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Abstract

The conventional sparse model relies on data represen-

tation in the form of vectors. It represents the vector-valued

or vectorized one dimensional (1D) version of an signal as

a highly sparse linear combination of basis atoms from a

large dictionary. The 1D modeling, though simple, ignores

the inherent structure and breaks the local correlation in-

side multidimensional (MD) signals. It also dramatically

increases the demand of memory as well as computational

resources especially when dealing with high dimensional

signals. In this paper, we propose a new sparse model

TenSR based on tensor for MD data representation along

with the corresponding MD sparse coding and MD dictio-

nary learning algorithms. The proposed TenSR model is

able to well approximate the structure in each mode inher-

ent in MD signals with a series of adaptive separable struc-

ture dictionaries via dictionary learning. The proposed MD

sparse coding algorithm by proximal method further re-

duces the computational cost significantly. Experimental

results with real world MD signals, i.e. 3D Multi-spectral

images, show the proposed TenSR greatly reduces both the

computational and memory costs with competitive perfor-

mance in comparison with the state-of-the-art sparse repre-

sentation methods. We believe our proposed TenSR model

is a promising way to empower the sparse representation

especially for large scale high order signals.

1. Introduction

In the past decade, sparse representation has been widely

used in a variety of tasks in computer vision such as image

denoising [10, 7, 22, 8], image super-resolution [37, 33, 36],

face recognition [34, 39], and pattern recognition [16, 13].

Generally speaking, a classic sparse model represents a

vector-valued signal by a linear combination of certain

atoms of an overcomplete dictionary. Higher-order signals

(e.g. images and videos) need to be dealt with primarily by

vectorizing them and applying any of the available vector

techniques [29]. Researches on the conventional one di-

mensional (1D) sparse representation include the proposal

of 1D sparse model [4, 9], sparse coding [23, 32, 3], and

dictionary learning algorithms [1, 18]. Though simple, the

1D sparse model suffers from high memory as well as high

computational costs especially when handling high dimen-

sional data since the vectorized data will be quite long and

must be measured using very large sampling matrices.

Recent research has demonstrated the advantages of

maintaining the higher-order data in their original form

[31, 26, 14, 40, 24, 29, 27, 6]. For image data, the two

dimensional (2D) sparse model is proposed to make use

of the intrinsic 2D structure and local correlations within

images and has been applied to image denoising [26] and

super-resolution [25]. The 2D dictionary learning prob-

lem is solved by the two-phase block-coordinate-relaxation

approach. Given the 2D dictionaries, the 1D sparse cod-

ing algorithms are extended to solve the 2D sparse coding

problem [12, 11] or converted to 1D problem and solved

via the kronecker product [26]. By learning 2D dictionar-

ies for images, the 2D sparse model helps to greatly reduce

the time complexity and memory cost for image process-

ing [26, 14, 25]. On the other hand, the 2D sparse model is

difficult to be extended for multidimensional (MD) sparse

modeling due to the use of 1D sparse coding method.

Tensors are also introduced in the sparse representation

of vectors to approximate the structure in each mode of MD

signals. Due to the equivalence of the constrained Tucker

model and the Kronecker representation of a tensor, the ten-

sor is assumed to be represented by separable given dic-

tionaries, known as Kronecker dictionaries, with a sparsity

constraint, such as multi-way sparsity and block sparsity

[5]. The corresponding Kroneker-OMP and N-way Block
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OMP (N-BOMP) algorithms are also presented for recovery

of MD signals with fixed dictionaries. Furthermore, dictio-

nary learning method based on tensor factorization are pro-

posed in [40], and some algorithms are presented to approx-

imate tensor based on tensor decomposition [20] or tensor

low-rank approximation [19, 28, 24]. However, to the best

of our knowledge, there is no unified framework for tensor-

based sparse representation presented in literature.

