiments this was unnecessary to achieve good conver-

gence behavior.

5. Experiments

Before we discuss the experiments, we describe the input

data and state the costs cℓri used for the ray potentials.

5.1. Input Data

We are using our approach for two different tasks: stan-

dard dense 3D reconstruction and dense semantic 3D re-

construction. In both cases, the initial input is a set of im-

ages with associated camera poses. Those camera poses

are either provided with the dataset (as in the Middlebury

Benchmark [27] or in the Thin Road Sign dataset [32]) or

computed via structure from motion algorithm [3] (as in

the semantic reconstruction experiments). We computed

the depth maps using plane sweeping stereo for Middlebury

Benchmark and semantic reconstruction datasets, while uti-

lizing those already provided with the dataset for the exper-

iment with Thin Road Sign. The patch similarity measure

1similar to block-coordinate descent based message passing algorithms
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Temple Full

Acc / Comp

Temple Ring

Acc / Comp

Temple S. Ring

Acc / Comp

Dino Full

Acc / Comp

Dino Ring

Acc / Comp

Dino S. Ring

Acc / Comp

Our Method 0.41 / 99.7 0.5 / 99.5 0.69 / 97.8 0.26 / 99.8 0.25 / 99.9 0.34 / 99.7

Galliani et al.[8] 0.39 / 99.2 0.48 / 99.1 0.53 / 97.0 0.31 / 99.9 0.3 / 99.4 0.38 / 98.6

Zhu et al.[39] 0.4 / 99.2 0.45 / 95.7 0.38 / 98.3 0.48 / 95.4

Li et al.[20] 0.73 / 98.2 0.66 / 97.3 0.28 / 100 0.3 / 100

Wei et al. [34] 0.34 / 99.4 0.42 / 98.1

Xue et al. 0.3 / 99.1

Furukawa et al. [7] 0.49 / 99.6 0.47 / 99.6 0.63 / 99.3 0.33 / 99.8 0.28 / 99.8 0.37 / 99.2

Figure 5: Middlebury Multi-View Stereo Benchmark: (left) Reconstructions of the Dino Ring and Temple Ring datasets

computed by our algorithm, (left-most) view 1, (right-most) view 2, (right, top) benchmark’s competitive methods in inverse

chronological order (smaller Acc and higher Comp numbers are better), (right, bottom) Acc vs. Ratio (lower curve better)

and Comp vs. Error (higher curve better) plots for the Dino Full dataset (for details on these plots see [27]).

for stereo matching was zero-mean normalized cross cor-

relation. For the dense semantic 3D reconstruction exper-

iments, we computed per-pixel semantic labels using [17],

trained on the datasets from [1], [28] and [10].

5.2. Ray Potential Costs

In case of a two-label problem, there exists only one sin-

gle label ℓ ∈ L. This allows us to directly insert the visi-

bility consistency, Eq. 9, into the objective. In this case the

majorization can directly be done on the objective instead

of the visibility constraint, leading to a more compact op-

timization problem with a smaller memory footprint. Like

[10], we assume exponential noise on the depth maps and

define the assignments to the costs cℓri, given the position of

the depth measurement along the ray r as i′ as

cℓri := min{0, λ|i− i′| −K}. (16)

The parameters λ ≥ 0 and K are chosen such that the po-

tential captures the uncertainty of the depth measurement.

For the multi-class case we also assume exponential

noise on the depth data and independence between the depth

measurement and the semantic measurement. Therefore the

combined costs read as

cℓri := min{0, λ|i− i′| −K}+ σℓ, (17)

with σℓ being the response of the semantic classifier for the

respective pixel. This is the same potential that [10] approx-

imates with unary potentials.

5.3. Middlebury Multi­View Stereo Benchmark

We evaluate our method for dense 3D reconstuction on

the Middlebury benchmark [27]. We ran our algorithm on

all 6 datasets (using the same parameters). Two quantita-

tive measures are defined in this benchmark paper: accu-

racy (Acc) and completeness (Comp). In terms of accuracy

our algorithm sets a new state-of-the-art for the Dino Full

and Dino Ring datasets (c.f . Fig. 5). An actual ranking of

the benchmark is difficult because there is no default, com-

monly accepted, way to combine the two measures. Taking

into account both measures we are close to the state-of-the-

art on all datasets (results can be found online 2).

5.4. Street Sign Dataset

A challenging case for volumetric 3D reconstruction are

thin objects. When approximating the data term, which is

naturally given as a ray potential in the 2.5D input data, by

unary or pairwise potentials the data terms from both sides

are prone to cancel out. Similarly, when using visual hulls

a slight misalignment of the two sides might generate an

empty visual hull. These are the reasons why thin objects

are considered to be a hard case in volumetric 3D recon-

struction. We evaluate the performance of our algorithm

for such objects on the street sign dataset from [32]. The

dataset consists 50 images of a street sign with correspond-

ing depth maps. As depicted in Fig 6 the thin surface does

not pose any problem to our method, thanks to an accurate

representation of the input data in the optimization problem.

To illustrate the result obtained with a standard volumetric

3D reconstruction algorithm we ran our implementation of

the TV-Flux fusion from [35] on the same data. Note that

this dataset is particularly hard because the two sides actu-

ally interpenetrate as detailed in [32].

2http://vision.middlebury.edu/mview/eval/
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Example Images TV-Flux (high) TV-Flux (medium) TV-Flux (low) Our Method

Figure 6: Reconstructions of the street sign dataset from [32] using the TV-Flux fusion from [35] with three different

smoothness settings (high/medium/low), and our proposed method.

Input Image Häne et al. 2013 [10] Savinov et al. 2015 [26] Proposed Method

Figure 7: Semantic 3D Reconstructions: we improve in weakly observed areas and resolve unary potential artifacts at the

same time. Five semantic labels are used: ground, building, vegetation, clutter, free space.

5.5. Multi­Label Experiments

We evaluate our formulation for dense semantic 3D re-

construction on several real-world datasets. We show our

results side-by-side with the method of [10] and [26] in

Figs. 7 and 1. Our method uses the same smoothness prior

as [10]. For all the datasets we observe that the approxi-

mation of the data cost with a unary potential in [10] arti-

ficially fattens corners and thin objects (e.g. pillars or tree

branches). In the close-ups (c.f . Fig. 1) we see that such

a data term recovers significantly less surface detail with

respect to our proposed method. This problem has been

addressed in [26], but their discrete graph-based approach

suffers from metrication artifacts, cannot be combined with

the class-specific anisotropic smoothness prior and does

not lead to smooth surfaces (c.f . Fig. 1). Moreover, their

coarse-to-fine scheme produces artifacts in the reconstruc-

tions. Our approach takes the best of both worlds, the ray

potential part ensures an accurate position of the observed

surfaces, while the anisotropic smoothness prior faithfully

handles weakly observed areas.

6. Conclusion

In this paper we proposed an approach for using ray po-

tentials together with continuously inspired surface regular-

ization. We demonstrated that a direct convex relaxation is

too weak to be used in practice. We resolved this issue by

adding a non-convex constraint to the formulation. Further,

we detailed an optimization strategy and gave an extensive

evaluation on two-label and multi-label datasets. Our algo-

rithm allows for a general multi-label ray potential, at the

same time it achieves volumetric 3D reconstruction with

high accuracy. In semantic 3D reconstruction we are able

to overcome limitations of earlier methods.
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