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Abstract

Estimating the shape of transparent and refractive ob-

jects is one of the few open problems in 3D reconstruction.

Under the assumption that the rays refract only twice when

traveling through the object, we present the first approach

to simultaneously reconstructing the 3D positions and nor-

mals of the object’s surface at both refraction locations.

Our acquisition setup requires only two cameras and one

monitor, which serves as the light source. After acquiring

the ray-ray correspondences between each camera and the

monitor, we solve an optimization function which enforces

a new position-normal consistency constraint. That is, the

3D positions of surface points shall agree with the normals

required to refract the rays under Snell’s law. Experimental

results using both synthetic and real data demonstrate the

robustness and accuracy of the proposed approach.

1. Introduction

3D reconstruction of real objects is an important topic

in both computer vision and graphics. Many techniques

have been proposed for capturing the shapes of opaque ob-

jects using either active [36] or passive [5] manners. How-

ever, accurately reconstructing transparent objects, made of

glass and crystal, remains an open and challenging prob-

lem. The difficulties are caused by several factors. Firstly,

these objects do not have their own colors but acquire their

appearances from surrounding diffuse objects. Hence, con-

ventional color/texture matching based approaches cannot

be applied. Secondly, transparent objects interact with light

in complex manners including reflection, refraction, scat-

tering and absorption. Tracing the poly-linear light paths

is very difficult, if not impossible. Thirdly, the behavior of

refraction depends on the object’s refractive index, which is

usually unknown.

Previous approaches of 3D transparent object recon-

struction can be roughly classified into three groups [17,

18]: reflection-based, refraction-based, and intrusive meth-

ods. The first group attempts to reconstruct the objects

by utilizing the specular highlights on the object surface

[21, 25]. By analyzing only the surface reflection prop-

erties, such approaches can reconstruct transparent objects

with complex and inhomogeneous interior. However, un-

like opaque objects, only a small amount of light is re-

flected from the transparent object’s surface. To measure

the weak reflection, precise controlling and adjusting the

light positions are usually required. The second group ex-

ploits the refraction characteristics of transparent objects.

Many methods simplify the problem by considering only

one-refraction events, either assuming that the surface fac-

ing away from the camera is planar [29] or that the object

is thin [34]. As well, the refractive index is required to be

known for surface normal estimation. Although the prob-

lem of two-refraction events has been investigated theoret-

ically [20], the setup requires high precision movements of

both the object and the light source, making the approach

hard to use and the results difficult, if not impossible, to re-

produce. Finally, intrusive methods either rely on special

devices (e.g. light field probes [34], diffuse coating [12])

or by immersing the object in special liquids [14, 15, 31],

which are often impractical and may even damage the ob-

jects. Hence, there is a need for a practical approach that can

accurately reconstruct transparent objects using a portable

setup.

This paper presents a new refraction-based approach for

reconstructing homogeneous transparent objects, through

which light is redirected twice. As is commonly done, inter-

reflections within the object are assumed to be negligible.

By introducing a novel position-normal consistency con-

straint, an optimization procedure is designed, which jointly

reconstructs the 3D positions and normals at two refraction

locations. The refractive index of the object can also be re-

liably estimated by minimizing a new reconstruction error

metric. Further, our acquisition setup is simple and inex-

pensive, which consists of two cameras and one monitor,

all of which do not require precise positioning.

2. Related Work

Although the problems of reconstructing dynamic wave-

fronts [9, 24] and gas flows [4, 19, 22] are also related to

our work, here we focus our review on recent works for

14369



static reflective and refractive surfaces, for which our ap-

proach is designed. In addition, since our approach is non-

intrusive, the intrusive ones [10, 16, 31] are not discussed

here. Readers are referred to the comprehensive surveys of

the field [17, 18].

Shape from reflection based methods utilize the specu-

lar property of the surface. Such methods bypass the com-

plex interactions of light with the object as it travels through

the object by acquiring the linear reflectance field. Hence,

inhomogeneous transparent objects can be reconstructed.

Tarini et al. [30] acquire light reflections of mirror object

against a number of known background patterns and then

alternately optimize the depths and normals from reflective

distortions. Morris and Kutulakos [25] reconstruct com-

plex inhomogeneous objects by capturing exterior specular

highlights on the object surface. Their approach requires

delicate movements of light sources and imprecise move-

ments often introduce errors to the results. Yeung et al.

