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Abstract

We develop new representations and algorithms for

three-dimensional (3D) object detection and spatial lay-

out prediction in cluttered indoor scenes. RGB-D images

are traditionally described by local geometric features of

the 3D point cloud. We propose a cloud of oriented gra-

dient (COG) descriptor that links the 2D appearance and

3D pose of object categories, and thus accurately models

how perspective projection affects perceived image bound-

aries. We also propose a “Manhattan voxel” representation

which better captures the 3D room layout geometry of com-

mon indoor environments. Effective classification rules are

learned via a structured prediction framework that accounts

for the intersection-over-union overlap of hypothesized 3D

cuboids with human annotations, as well as orientation es-

timation errors. Contextual relationships among categories

and layout are captured via a cascade of classifiers, lead-

ing to holistic scene hypotheses with improved accuracy.

Our model is learned solely from annotated RGB-D images,

without the benefit of CAD models, but nevertheless its per-

formance substantially exceeds the state-of-the-art on the

SUN RGB-D database. Avoiding CAD models allows eas-

ier learning of detectors for many object categories.

1. Introduction

The last decade has seen major advances in algorithms

for the semantic understanding of 2D images [6, 29]. Im-

ages of indoor (home or office) environments, which are

typically highly cluttered and have substantial occlusion,

are particularly challenging for existing models. Recent

advances in depth sensor technology have greatly reduced

the ambiguities present in standard RGB images, enabling

breakthroughs in scene layout prediction [22, 13, 41], sup-

port surface prediction [34, 8, 10], semantic parsing [11],

and object detection [36]. A growing number of annotated

RGB-D datasets have been constructed to train and evaluate

indoor scene understanding methods [30, 21, 34, 35].

A wide range of semantic 3D scene models have been

developed, including approaches based on low-level voxel

representations [20]. Generalizing the bounding boxes

widely used for 2D detection, the 3D size, position, and

orientation of object instances can be described by bound-

ing cuboids (convex polyhedra). Several methods fit cuboid

models to RGB or RGB-D data [17, 16, 40] but do not have

any semantic, high-level scene understanding. Other work

has used CRFs to classify cuboids detected by bottom-up

grouping [25], or directly detected objects in 3D by match-

ing to known CAD models in “sliding” locations [36].

Several recent papers have used CAD models as addi-

tional information for indoor scene understanding, by learn-

ing models of object shape [39] or hallucinating alterna-

tive viewpoints for appearance-based matching [1, 24, 23].

While 3D models are a potentially powerful information

source, there does not exist an abundant supply of mod-

els for all categories, and thus these methods have typi-

cally focused on a small number of categories (often, just

chairs [1]). Moreover, example-based methods [36] may be

computationally inefficient due to the need to match each

examplar to each test image. It is unclear how many CAD

models are needed to faithfully capture an object class.

To model the spatial layout of indoor scenes, many meth-

ods assume an orthogonal “Manhattan” structure [4] and

aim to infer 2D projections of the 3D structure. Build-

ing on [22] and [15], Hedau et al. [12] use a structured

model to rerank layout hypotheses, Schwing et al. [33] pro-

pose an efficient integral representation to efficiently ex-

plore exponentially many layout proposals, and Zhang et

al. [41] incorporate depth cues. Jointly modeling objects

may improve layout prediction accuracy [13, 32], but previ-

ous work has focused on restricted environments (e.g., beds

that are nearly always aligned with walls) and may not gen-

eralize to more cluttered scenes. Other work has used point

cloud data to directly predict 3D layout [25, 35], but can be

sensitive to errors in RGB-D depth estimates.

Simple scene parsing algorithms detect each category in-

dependently, which can introduce many false positives even

after non-maximum suppression. Previous work has used

fairly elaborate, manually engineered heuristics to prune

false detections [36] or used CAD models and layout cues

jointly to model scenes [9]. In this paper we show that a

cascaded classification framework [14] can be used to learn
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Figure 1. Given input RGB and Depth images (left), we align oriented cuboids and transform observed data into a canonical coordinate

frame. For each voxel in a 6×6×6 grid, we then extract (from left to right) point cloud density features, 3D normal orientation histograms,

and our COG model of back-projected image gradient orientations. On the left, COG bins are colored to show alignment between instances.