In this paper, we propose the first Tensor Sparse model

for MD signal Representation (TenSR in short) along with

the corresponding sparse coding and dictionary learning al-

gorithms. Our proposed sparse coding algorithm is a iter-

ative shrinkage thresholding method, which can be easily

implemented via the n-mode product of tensor by matrix

and element-wise thresholding. We also formulate the dic-

tionary learning problem as an optimization problem solved

via a two-phase block-coordinate-relaxation approach in-

cluding sparse coding and dictionary updating. Both dic-

tionary learning and sparse coding are without Kronecker

product so as to greatly reduce the computation burden. In

addition, the efficiency of our sparse coding can be further

improved through parallel computing. Dictionaries of every

dimension (mode) can be updated by a series of quadrati-

cally constrained quadratic programming (QCQP) problem

via Lagrange dual method. The advantages of our proposed

TenSR model as well as the sparse coding and dictionary

learning algorithms are demonstrated with the real world

3D signal processing. To summarize, this paper makes the

following contributions:

• We propose the first tensor sparse model TenSR for

MD signal representation. To the best of knowledge,

this is the first paper presenting this theory along with

the corresponding sparse coding and dictionary learn-

ing algorithms.

• We propose the novel sparse coding and dictionary

learning algorithms based on tensor operation rather

than Kronecker product, which help in not only re-

vealing structure in each mode inherent in MD signals

but also significantly reducing computational as well

as memory cost for MD signal processing.

• Our proposed TenSR model is able to empower the

sparse representation especially when dealing with

high dimensional data (e.g. 3D multi-spectral images

as demonstrated in experiments) by greatly reducing

the processing cost but meanwhile achieving compa-

rable performance with regard to the conventional 1D

sparse model.

The rest of this paper is organized as follows. Section 2

reviews the related work on sparse representation for 1D,

2D, and MD signals. Section 3 presents our MD tensor

sparse model TenSR, the corresponding MD sparse coding

and dictionary learning algorithms, followed by the com-

plexity analysis. In Section 4, we demonstrate the effective-

ness of our TenSR model by simulation experiment and 3D

multi-spectral image denoising problem. Finally, Section 5

concludes this paper.

2. Related Work

In this section, we briefly review the related work on

sparse representation towards 1D, 2D and MD signals.

1D signal (vector) The conventional 1D sparse model

represents a vector x by the linear combination of a

few atoms from a large dictionary D, denoted as x =
Db, ‖b‖0 ≤ L, where L is the sparsity of b. The com-

putational techniques for approximating sparse coefficient

b under a given dictionary D and x includes greedy pursuit

(e.g. OMP [23]) and convex relaxation optimization, such

as Lasso [32] and FISTA [3]. Rather than using fixed dic-

tionaries, dictionary learning algorithms [1, 18, 22] are also

investigated, which substantially improve the performance

of sparse representation [10, 37, 33, 36, 16]. However, the

efficiency of 1D sparse coding as well as dictionary learning

degrades rapidly as the dimensionality increases.

2D signal (matrix) A matrix X is sparse modeled by

two dictionaries D1, D2, and a sparse coefficient matrix

B, denoted as X = D1B
T
D

T
2 , ‖B‖0 ≤ L, where L is the

sparsity of B [26]. Given dictionaries D1 and D2, the 2D

sparse model can be easily converted to 1D sparse model

x = Db, ‖b‖0 ≤ L, where D = D2⊗D1. The dictionaries

D1 and D2 are learned by the two-phase block-coordinate-

relaxation approach via sparse coding and dictionary updat-

ing [26] while the sparse coding problem can be solved by

2DSL0 through steepest ascent [12] or the greedy algorithm

2D-OMP [11]. The presented 2D sparse model is able to

facilitate 2D signal processing. However,we notice that the

sparse coding and dictionary learning algorithms presented

for 2D sparse representation are not capable enough for MD

signals. On the one hand, the 2D sparse coding problem is

recast to 1D one by converting the 2D signal to a long vector

via the Kronecker product during dictionary learning [26].

On the other hand, the Riemannian conjugate gradient al-

gorithm and the manifold-based dictionary learning in [14]

are quite complex to compute for high order data.