[38] introduce a low-cost solution by analyzing specular

highlights, which can only obtain the normal map of an

object. Recently, Liu et al. [21] apply a frequency-based

approach to establish accurate reflective correspondences,

but only sparse 3D points are obtained. A common issue of

the above reflection-based approaches is that the reflectance

field is often corrupted by the indirect light transport within

the object and various constraints are proposed to tackle it.

Refraction-based reconstruction methods rely on the

refracted light, which is stronger than the reflected light for

truly transparent objects and conveys unique characteristics

of the objects. Many works [2, 9, 24, 26] mainly focus on

reconstructing water surfaces. Typically, a known pattern

is placed beneath a water tank and an optical flow algo-

rithm is applied to obtain the correspondences between the

camera pixels and the contributing points from the pattern.

Pixel-point correspondence based approaches are known to

have ambiguities: the 3D object point can be located at any

position along the ray that corresponds to an object pixel.

Hence, 3D reconstruction is usually performed with an op-

timization procedure and additional constraints are often re-

quired to resolve ambiguities [24, 26]. However, the accu-

racy of optical flow tracking often affects the reconstruction

results.

Ben-Ezra and Nayar [6] develop a structure-from-motion

based method for reconstructing the full 3D model of a

transparent object, where the object is assumed to have a

known parametric form. Wetzstein et al. [34] acquire the

correspondences between the incident and exit rays, i.e. ray-

ray correspondences, from a single image using light field

probes and compute refraction positions through triangula-

tion. However, their method assumes that the incident light

is redirected once and thus, can only work for thin objects.

Similarly, several methods [23, 29, 32] simplify the prob-

lem by focusing on only one-refraction events. In particu-

lar, they either assume that part of the surface information

(e.g. normal) is known or that one of the refraction surfaces

is known.

Kutulakos and Steger [20] categorize the refraction-

based approaches based on the number of reflections or re-

fractions involved, and discuss the feasibility of reconstruc-

tion of different cases. They show that at least three views

are required to reconstruct a solid object where light is redi-

rected twice. Our approach also handles two-refraction

cases, but differs from theirs in the following aspects: i)

Their approach triangulates individual light paths separately

to reconstruct the corresponding surface points, whereas we

use an optimization procedure to solve all points in con-

junction; ii) our approach reconstructs both refraction sur-

faces, whereas theirs only deals with a single surface; iii) we

simultaneously recover both the 3D positions and normals

of the refraction surface, whereas their approach computes

the surface normals based on Snell’s law in post-processing,

which may not be consistent with the local shape; iv) we use

only two cameras for data acquisition, while they use five,

leading to more data to be captured; and v) precise object

rotation and monitor translation are required in their setup

and hence, applying their technique can be difficult. In con-

trast, our approach does not require precise positioning of

the monitor, while the object is fixed during acquisition.

In addition, there are a number of other works on imag-

ing under refraction that are worthy to mention but are out-

side the scope of this paper. For example, environment mat-

ting [8, 35, 41] aims to composite transparent objects into

new background. Underwater imaging [3] studies recover-

ing undistorted scenes from a sequence of distorted images.

The aperture problem [37] reveals the refractive motion of

transparent elements.

3. Proposed Approach

3.1. Acquisition Setup and Procedure

Our approach requires the acquisition of ray-ray corre-

spondences before and after refraction. That is, for each

observed ray refracted by the transparent object, we like to

know the corresponding incident ray. As shown in Fig. 1,

we use an LED monitor as the light source. Through dis-

playing predesigned patterns on the monitor, the location

of the emitting source for each captured ray can be found

at pixel level accuracy. Adjusting the monitor location and

repeating the process gives us two positions of the incident

ray and hence, the ray direction can be determined. The

same procedure is performed for the second camera, which

observes the object in the opposite side of the first one.

Fig. 2 further illustrates the acquisition process in 2D.

Two cameras are placed on the opposite sides of the object

with their positions fixed during acquisition. For simplicity,

we here refer the object surfaces on these two sides as the
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Figure 1. Our data acquisition setup, where two cameras roughly

face each other. Camera 1 is capturing data in this photo. Once

Camera 1 is done, the monitor is moved to the other side of the

object to serve as the light source for Camera 2.

front and back surfaces, respectively. We first use Camera

1 to capture the front surface with the monitor positioned at

plane m1. The environment matting (EM) algorithm [27]

is applied to locate the contributing sources pi on the mon-

itor at pixel accuracy, which is achieved by projecting a set

of frequency-based patterns. The monitor is then moved

to plane m′
1 and the EM method is repeated. Connecting

point pi and p′i gives us the incident ray direction
★✥✥✥✔

dini for

the light source. The corresponding exit ray direction
★✥✥✥✥✥✔

douti

is obtained from the intrinsic camera matrix, which is cali-

brated beforehand. We then capture the back surface using

Camera 2 in a similar fashion with the monitor positioned

at plane m2 and m′
2.