The value of the point cloud density feature is proportional to the voxel intensity, each 3D orientation histogram bin is assigned a distinct

color, and COG feature intensities are proportional to the normalized energy in each orientation bin, similarly to HOG descriptors [5].

contextual relationships among object categories and the

overall room layout, so that visually distinctive objects lead

to holistic scene interpretations of higher quality.

We propose a general framework for learning detectors

for multiple object categories using only RGB-D annota-

tions. In Sec. 2, we introduce a novel cloud of oriented

gradients (COG) feature that robustly links 3D object pose

to 2D image boundaries. We also introduce a new Manhat-

tan voxel representation of 3D room layout geometry. We

then use a structured prediction framework (Sec. 3) to learn

an algorithm that aligns 3D cuboid hypotheses to RGB-D

data, and a cascaded classifier (Sec. 4) to incorporate con-

textual cues from other object instances and categories, as

well as the overall 3D layout. In Sec. 5 we validate our

approach using the large, recently introduced SUN-RGBD

dataset [35], where we detect more categories with greater

accuracy than a state-of-the-art CAD-model detector [36].

2. Modeling 3D Geometry & Appearance

Our object detectors are learned from 3D oriented cuboid

annotations in the SUN-RGBD dataset [35], which contains

10,335 RGB-D images and 19 labeled object categories. We

discretize each cuboid into a 6×6×6 grid of (large) voxels,

and extract features for these 63 = 216 cells. Voxel dimen-

sions are scaled to match the size of each instance. We use

standard descriptors for the 3D geometry of the observed

depth image, and propose a novel cloud of oriented gradi-

ent (COG) descriptor of RGB appearance. We also propose

a Manhattan voxel model of 3D room layout geometry.

2.1. Object Geometry: 3D Density and Orientation

Point Cloud Density Conditioned on a 3D cuboid anno-

tation or detection hypothesis i, suppose voxel ` contains

Ni` points. We use perspective projection to find the sil-

houette of each voxel in the image, and compute the area

Ai` of that convex region. The point cloud density feature

for voxel ` then equals φai` = Ni`/Ai`. Normalization gives

robustness to depth variation of the object in the scene. We

normalize by the local voxel area, rather than by the total

number of points in the cuboid as in some related work [36],

to give greater robustness to partial object occlusions.

3D Normal Orientations Various representations, such

as spin images [19], have been proposed for the vectors nor-

mal to a 3D surface. As in [36], we build a 25-bin histogram

of normal orientations within each voxel, and estimate the

normal orientation for each 3D point via a plane fit to its

15 nearest neighbors. This feature φbi captures the surface

shape of cuboid i via patterns of local 3D orientations.

2.2. Clouds of Oriented Gradients (COG)

The histogram of oriented gradient (HOG) descriptor [5]

forms the basis for many effective object detection meth-

ods [6]. Edges are a very natural foundation for indoor

scene understanding, due to the strong occluding contours

generated by common objects. However, gradient orienta-

tions are of course determined by 3D object orientation and

perspective projection, so HOG descriptors that are naively

extracted in 2D image coordinates generalize poorly.

To address this issue, some previous work has used 3D
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Figure 2. For two corresponding voxels (red and green) on two

chairs, we illustrate the orientation histograms that would be com-

puted by a standard HOG descriptor [5] in 2D image coordinates,

and our COG descriptor in which perspective geometry is used to

align descriptor bins. Even though these object instances are very

similar, their 3D pose leads to wildly different HOG descriptors.