MD signal (tensor) A tensor X can be represented by

a series of known Kroneker dictionaries {Dn}Nn=1 and

the core tensor B with the multi-way sparsity or block

sparsity constraint, denoted as the Tucker model X =
B×1D1×2D2 · · · ×NDN [5]. Given the fixed Kronecker

dictionaries ( such as DCT, DWT, and DFT), the Kroneker-

OMP and N-BOMP algorithms are also presented in [5] to

recovery MD signals possessing Kronecker structure and

block-sparsity. However, the Kronecker-OMP and N-OMP

algorithm is relatively complicated due to the Kronecker

product operation. In addition, some other algorithms are
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presented to approximate tensor based on tensor decom-

position, such as PARAFAC [20] and tensor factorization

under Tucker model [40], or tensor low-rank approxima-

tion [19], such as LRTA [30], HOSVD [28], and Tensor-

DL [24]. However, they only decompose and approximate

the tensor itself rather than model the tensor.

Different from all previous tensor-based methods, in this

paper, we not only propose the tenser sparse model for MD

signal representation, but also present the corresponding

sparse coding and dictionary learning algorithms. More-

over, since no Kronecker product is used, our proposed

scheme is much light-weighted in terms of computational

and memory costs for MD signal processing.

3. MD Tensor Sparse Representation

In this section, we present our TenSR model for MD

signal representation followed by the corresponding sparse

coding and dictionary learning algorithms.

3.1. Notations

For easy understanding, we would like to first in-

troduce some notations used in this paper. A ten-

sor of order N is denoted as X ∈ R
I1×I2···×IN .

The l0, l1 and lF norms of a N - order tensor X
are denoted as ‖X‖0 = #{X (i1, i2, · · · , iN ) 6= 0},

‖X‖1 =
∑

i1

∑
i2
· · ·

∑
iN

|X (i1, i2, · · · , iN )|, and

‖X‖F = (
∑

i1

∑
i2
· · ·∑iN

X (i1, i2, · · · , iN )2)
1/2

, re-

spectively, where X (i1, i2, · · · , iN ) is the (i1, i2, · · · , iN )-
element of X . n-mode vectors are obtained by fixing

every index but the one in the mode n. The n-mode

unfolding matrix X(n) ∈ R
In×I1I2···In−1In+1···IN is defined

by arranging all the n-mode vectors as columns of a

matrix. Following the formulation of tensor multiplica-

tion in [2, 17], we denote the n-mode product of tensor

X and matrix U ∈ R
Jn×In as X×nU, which is also

a N -order tensor Y ∈ R
I1×···×In−1×Jn×In+1×···×IN ,

whose entries Y(i1, · · · , in−1, jn, in+1, · · · , iN ) are

computed by
∑In

in=1 X (i1, i2, · · · , iN )U(jn, in). The

inner product of two same-sized tensors X and Y is

the sum of the products of their entries, i.e., 〈X ,Y〉 =∑I1
i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 X (i1, i2, · · · , iN )Y(i1, i2, · · · , iN )

Operator ⊗ represents the Kronecker product. The vector-

ization of X is x.

3.2. The Proposed TenSR model

Let a N -order tensor X ∈ R
I1×I2···×IN denotes a MD

signal. In order to approximate the structure and exploit

the correlations in every dimension in the MD signal X , we

propose the MD TenSR model as

X = B×1D1×2D2 · · · ×NDN , ‖B‖0 ≤ K, (1)

which formulates the tensor X as a n-mode product of a

N−order sparse tensor B and a series of matrix Dn ∈
R

In×Mn , In ≤ Mn. Here Dn is defined as the n-th di-

mensional dictionary (or dictionary at mode n) and K is

the sparsity denoting the number of the non-zero entries in

B. It is seen that there is a formal resemblance between the

Tucker model in [5] and our TenSR model in (1); they are

in fact quite different. [5] uses Tucker model to only ap-

proximate a tensor itself based on given Kronecker dictio-

naries. Our TenSR model, on the other hand, explores the

features and structures of tensors in different dimensions by

adaptive MD dictionaries rather than determined analytical

dictionaries to model MD signals (tensors).