Please note that precise monitor movement is not re-

quired in our setup. The monitor can be moved by any

distance and its position can be easily calibrated by dis-

playing a checkerboard patten [39]. It is noteworthy that

instead of determining the incident ray using two monitor

locations, light field probes [33] can also be used. However,

we choose the monitor approach for two reasons: i) The

light source locations can be determined at pixel-level ac-

curacy and, ii) by displaying pattens with a primary color,

our approach is robust to dispersion effects, whereas ap-

proaches relying on color-calibration are not.

So far, we have obtained the ray-ray correspondences

w.r.t. the front and back surfaces using two cameras. In

the subsections below, we present a novel reconstruction

scheme that solves the following problem: Given the dense

ray-ray correspondences (p,
★✥✥✥✔

din) ⇔ (c,
★✥✥✥✥✥✔

dout) of two cam-

eras, how to compute the 3D positions and normals of the

front and back surface points?

3.2. PositionNormal Consistency

The seminal work [20] has shown that three or more

views are required to reconstruct a single surface where the

light path is redirected twice. Here we show that, by assum-

ing the object surface is piecewise smooth, we can solve

Camera 1 
Camera 2 
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Figure 2. Our acquisition setup using a pair of cameras and one

monitor as light source. Note that the monitor is moved to different

positions during acquisition.

both the front and back surfaces using data captured from

only two cameras. The key idea is that, for each recon-

structed 3D surface point, its normal estimated based on its

neighboring points should agree with the normal required

for generating the observed light refraction effect.

We first explain how to measure position-normal consis-

tency error for a given shape hypothesis. Here the object

shape is represented using depth maps of the front and back

surfaces, where the depth of a surface point is measured as

its distance to the camera center along the camera’s opti-

cal axis. Taking Camera 1 for example, as shown in Fig. 2,

given a ray-ray correspondence (pi,
★✥✥✥✔

dini ) ⇔ (c1,
★✥✥✥✥✥✔

douti ) from

Camera 1, the locations at which the incident ray (pi,
★✥✥✥✔

dini )

and the exit ray (c1,
★✥✥✥✥✥✔

douti ) meet the object are denoted as

bi and fi, respectively. fi can be computed from the cor-

responding depth map and how to compute bi is discussed

in Sec. 3.2.2. Connecting bi and fi gives us a hypothesis

path that the ray travels through while inside the object.

Hence, based on Snell’s law, we can compute the normal at

fi, which is referred as the Snell normal. Furthermore, us-

ing the 3D locations of nearby points of fi, we can also esti-

mate the normal of fi using Principal Component Analysis

(PCA) [28], which is referred as the PCA normal. Ideally,

the PCA normal and the Snell normal for the same point

are the same. Hence, for the ith ray-ray correspondence, its

position-normal consistency error is measured as:

Epnc(i) = 1− |P (i) · S(i)|, (1)

where P (i) (or S(i)) computes the PCA (or Snell) normal

at the 3D location where the exit ray (c,
★✥✥✥✥✥✔

douti ) leaves the

object. Note that the same definition also applied to ray-ray

correspondences found by Camera 2.

In addition, based on the assumption that the object sur-

face is piecewise smooth, we also want to minimize the

depth variation in each depth map D. Hence, the second

error term is defined as:

Eso(D) =
∑

s∈D

∑

t∈N (s)

(D(s)−D(t))2, (2)
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where N (s) denotes the local neighborhood of pixel s in a

given depth map D.

Combining both terms and summing over both front and

back surfaces gives us the objective function:

min
Df ,Db

(

∑

i∈Ω

Epnc(i) + λ
(

Eso(Df ) + Eso(Db)
)

)

, (3)

where Df and Db are the depth maps for the front and the

back surfaces, respectively, and Ω is the set containing all

the ray-ray correspondences found by both cameras. Hence,

Eq.(3) optimizes all the points in both depth maps at the

same time using all available correspondence information.

λ is a parameter balancing Epnc and Eso.