CAD models to hallucinate the edges that would be ex-

pected from various synthetic viewpoints [23, 1]. Other

work has restrictively assumed that parts of objects are near-

planar so that image warping may be used for alignment [7],

or that all objects have a 3D pose aligned with the global

“Manhattan world coordinates” of the room [13]. Some pre-

vious 3D extensions of the HOG descriptor [3, 31] assume

that either a full 3D model or mesh model is given. In recent

independent research [37], 3D cuboid hypotheses were used

to aggregate standard 2D features from a deep convolutional

neural network, but the relationship between these features

and 3D object orientation was not modeled. Our cloud of

oriented gradient (COG) feature accurately describes the

3D appearance of objects with complex 3D geometry, as

captured by RGBD cameras in any orientation.

Gradient Computation We compute gradients by apply-

ing filters [−1, 0, 1], [−1, 0, 1]T to the RGB channels of the

unsmoothed 2D image. The maximum responses across

color channels are the gradients (dx, dy) in the x and y di-

rections, with corresponding magnitude
p

dx2 + dy2.

3D Orientation Bins The standard HOG descriptor [5]

uses evenly spaced gradient bins, with 0◦ being the hori-

zontal image direction. As shown in Fig. 2, this can produce

very inconsistent descriptors for objects in distinct poses.

For each cuboid we construct nine 3D orientation bins

that are evenly spaced from 0◦−180◦ in the half-disk sitting

vertically along its horizontal axis. We then use perspective

projection to find corresponding 2D bin boundaries. For

each point that lies within a given 3D voxel, we accumulate

its unsigned 2D gradient in the corresponding projected 2D

orientation bin. To avoid image processing operations that

can be unstable for objects with non-planar geometry, we

accumulate standard gradients with warped histogram bins,

rather than warping images to match fixed orientation bins.

Normalization and Aliasing We bilinearly interpo-

late gradient magnitudes between neighboring orientation

bins [5]. To normalize the histogram φci` for voxel ` in

cuboid i, we then set φci` ← φci`/
p

||φci`||
2 + ✏ for a small

✏ > 0. Accounting for all orientations and voxels, the di-

mension of the COG feature is 63 × 9 = 1944.
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Figure 3. Models for 3D layout geometry. Top: Ground truth anno-

tation. Bottom: Top-down view of the scene and two voxel-based

quantizations. We compare a regular voxel grid (left) to our Man-

hattan voxels (right; dashed red line is the layout hypothesis).

2.3. Room Layout Geometry: Manhattan Voxels

Given an RGB-D image, scene parsing requires not only

object detection, but also room layout (floor, ceiling, wall)

prediction [12, 22, 41, 32]. Such “free space” understanding

is crucial for applications like robot navigation. Many pre-

vious methods treat room layout prediction as a 2D labeling

task [2, 33, 41], but small mistakes in 2D can lead to huge

errors in 3D layout prediction. Simple RGB-D layout pre-

diction methods [35] work by fitting planes to the observed

point cloud data. We propose a more accurate learning-

based approach to predicting Manhattan geometries.

The orthogonal walls of a standard room can be repre-

sented via a cuboid [27], and we could define geometric

features via a standard voxel discretization (Fig. 3, bottom

left). However, because corner voxels usually contain the

intersection of two walls, they then mix 3D normal vectors

with very different orientations. In addition, this discretiza-

tion ignores points outside of the hypothesized cuboid, and

may match subsets of a room that have wall-like structure.

We propose a novel Manhattan voxel (Fig. 3, bottom

right) discretization for 3D layout prediction. We first dis-

cretize the vertical space between floor and ceiling into 6

equal bins. We then use a threshold of 0.15m to separate

points near the walls from those in the interior or exterior

of the hypothesized layout. Further using diagonal lines

to split bins at the room corners, the overall space is dis-

cretized in 12×6 = 72 bins. For each vertical layer, regions

R1:4 model the scene interior whose point cloud distribution

varies widely across images. Regions R5:8 model points

near the assumed Manhattan wall structure: R5 and R6

should contain orthogonal planes, while R5 and R7 should

contain parallel planes. Regions R9:12 capture points out-

side of the predicted layout, as might be produced by depth

sensor errors on transparent surfaces.
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3. Learning to Detect Cuboids & Layouts

For each voxel ` in some cuboidBi annotated in training

image Ii, we have one point cloud density feature φai`, 25

surface normal histogram features φbi`, and 9 COG appear-

ance features φci`. Our overall feature-based representation

of cuboid i is then φ(Ii, Bi) = {φai`, φ
b
i`, φ

c
i`}

216
`=1. Cuboids

are aligned via annotated orientations as illustrated in Fig. 1,

using the gravity direction provided in the SUN-RGBD

dataset [35]. Similarly, for each of the Manhattan voxels ` in

layout hypothesis Mi we compute point cloud density and

surface normal features, and φ(Ii,Mi) = {φai`, φ
b
i`}

72
`=1.