The dictionaries Dn in (1) can be learned by unfolding

the tensor X in n-mode, resulting the equivalent unfolded

matrix representation [2, 17]

X(n) = DnB(n)(DN · · · ⊗Dn+1⊗Dn−1 · · · ⊗D1)
T . (2)

Let A(n) = B(n)(DN⊗ · · · ⊗Dn+1 ⊗Dn−1⊗ · · · ⊗D1)
T .

Then, the dictionary learning problem can be solved on the

basis of X(n) = DnA(n), where Dn is the dictionary of

X(n) that reflects the correlation of X in the n-th dimension

and A(n) is the corresponding representation on the n-th

dimension. However, as mentioned before, the high com-

plexity of the computation of A(n) by kronecker product

will prevent the dictionary learning method from high or-

der data processing. Therefore, a dedicated MD dictionary

learning method should be studied for our TenSR model for

MD signal representation.

Given learned dictionaries {Dn}Nn=1, the TenSR model

(1) can be easily converted to the traditional 1D sparse

model as

x = Db, ‖b‖0 ≤ K. (3)

where D = DN⊗DN−1⊗ · · · ⊗D1, D ∈ R
I×M , I =∏N

n=1 In , and M =
∏N

n=1 Mn. x and b are the vectoriza-

tion of X and B, respectively. However, with the increase

of the dimension of MD signal, the size of the dictionary D

will be exponentially expanded. No matter how large the

dictionary is, the correlations that inherently exist in each

domain of MD signals are ignored due to the vectorization

in 1D sparse model. The sparse coding method presented in

[5] may also be adopted here but still with Kronecker prod-

uct. Thus a new sparse coding method is presented in the

following subsection to solve these problems.

3.3. MD sparse coding

In this subsection, we discuss how to calculate the sparse

coefficient B given dictionaries {Dn}Nn=1 under our TenSR

model.

Given all the sparse dictionaries {Dn}Nn=1, calculating

B from X is a MD sparse coding problem formulated as

min
B

1

2
‖X −B×1D1×2D2 · · ·×N DN‖2F +λ‖B‖0, (4)
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Algorithm 1 Tensor-based Iterative Shrinkage Thresholding

Initialization: Set C1 = B0 ∈ R
M1×M2···×MN , t1 = 1

For k = 1 : num do

Set Lk = ηk
∏N

n=1 ‖DT
nDn‖2

Compute ∇f(Ck) via Eq.(9)

Compute Bk via Pλ/Lk
(Ck − 1

Lk
∇f(Ck))

tk+1 =
1+

√
1+4t2

k

2

Ck+1 = Bk + tk−1
tk+1

(Bk − Bk−1)

End For

Output: Sparse coefficient B

where λ is a parameter to balance the fidelity and sparsity.

The non-convex l0 constraint in (4) can be relaxed to the l1
norm to yield a convex optimization problem as

min
B

1

2
‖X −B×1D1×2D2 · · ·×N DN‖2F +λ‖B‖1. (5)

Rather than using 1D sparse coding or Kronecker prod-

uct based methods, we propose a new sparse coding algo-

rithm − Tensor-based Iterative Shrinkage Thresholding Al-

gorithm (TISTA) to solve (4) as well as (5) directly. We first

rewrite the objective function w.r.t B in (4) or (5) as

min
B

f(B) + λg(B), (6)

where f(B) stands for the data-fitting term 1
2‖X − B ×1

D1 ×2 D2 · · · ×N DN‖2F and g(B) stands for the sparsity

constraint term ‖B‖1 or ‖B‖0. We take a iterative shrinkage

algorithm to solve the non-smooth regularized problem (6),

which can be rewritten as a linearized function f around

the previous estimate Bk−1 with the proximal regulariza-

tion [15] and the non-smooth regularization. Thus, at the

k-th iteration, Bk can be updated by

Bk = argmin
B

f(Bk−1) + 〈∇f(Bk−1),B − Bk−1〉

+
Lk

2
‖B − Bk−1‖2F + λg(B),

(7)

where Lk > 0 is a Lipschitz constant [15] and ∇f(B) is a

gradient defined on the tensor-field. Then this problem can

be rewritten as,

Bk = argmin
B

1

2
‖B−(Bk−1−

1

Lk
∇f(Bk−1))‖2F+

λ

Lk
g(B).