In the following subsections, we present how to com-

pute the PCA and the Snell normals under the depth map

hypotheses Df and Db. We use the front surface observed

by Camera 1 to illustrate our approach, and the back surface

is processed in the same fashion.

3.2.1 Normals from Positions by PCA

Given the positions of 3D points, previous work [28] has

shown that the normal of each point can be estimated by

performing a PCA operation, i.e., analyzing the eigenval-

ues and eigenvectors of a covariance matrix assembled from

neighboring points of the query point. Specifically, the co-

variance matrix C is constructed as follows:

C =
1

|N (i)|

∑

j∈N (i)

(fj − fi)(fj − fi)
T . (4)

In our implementation, we use a 5×5 neighborhood of each

pixel. The PCA normal is therefore the eigenvector of C
with the minimal eigenvalue.

3.2.2 Normals by Snell’s Law

As shown in Fig. 2, to obtain the Snell normal of fi, the

refractive index of the object, the interior ray path
★✥✥✥✥✔

bifi and

the exit ray
★✥✥✥✥✥✔

fic1 =
★✥✥✥✥✥✔

douti are required. Here the refractive

index is assumed to be known (how to handle objects with

unknown refractive index will be discussed in Sec. 3.3).

Since the front point position fi is given, the interior ray

direction
★✥✥✥✥✔

bifi can be obtained by locating the corresponding

back point bi. Note that bi is observed by Camera 2 and

on the line (pi,
★✥✥✥✔

dini ). Hence, the problem of estimating the

Snell normal of fi is reduced to the problem of locating

the first-order intersection between the back surface and the

line (pi,
★✥✥✥✔

dini ). A similar problem has been studied in image-

based rendering, where the closest intersection between a

ray and a disparity map needs to be computed. Here we

apply the solution proposed in [13], which converts the 3D

intersection calculation problem into a problem of finding

the zero crossing of a distance function.

After getting bi, Snell’s law is applied to estimate the

Snell normal S1(i) for fi. Denote η1 and η2 as the refractive

index of air and the object, respectively, we have η1 sin θ1 =
η2 sin θ2, where θ1 and θ2 are the angles between the normal

and each of the light paths, as shown in Fig. 2. Let ∆θ =
θ1 − θ2 = cos−1(

★✥✥✥✥✥✔

fic1 ·
★✥✥✥✥✔

bifi), we have:

θ1 = tan−1

(

η sin∆θ

η cos∆θ − 1

)

, (5)

where η = η2/η1 is the relative index of refraction. The

Snell normal is obtained by rotating
★✥✥✥✥✥✔

fic1 by angle θ1 on the

plane spanned by
★✥✥✥✥✥✔

fic1 and
★✥✥✥✥✔

bifi, that is:

S1(i) = R(θ1,
★✥✥✥✥✥✔

fic1 ×
★✥✥✥✥✔

bifi)
★✥✥✥✥✥✔

fic1, (6)

where R(θ, ★✔v ) is the Rodrigues rotation matrix defined by

θ and the rotation axis ★✔v .

3.3. Optimize Depth Maps and Refractive Index

The aforementioned procedure returns the position-

normal consistent model under a given refractive index hy-

pothesis. For objects with unknown refractive indices, ad-

ditional work needs to be done to estimate the proper index

values. Similar to previous approaches [24, 29], our strat-

egy here is to enumerate different refractive index values,

evaluate the resulting models, and pick the best solution.

However, unlike [24, 29], where the objective function to

be optimized is directly used for evaluating the model qual-

ity, here a different reconstruction error metric is used.

As shown in Fig. 2, a given point bi on the object

surface may be involved in the ray-ray correspondence

(pi,
★✥✥✥✔

dini ) ⇔ (c1,
★✥✥✥✥✥✔

douti ) from Camera 1 and the correspon-

dence (pj ,
★✥✥✥✔

dinj ) ⇔ (c2,
★✥✥✥✥✥✔

doutj ) from Camera 2. In the first

ray path, bi is the location where the incident ray enters

the object, whereas in the second ray path, bi is the loca-

tion where the exit ray leaves. Two Snell normals can be

computed from the two ray paths. Since the two Snell nor-

mals should be the same under the ground-truth model and

the true refractive index value, their difference is a good

measure of the reconstruction result. Hence, we define the

reconstruction error for model D as:

RE(D) =
∑

s∈Ψ

(1− |Sb(s) · Sf (s)|) , (7)

where Sf (s) and Sb(s) refer to the Snell normals computed

using rays entering and exiting location s, respectively. Ψ
is a set containing all locations on object surface that are

involved in two ray-ray correspondences. It is worth not-

ing that Eq.(3) only uses Snell normals computed using exit

rays. Hence, Eq.(7) evaluate different errors as the objective

function does.