3.1. Structured Prediction of Object Cuboids

For each object category c independently, using those

images which contain visible instances of that category, our

goal is to learn a prediction function hc : I → B that maps

an RGB-D image I to a 3D bounding box B = (L, ✓, S).
Here, L is the center of the cuboid in 3D, ✓ is the cuboid ori-

entation, and S is the physical size of the cuboid along the

three axes determined by its orientation. We assume objects

have a base upon which they are usually supported, and thus

✓ is a scalar rotation with respect to the ground plane.

Given n training examples of category c, we use an n-

slack formulation of the structural support vector machine

(SVM) objective [18] with margin rescaling constraints:

min
wc,⇠≥0

1

2
wT

c wc +
C

n

n
X

i=1

⇠i subject to

wT
c [φ(Ii, Bi)− φ(Ii, B̄i)] ≥ ∆(Bi, B̄i)− ⇠i,

for all B̄i ∈ Bi, i = 1, . . . , n. (1)

Here, φ(Ii, Bi) are the features for oriented cuboid hypoth-

esis Bi given RGB-D image Ii, Bi is the ground-truth an-

notated bounding box, and Bi is the set of possible alter-

native bounding boxes. For training images with multiple

instances, as in previous work on 2D detection [38] we add

images multiple times to the training set, each time remov-

ing the subset of 3D points contained in other instances.

Given some ground truth cuboidB and estimated cuboid

B̄, we define the following loss function:

∆(B, B̄) = 1− IOU(B, B̄) ·

✓

1 + cos(✓̄ − ✓)

2

◆

. (2)

Here, IOU(B, B̄) is the volume of the 3D intersection of

the cuboids, divided by the volume of their 3D union. The

loss is bounded between 0 and 1, and is smallest when the

IOU(B, B̄) is near 1 and the orientation error ✓ − ✓̄ ≈ 0.

Loss approaches 1 if either position or orientation is wrong.

We solve the loss-sensitive objective of Eq. (1) using a

cutting-plane method [18]. We also experimented with de-

tectors based on a standard binary SVM with hard negative

mining, but found that the loss-sensitive S-SVM classifier

is more accurate (see Fig. 5) and also more efficient in han-

dling the large number of negative cuboid hypotheses.

Cuboid Hypotheses We precompute features for candi-

date cuboids in a sliding-window fashion using discretized

3D world coordinates, with 16 candidate orientations. We

discretize cuboid size using empirical statistics of the train-

ing bounding boxes: {0.1, 0.3, 0.5, 0.7, 0.9} width quan-

tiles, {0.25, 0.5, 0.75} depth quantiles, and {0.3, 0.5, 0.8}
height quantiles. Every combination of voxel size, and 3D

location and orientation, is then evaluated.

3.2. Structured Prediction of Manhattan Layouts

We again use the S-SVM formulation of Eq. (1) to pre-

dict Manhattan layout cuboids M = (L, ✓, S). The loss

function ∆(M, M̄) is as in Eq. (2), except we use the “free-

space” definition of IOU from [35], and account for the fact

that orientation is only identifiable modulo 90◦ rotations.

Because layout annotations do not necessarily have Man-

hattan structure, the ground truth layout is taken to be the

cuboid hypotheses with largest free-space IOU.

Layout Hypotheses We predict floors and ceilings as the

0.001 and 0.999 quantiles of the 3D points along the gravity

direction, and discretize orientation into 18 evenly spaced

angles between 0 and 180◦. We then propose layout can-

didates that capture at least 80% of all 3D points, and are

bounded by the farthest and closest 3D points. For typical

scenes, there are 5,000-20,000 layout hypotheses. See the

supplemental material for more details.