(8)

To solve (8), we first deduce ∇f(B) with respect to the

data fidelity term 1
2‖X −B×1 D1 ×2 D2 · · · ×N DN‖2F in

our TenSR satisfies

−∇f(B) = X ×1 D
T
1 ×2 D

T
2 · · · ×N D

T
N

−B ×1 D
T
1 D1 ×2 D

T
2 D2 · · · ×N D

T
NDN .

(9)

We argue that our solution via (9) is equivalent to the

corresponding 1D sparse coding by proximal method. Note

that the problems (4) and (5) can be converted to the corre-

sponding 1D sparse coding problems as

min
b

1

2
‖x−Db‖22 + λ‖b‖0. (10)

min
b

1

2
‖x−Db‖22 + λ‖b‖1. (11)

By using the formula of tensor and kronecker product in

[2, 17], the right term in (9) can be converted as

(DT
N⊗D

T
N−1 ⊗ · · ·⊗D

T
1 )x

−(DT
NDN ⊗D

T
N−1DN−1 · · · ⊗D

T
1 D1)b,

(12)

which can be derived to

D
T
x−D

T
Db, (13)

with the equal term (DN⊗DN−1 ⊗ · · ·⊗D1)
T
x− (DT

N ⊗
D

T
N−1 · · · ⊗D

T
1 )(DN ⊗DN−1 · · · ⊗D1)b. It can be ob-

served that −(DT
x − D

T
Db) in (9) is equivalent to the

gradient of the data-fitting term 1
2‖x − Db‖22 at vector b

in 1D sparse coding problems (10) and (11), thus making

these two solutions equivalent.

We then discuss how to determine the Lipschitz constant

Lk in (8). We assume f is a smooth convex function of

the type C1,1. That is, for every B, C ∈ R
M1×M2···×MN ,

f is continuously differentiable with Lipschitz continuous

gradient L(f) satisfying

‖∇f(B)−∇f(C)‖ ≤ L(f)‖B − C‖. (14)

where ‖·‖ denotes the lF norm on N -order tensor and L(f)
is the Lipschitz constant of ∇f . Substitute (9) to (14), we

have

‖∇f(B)−∇f(C)‖F
= ‖(B − C)×1 D

T
1 D1 ×2 D

T
2 D2 · · · ×N D

T
NDN‖F

= ‖(DT
NDN ⊗D

T
N−1DN−1 · · · ⊗D

T
1 D1)(b− c)‖2

≤ ‖DT
NDN ⊗D

T
N−1DN−1 · · · ⊗D

T
1 D1‖2‖b− c‖2

= ‖DT
NDN‖2‖DT

N−1DN−1‖2 · · · ‖DT
1 D1‖2‖b− c‖2

= ‖DT
NDN‖2‖DT

N−1DN−1‖2 · · · ‖DT
1 D1‖2‖B − C‖F .

(15)

Thus the smallest Lipschitz constant of the gradient ∇f is

L(f) =
∏N

n=1 ‖DT
nDn‖2. Then, in our iteration process,

Lk = ηk
∏N

n=1 ‖DT
nDn‖2 with η ≥ 1, i.e. Lk ≥ L(f).

Finally, we present the solution of (8) with different

sparsity constraint g(B). With the regularization term

g(B) = ‖B‖1, the proximal operator Pτ (·) for solving (8)

is the (elementwise) soft-thresholding operator. Thus, the

unique solution of (8) is Sλ/Lk
(Bk−1 − 1

Lk
∇f(Bk−1)),

where Sτ (·) is the soft-thresholding operator Sτ (·) 7−→
sign(·)max(| · | − τ, 0). In case of the l0 norm spar-

sity constraint, i.e., g(B) = ‖B‖0, the solution of (8) is
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Algorithm 2 Tensor-based Dictionary Learning

Input: Training Set I, number of iteration num
Initialization: Set the dictionary {Dn}Nn=1.