Following [29], a coarse-to-fine optimization scheme is

used for searching both the optimal refractive index and the
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optimal depth maps. In our implementation, we first down-

sample the obtained correspondences to 1/4 of the original

resolution, enumerate the refractive index in the range of

[1.2, 2.0] with increments of 0.05, and compute the optimal

shape under each index value by minimizing Eq.(3). The

relative index with the minimal reconstruction error as de-

fined in Eq.(7) is then selected to compute the final model

using the full resolution ray-ray correspondences.

Optimizing Eq.(3) is difficult because of the complex op-

erations involved in the PCA and Snell normal computa-

tions. To avoid trivial local minima, we place a checker-

board in front of the front surface and the back surface,

respectively. By calibrating the checkerboards, the depth

searching ranges for Df and Db are obtained. Now Eq.(3)

becomes a bounded constrained problem. We use the L-

BFGS-B method [40] to solve Eq.(3) with numerical differ-

entiation applied.

4. Experiments

The presented algorithm is tested on both synthetic and

real data. The factor λ is fixed at 50 units in the synthetic

data and 0.005 mm in the real experiments. Since the PCA

and Snell normal calculations for different pixels can be in-

dependently performed, they are computed in parallel. We

implemented our parallel algorithm in MATLAB R2014b.

Running on an 8-core PC with 3.4GHz Intel Core i7 CPU

and 24GB RAM, the processing time needed for the models

shown below varies between 1-2 hours.

4.1. Synthetic Object

We start with validating our approach on a synthetic

sphere, where the ray-ray correspondences are generated by

a ray-tracer. Specifically, the sphere is centered at (0, 0, 2)
with radius = 0.2. Two cameras are placed at (0, 0, 0) and

(0, 0, 4). One observes the front surface and the other the

back surface. By tracing along the poly-linear light paths,

we can mathematically compute both the ground-truth po-

sitions and normals of the front and back surface points.

To evaluate the accuracy and robustness of our approach

under different levels of data acquisition noise, we add zero-

mean Gaussian noise to the obtained ray-ray correspon-

dences. That is, for a given observed ray (c,
★✥✥✥✥✥✔

dout), the corre-

sponding light source locations under two monitor settings,

p and p′, are both corrupted with noise of standard devia-

tion σ (σ ≤ 10 pixels). The cameras are assumed to be

calibrated, i.e., their locations, orientations and internal pa-

rameters are not corrupted. We evaluate the reconstruction

accuracy using three measures: the root mean square er-

ror (RMSE) between the ground-truth depths and the esti-

mated ones, the average angular difference (AAD) between

the true normals and the reconstructed PCA normals, and

the AAD between the true and the computed Snell normals.

As shown in Fig. 3, our approach achieves high accuracy on

both position and normal estimation and is robust to varying

noise level. Fig. 4 visually compares the ground truth and

the reconstructed results.

In addition to simultaneously reconstructing the 3D po-

sitions and normals, our approach can estimate the refrac-

tive index of the object. Here we evaluate the stability of

refractive index estimation. By assigning different relative

indices η, we capture the ray-ray correspondences using our

ray-tracer. Then Gaussian noise with σ = 5 is added. Fig.

5 shows the variation of reconstruction error Eq.(7) with

hypothesized refractive index. It shows that the index that

corresponds to the minimum of the reconstruction error is

close to the true index. This means that the proposed er-

ror term Eq.(7) can effectively estimate the refractive index.

In comparison, directly using the objective function Eq.(3)

cannot estimate the refractive index well.

4.2. Real Refractive Objects

Three transparent objects, a Swarovski ornament, a glass

ball and a green bird, are used for evaluating the proposed

approach on real captured data. The “ornament” and “ball”

objects have apparent dispersion effects. To properly handle

that, we use two Point Grey Blackfly monochromatic cam-

eras so that artifacts of the Bayer mosaic can be avoided.