4. Cascaded Learning of Spatial Context

If the detectors learned in Sec. 3 are independently ap-

plied for each category, there may be many false positives,

where a “piece” of a large object is detected as a smaller

object (see Fig. 4). Song et al. [36] reduce such errors via

a heuristic reduction in confidence scores for small detec-

tions on large image segments. To avoid such manual en-

gineering, which must often be tuned to each category, we

propose to directly learn the relationships among detections

of different categories. As room geometry is also an impor-

tant cue for object detection, we integrate Manhattan layout

hypotheses for total scene understanding [35, 25].

Typically, structured prediction of spatial relationships

is accomplished via undirected Markov random fields

(MRFs) [26]. As shown in Fig. 4, this generally leads to

a fully connected graph [28] because there are relationships

among every pair of object categories. An extremely chal-

lenging MAP estimation (or energy minimization) problem

must then be solved at every training iteration, as well as for

each test image, so learning and prediction is costly.

We propose to instead adapt cascaded classification [14]

to the modeling of contextual relationships in 3D scenes.

In this approach, “first-stage” detections as in Sec. 3 be-

come input features to “second-stage” classifiers that esti-

mate confidence in the correctness of cuboid hypotheses.
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Figure 4. An illustration of how cascaded classification captures contextual relationships among objects. From left to right: (i) A traditional

undirected MRF representation of contextual relationships. Colored nodes represent four object categories, and black nodes represent the

room layout. (ii) A directed graphical representation of cascaded classification, where the first-stage detectors are hidden variables (dashed)

that model contextual relationships among object and layout hypotheses (solid). Marginalizing the hidden nodes recovers the undirected

MRF. (iii) First-stage detections independently computed for each category as in Sec. 3. (iv) Second-stage detections (Sec. 4) efficiently

computed using our directed representation of context, and capturing contextual relationships between objects and the overall scene layout.

This can be interpreted as a directed graphical model with

hidden variables. Marginalizing the first-stage variables re-

covers a standard, fully-connected undirected graph. Cru-

cially however, the cascaded representation is far more effi-

cient: training decomposes into independent learning prob-

lems for each node (object category), and optimal test clas-

sification is possible via a rapid sequence of local decisions.

Contextual Features For an overlapping pair of detected

bounding boxes Bi and Bj , we denote their volumes

as V (Bi) and V (Bj), their volume of their overlap as

O(Bi, Bj), and the volume of their union asU(Bi, Bj). We

characterize their geometric relationship via three features:

S1(i, j) =
O(Bi,Bj)
V (Bi)

, S2(i, j) =
O(Bi,Bj)
V (Bj)

, and the IOU

S3(i, j) =
O(Bi,Bj)
U(Bi,Bj)

. To model object-layout context [25],

we compute the distanceD(Bi,M) and angleA(Bi,M) of

cuboid Bi to the closest wall in layout M .

The first-stage detectors provide a most-probable layout

hypothesis, as well as a set of detections (following non-

maximum suppression) for each category. For a bounding

box Bi with confidence score zi, there may be several over-

lapping bounding boxes of categories c ∈ {1, . . . , C}. Let-

ting ic be the instance of category c with maximum confi-

dence zic , features  i for bounding box Bi are created via

a quadratic function of zi, S1:3(i, ic), A(Bi,M), and a ra-

dial basis expansion of D(Bi,M). Relationships between

second-stage layout candidates and object cuboids are mod-

eled similarly. See the supplemental material for details.

Contextual Learning Due to the directed graphical struc-

ture of the cascade, each second-stage detector may be

learned independently. The objective is simple binary clas-

sification: is the candidate detection a true positive, or a

false positive? During training, each detected bounding box

for each class is marked as “true” if its intersection-over-

union score to a ground truth instance is greater than 0.25,

and is the largest among those detections. We train a stan-

dard binary SVM with a radial basis function (RBF) kernel

K(Bi, Bj) = exp
(

−γ|| i −  j ||
2
)

. (3)

The bandwidth parameter γ is chosen using validation data.