For l = 1 : num
Sparse coding Step:

Compute J via Eq.(18) according to Algorithm 1.

Dictionary Update Step:

A = J ×1 D1 ×2 D2 · · ·Dn−1 ×n+1 Dn+1 · · · ×N DN

Get A(n) and Update Dn via Eq.(19).

End For

Output: Learned dictionaries {Dn}Nn=1

Hλ/Lk
(Bk−1 − 1

Lk
∇f(Bk−1)), where Hτ (·) is the hard-

thresholding operator Hτ (·) 7−→ max(· − τ, 0). For conve-

nience of algorithm description, we denote Pλ/Lk
(Bk−1 −

1
Lk

∇f(Bk−1)) as the solution of (8) with either l1 norm or

l0 norm.

We further speed up the convergence of the iterative

shrinkage algorithm by employing the iterative shrinkage

operator at the point Ck where

Ck = Bk−1 + ζk(Bk−1 − Bk−2) (16)

and ζk > 0 is a suitable step size, rather than at the point

Bk−1. We also set ζk = (tk − 1)/tk+1 where tk+1 =
1+

√
1+4t2

k

2 [3] and this extrapolation significantly accel-

erates the proximal gradient method for convex compos-

ite problem [35]. Algorithm 1 summarizes our proposed

Tensor-based Iterative Shrinkage Thresholding Algorithm

for MD sparse coding.

3.4. MD dictionary learning

Given a set of training samples I =
(X 1,X 2, · · · ,XS) ∈ R

I1×I2···×IN×S , where S de-

notes the number of N -order tensors X j ∈ R
I1×I2···×IN ,

we formulate our MD dictionary learning problem as

min
{Dn}N

n=1
,J

1

2
‖I − J ×1 D1 ×2 D2 · · · ×N DN‖2F + λ‖J ‖1

s.t. ‖Dn(:, r)‖22 = 1, 1 ≤ j ≤ S, 1 ≤ n ≤ N, 1 ≤ r ≤ Mn,
(17)

where J = (B1,B2, · · · ,BS) ∈ R
M1×M2···×MN×S de-

notes the set of sparse coefficients of all the training sam-

ples I, λ is a parameter to balance the fidelity and sparsity,

and {Dn}Nn=1 are targeted MD separate dictionaries.

The problem (17) can be solved by using a two-phase

block-coordinate-relaxation approach via sparse coding and

dictionary updating. The process repeats until certain stop

criterion is satisfied, e.g. the relative error of the objective

function at adjacent two iteration is below some predeter-

mined level ǫ. Algorithm 2 summarizes our Tensor-based

Dictionary Learning method.

Sparse coding aims to approximate the sparse coeffi-

cient J of the training set I with fixed {Di}Ni=1 by solving

min
J

1

2
‖I − J ×1 D1 ×2 D2 · · · ×N DN‖2F + λ‖J ‖1.

(18)

We are able to directly solve (18) by the MD sparse cod-

ing algorithm described in Sec. 3.3, rather than solving S
independent MD sparse coding optimization problems with

respect to each N -order signal X j [1, 26]. In addition, we

can divide all the samples to different subsets and solve the

sparse coding problem for each subset in parallel to gener-

ate the final sparse coefficient J . Thus our sparse coding

process runs much faster than the other related solutions.