An LG IPS monitor is used to display frequency-based pat-

terns using a single color channel [27] with a resolution of

1024× 1024. Calibration between the two cameras is chal-

lenging because they are facing each other (see Fig. 1). To

address this difficulty, we place an additional camera be-

tween them and conduct pairwise camera calibrations. Af-

ter calibration, the third camera is removed.

As shown in Table 1, the ornament and the glass ball

each have many planar facets on its surfaces, resulting in

complex light-object interaction and normal discontinuities.

Fig. 6 shows our reconstruction results including the point

clouds and depth maps, which are visually encouraging for

both objects. More importantly, since our approach jointly

optimizes the 3D positions and normals, the reconstructed

normals are reconciled with the estimated point clouds.

Following [14, 20], to quantitatively assess the recon-

struction accuracy, we manually label several facets shown

in Table 1. For each facet, we fit a plane using the RANSAC

algorithm [11]. Two measures are used to evaluate each

facet: the AAD between the reconstructed normals and the

fitted plane normal, as well as the mean distance error from

the estimated 3D points to the plane. The quantitative mea-

surements in Table 1 imply that the reconstructed normals

and positions within each planar facet are consistent. This

suggests that our approach can accurately reconstruct the

piecewise planar structure without any prior knowledge of

the shapes or parametric form assumptions.

Fig. 7 shows the reconstruction results of the bird. The

model contains three largely separated parts. To avoid the
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Figure 3. Reconstruction accuracy for the front surface as a function of Gaussian noise level on the synthetic sphere under different

refractive indices. The plots for the back surface are similar due to the symmetric setup. 50 trials are performed under each setting.

(a) Ground Truth (b) Ours with noise σ = 5

Figure 4. Visual comparisons between the ground truth and our result for the synthetic sphere. In each case, we show the point cloud for

the front surface colored with the corresponding PCA normal map, as well as the depth map. The Snell normals are not shown here since

they are similar to the PCA normals. Please see the supplemental materials [1] for the results of back surfaces and under other noise levels.
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Figure 8. Refractive index estimation for the “ornament” (left) and

“ball” (right) object. Blue curves plot the proposed reconstruction

error term as a function of hypothesized refractive index. Green

curves plot the corresponding objective function. The minimum

of the blue curve is marked in red. Please see the supplemental

materials [1] for the curves of the “bird” object.

inter-reflections between the three parts, we use tapes to

block lights from the two smaller birds on the side when

capturing the data. Our results successfully captures the

front and back shape of the bird in the center. Note that

since the bird only transmit green light, approaches relying

on light field probes won’t work.

Fig. 8 shows the reconstruction error Eq.(7) under dif-

ferent hypothesized refractive indices. The estimated re-

fractive index for “ornament” is 1.65, which agrees with

the available report1 stating that the refractive index of

Swarovski crystal is between 1.5 and 1.7.

1http://www.crystalandglassbeads.com/blog/2012/

diamonds-cubic-zirconia-swarovski-whats-the-difference.html

5. Conclusions and Limitations

We have presented a refraction-based approach for re-

constructing transparent objects. We first develop a sim-

ple acquisition setup which uses a pair of cameras and one

monitor. Compared to existing methods, our system is non-

intrusive, and requires no special devices or precise light

source movement. By introducing a novel position-normal

consistency constraint, we propose an optimization frame-

work which can simultaneously reconstruct the 3D posi-

tions and normals of both the front and back surfaces. Note

that many existing methods can only reconstruct either the

depth or the normal of a single surface. In addition, we

show that it is possible to estimate the refractive index of

transparent objects using only two views.

Our approach works under the following assumptions: i)

the object is solid and homogeneous, ii) the light path be-

tween the source and the camera goes through two refrac-

tions, and iii) the object surface is smooth enough so that

surface normals can be reliably estimated using available

sample points. Note that these assumptions are commonly

used by refraction-based methods [20, 32]. Moreover, our

acquisition is simple and inexpensive, but at the cost of cap-

turing thousands of images since the ray-light source cor-

respondences are required at each of the four monitor po-

sitions. As discussed above, replacing the monitor with

light field probes [33] helps to reduce the number of im-

ages needed, but at the expense of loosing sampling density
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Figure 5. Refractive index estimation for the synthetic sphere. Blue curves plot the reconstruction error Eq.(7) as a function of hypothesized

refractive index. Red curves plot the corresponding objective function Eq.(3). Ground-truth indices are shown with vertical lines.