While we use a RBF kernel for all reported experiments, the

performance of a linear SVM is only slightly worse, and

cascaded classification still provides useful performance

gains for that more scalable training objective.

To train the second-stage layout predictor (the bottom

node in Fig. 4), we combine the object-layout features with

the Manhattan voxel features from Sec. 2.3, and again use

S-SVM training to optimize the free-space IOU.

Contextual Prediction During testing, given the set of

cuboids found in the first-stage sliding-window search, we

apply the second-stage cascaded classifier to each cuboid

Bi to get a new contextual confidence score z0i. The over-

all confidence score used for precision-recall evaluation is

then zi + z0i, to account for both the original belief from

the geometric and COG features and the correcting power

of contextual cues. The second-stage layout prediction is

directly provided by the second-stage S-SVM classifier.

5. Experiments

We test our cascaded model on the SUN RGB-D

dataset [35] and compare with the state-of-the-art sliding

shape [36] cuboid detector, and the baseline layout predic-

tor from [35]. The older NYU Depth dataset [34] is a subset

of SUN RGB-D, but SUN RGB-D has improved annota-

tions and many new images. Since unlike prior work we do

not use CAD models, we easily learn and evaluate RGB-

D appearance models of 10 object categories, five more

than [36]. Object cuboid and 3D layout hypotheses are gen-

erated and evaluated as described in previous sections.

We evaluate detection performance via the intersection-

over-union with ground-truth cuboid annotations, and con-

sider the predicted box to be correct when the score is above

0.25. To evaluate the layout prediction performance, we

calculate the free space intersection-over-union with human

annotations. We provide several comparisons to demon-

strate the effectiveness of our scene understanding system,

and the importance of both appearance and context features.
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Sliding-Shape [36] 42.95 19.66 20.60 28.21 60.89 - - - - -

Geom 8.29 15.06 26.20 24.53 1.15 - - - - -

Geom+COG 52.98 28.64 42.16 45.14 43.00 28.17 7.93 14.25 12.83 47.69

Geom+COG+Context-5 58.72 44.04 42.50 54.81 63.19 - - - - -

Geom+COG+Context-10 61.29 48.68 49.80 59.03 66.31 44.58 12.97 25.14 30.05 56.78

Geom+COG+Context-10+Layout 63.67 51.29 51.02 62.17 70.07 45.19 15.47 27.36 31.80 58.26

Table 1. Average precision scores for all object categories, from left to right: bed, table, sofa, chair, toilet, desk, dresser, night-stand,

bookshelf, bathtub. Notice that using COG features without second-stage context already outperforms [36], training a second stage classifier

with more contextual categories and room layout further boosts performance, and that [36] cannot model categories without CAD models.

Sliding-Shape 

!!!!!!

Geom Geom + HOG Geom+COG Geom+COG(SVM) 
Geom+COG+Context-5 Geom+COG+Context-10   Geom+COG+Context-10+Layout 
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Figure 5. Precision-recall curves for 3D cuboid detection of the 5 object categories considered by [36] (top), and 5 additional categories

(bottom). For the first 5 categories, we also test the importance of various features, and the gains from modeling context. See legend at top.

Bed Table Sofa Chair Toilet

Desk Dresser Nightstand Bookshelf Bathtub

Figure 6. Visualization of the learned 3D COG features for all 10 categories. Reference orientation bins with larger weights are darker, and

the 3D visualization is similar to each category’s appearance. Cuboid sizes are set to the median of all training instances.
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Figure 7. Comparison of our Manhattan voxel 3D layout predic-

tions (blue) to the SUN RGB-D baseline ([35], green) and the

ground truth annotations (red). Our learning-based approach is

less sensitive to outliers and degrades gracefully in cases where

the true scene structure violates the Manhattan world assumption.