Facet 1 2 3 4 5 6

(a)

 

Mean positional error (mm) 0.13 0.15 0.14 0.13 0.21 0.18
AAD of PCA normals (degree) 3.28 5.10 4.77 3.32 6.50 5.10
AAD of Snell normals (degree) 4.27 6.07 5.63 3.93 7.12 6.02
RANSAC position inliers (%) 50.94 40.16 41.18 49.32 39.21 44.67

(b)

 

Mean positional error (mm) 0.13 0.11 0.13 0.12 0.15 0.15
AAD of PCA normals (degree) 3.83 3.10 3.70 2.63 5.47 5.34
AAD of Snell normals (degree) 4.52 4.08 4.72 3.42 6.21 6.09
RANSAC position inliers (%) 45.13 52.88 45.29 57.64 43.95 39.66

(c)

 

3
 

Mean positional error (mm) 0.17 0.21 0.15 0.12 0.13 0.21
AAD of PCA normals (degree) 6.26 7.08 5.85 3.02 3.86 7.69
AAD of Snell normals (degree) 6.86 6.76 6.43 3.88 4.82 7.22
RANSAC position inliers (%) 36.29 41.62 37.37 50.10 44.52 38.58

(d)

 

Mean positional error (mm) 0.18 0.18 0.12 0.07 0.06 0.07
AAD of PCA normals (degree) 6.36 5.37 3.31 1.90 1.71 1.75
AAD of Snell normals (degree) 7.01 6.09 4.30 2.99 2.85 2.60
RANSAC position inliers (%) 37.41 40.77 48.60 69.10 77.23 70.12

Table 1. Reconstruction errors of the “ornament” and “ball” objects. Several planar facets are manually labeled as shown in the images

above. Each facet is fitted using RANSAC with the inlier threshold of 0.1mm. (a) and (b) show the results of the front and back surfaces

of the ornament, respectively. (c) and (d) show the results of the front and back surfaces of the ball, respectively.

Figure 9. A failure case for a piece of myopia glass. The left im-

age shows the top view of the object, whereas the right shows the

reconstructed point cloud colored with PCA normals.

and not being able to handle colored objects. It is also note-

worthy that the radiometric cues proposed in [7] may be

incorporated to eliminate the monitor movements.

Essentially, our approach searches for a smooth surface

that can best explain the observed ray-ray correspondences

in terms of position-normal consistency. It implicitly as-

sumes that there is only one feasible explanation for the

observed correspondences. This assumption may not hold

when the object is thin, in which case the refraction effects

are mostly affected by the object thickness, rather than its

shape. Hence, even though the reconstructed shape satisfies

the position-normal consistency, it may not depict the real

object shape. Fig. 9 shows such a failure case.

Although only two cameras are used in our experiments,

the proposed optimization procedure Eq.(3) can be ex-

tended to more than two views so that different cameras

can fully cover the transparent objects. How to compute

the PCA and Snell normals under such settings certainly

deserves further investigation. It is noteworthy that Zuo et

al. [42] recently develop a multi-view approach for recon-

structing the full 3D shape of a transparent object, which

requires numerous user interactions.

In addition to static transparent object reconstruction,

we believe that the proposed position-normal consistency

constraint is also applicable to dynamic wavefront recon-

struction, where both the PCA and Snell normals are com-

putable. We plan to apply the constraint to this problem in

the near future as well.
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(a) Point cloud of the “ornament” object (b) Depth maps of the “ornament” object

(c) Point cloud of the “ball” object (d) Depth maps of the “ball” object

Figure 6. Reconstruction results of the “ornament” (top) and “ball” (bottom) objects; please refer to Table 1 for the photos. (a) and (c) show

the 3D point clouds colored with the PCA normals seen from three different viewpoints. Both the front and the back points are plotted in

the same coordinate. (b) and (d) show the depth maps of the front and the back surfaces. Note that some holes exist on the surface because

no ray-ray correspondences are obtained for those regions.

(a) Point cloud of the “bird” object

(b) (c) (d) (e)

Figure 7. Reconstruction results of the “bird” object. (a) shows the point cloud colored with the PCA normals seen from three viewpoints.

(b) and (c) show the depth map of the front and the back surfaces. (d) shows the top view of the object. Because the positions of the three

birds overlap, multiple refractions may happen between the camera and the light source. To avoid that, we cover the two smaller birds with

tapes as shown in (e) and only reconstruct the larger bird for illustration. Note that the obtained back surface of the head of the larger bird

is incomplete because the correspondences are not available in those complex regions.
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