The Importance of Appearance We trained our detector

with geometric features only (Geom), and with the COG

feature added (Geom+COG). There is a very clear improve-

ment in detection accuracy for all object categories (see Ta-

ble 1 and precision-recall curves in Fig. 5). Object detectors

based solely on noisy point clouds are imperfect, and the

RGB image contains complementary information.

HOG versus COG To demonstrate the effectiveness of

the COG feature, we also use naı̈ve 2D bins to extract

HOG features for each 3D cuboid and train a detector

(Geom+HOG). Since fixed 2D bins do not align with

changes in 3D object pose, this feature is less informative,

and detection performance is much worse than when using

COG bins corrected for perspective projection.

We visualize the learned COG features for different cat-

egories in Fig. 6. We can see many descriptive appearance

cues such as the oriented exterior boundaries of each object,

and hollow regions for sofa, chair, toilet, and bathtub.

Cubical Voxels versus Manhattan Voxels We use the

free-space IOU [35] to evaluate the performance of lay-

out prediction algorithms. Using standard cubical voxels,

our performance (72.33) is similar to the heuristic SUN

RGB-D baseline (73.4, [35]). Combining Manhattan voxels

with structured learning, performance increases to 78.96,

demonstrating the effectiveness of this improved discretiza-

tion. Furthermore, if we also incorporate contextual cues

from detected objects, the score improves to 80.23. We pro-

vide some layout prediction examples in Fig. 7.

The Importance of Context To show that the cascaded

classifier helps to prune false positives, we evaluate de-

tections using the confidence scores from the first-stage

classifier, as well as the updated confidence scores from

Pg Rg Rr IoU
Sliding-Shape+Plane-Fitting [35] 37.8 32.3 23.7 66.0
COG+Manhattan Voxel+Context 47.3 36.8 35.8 72.0

Table 2. Evaluation of total scene understanding [35]. We choose

a threshold for object confidence scores that maximizes Pg , and

compute all other metrics. Our highly accurate object and layout

predictions also lead to improved overall scene interpretations.

the second-stage classifier (Geom+COG+Context-5). As

shown in Table 1 and Fig. 5, adding a contextual cas-

cade clearly boosts performance. Furthermore, when more

object categories are modeled (Geom+COG+Context-10),

performance increases further. This result demonstrates that

even if a small number of objects are of primary interest,

building models of the broader scene can be very beneficial.

We show some representative detection results in Fig. 8.

In the first image our chair detector is confused and fires on

part of the sofa, but with the help of contextual cues of other

detected bounding boxes, these false positives are pruned

away. For a fixed threshold across all object categories, we

have as many true detections as the sliding-shape baseline

while producing fewer false positives.

Total Scene Understanding By capturing contextual re-

lationships between pairs of objects, and between objects

and the overall 3D room layout, our cascaded classifier

enables us to perform the task of total scene understand-

ing [35]. We generate a single global scene hypothesis by

applying the same threshold (tuned on validation data) to

all second-stage object proposals, and choose the highest-

scoring layout prediction. We report the precision, recall,

and IOU evaluation metrics defined by [35] in Table 2. In

every case, we show clear improvements over baselines.

Computation Speed Our algorithm, implemented in

MATLAB, spends most of its running time on feature com-

putation. For a typical indoor image, our algorithm will

spend 10 to 30 minutes to compute features for one object

category and Manhattan Voxel discretization, and 2 seconds

to predict 3D cuboids and layout hypotheses. This speed

could be dramatically improved in various ways, such as

exploiting integral images for feature computation [36] or

using GPU hardware for parallelization.

6. Conclusion

We propose an algorithm for 3D cuboid detection and

Manhattan room layout prediction from RGB-D images.

Using our novel COG descriptor of 3D appearance, we

trained accurate 3D cuboid detectors for ten object cate-

gories, as well as a cascaded classifier that learns contextual

cues to prune false positives. Our scene representations are

learned directly from RGB-D data without external CAD

models, and may be generalized to many other categories.
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Figure 8. Detections with confidence scores larger than the same threshold for each algorithm. Notice that using contextual information

helps prune away false positives and preserves true positives.
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