Dictionary update tries to update {Dn}Nn=1 using the

computed sparse coefficients J . The optimization pro-

cedures for {Dn}Nn=1 are similar. Without loss of gen-

erality, we take the updating of Dn as an example to

present our dictionary update method. Due to the inter-

changeability of n-mode product in our TenSR model (1),

each tensor X j satisfies X j = Aj ×n Dn with Aj =
Bj ×1 D1 ×2 D2 · · · ×n−1 Dn−1 ×n+1 Dn+1 · · · ×N DN ,

thus Aj
(n) can be easily obtained by unfolding the ten-

sor Aj rather than in the way by kronecker product men-

tioned in Sec. 3.2. Therefore, we first calculate A ∈
R

M1×M2···×Mn−1×In×Mn+1×···×MN×S1 by J ×1 D1 ×2

D2 · · · ×n−1 Dn−1 ×n+1 Dn+1 · · · ×N DN to make sure

I ≈ A×nDn, and then unfold A in n-mode to obtain A(n)

to guarantee I(n) ≈ DnA(n). Thus, Dn can be updated by

D̂n = argmin
Dn

‖I(n) −DnA(n)‖2F ,

s.t. ‖Dn(:, r)‖22 = 1, 1 ≤ r ≤ Mn.
(19)

It is a quadratically constrained quadratic programming

(QCQP) problem, where I(n) ∈ RIn×Hn and A(n) ∈
RMn×Hn are the mode-n unfolding matrix of I and A, re-

spectively. Here Hn = I1I2 · · · In−1In+1 · · · INS. The

problem (19) can be resolved via the Lagrange dual [18].

The Lagrangian L here is L(Dn,λ) = trace((I(n) −
DnA(n))

T (I(n)−DnA(n))+
∑Mn

j=1 λj(
∑In

i=1 Dn(i, j)
2−

1)), where each λj ≥ 0 is a dual variable. Thus, the La-

grange dual function D(λ) = minDn
L(Dn,λ) can be op-

timized by the Newton’s method or conjugate gradient. Af-

ter maximizing D(λ), we obtain the optimal bases D
T
n =

(A(n)AT
(n) + Λ)−1(I(n)AT

(n))
T , where Λ = diag(λ).

Compared with [40] and [26], the new way of comput-

ing A(n) without Kronecker product can greatly reduce the

computation complexity of our dictionary updating.

3.5. Complexity Analysis

In this subsection, we discuss the complexity as well

as the memory usage of our sparse coding and dictionary

1A is a function of n, however the subscript n is omitted for brevity.
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Table 1. Complexity Analysis of Sparse Coding (SC) and Dictionary Update (DU) for MD and 1D Sparse Model

Operation Complexity in Detail Complexity

SC

1D D
T
x−D

T
Db O(IM + IM +MIM +MM) O(IM2)

MD ∇f(B) O(
∑N

n=1(
∏n

i=1 Mi

∏N
j=n Ij+ O(

∑N
n=1 MnM)

MnInMn +MnM))

DU

1D minD ‖I−DB‖2F O(MSM +M3 + ISM +MMI) O(M2S)

MD

A(n) by kronecker product O(IM/(MnIn) + IM/MnS)
O(

∑N
n=1

∑N
k=1

k 6=n

∏k
i=1 Mi

∏N
j=k IjInS)

*A(n) by n-mode product O(
∑N

k=1

k 6=n

(
∏k

i=1 Mi

∏N
j=k IjInS))

minDn
‖I(n) −DnA(n)‖2F O(M2

nHn)
+

+ Hn = I1I2 · · · In−1In+1 · · · INS
* The n-mode product method for A(n) is less complicated than the Kronecker Product one. Thus, here only summarize the complexity of A(n) by n-mode

product and minDn
‖I(n) −DnA(n)‖

2
F

.

Table 2. Time Complexity of SC and DU, and Memory Usage of

Dictionary for MD and 1D Sparse Model

Time Complexity
Memory

SC DU

1D O(c2Nd3N ) O(c2Nd2NS)
∏N

n=1 MnIn
MD O(NcN+1dN+1) O(NcNdN+2S)

∑N
n=1 MnIn

learning algorithms with regard to those of conventional 1D

counterparts.

We first analyze complexities of the main components

of MD and 1D sparse coding (SC) and dictionary updating

(DU) algorithms and summarized in Table 1. In terms of

SC, Table 1 shows the complexity of calculating ∇f(B) and

D
T
x−D

T
Db, which cost most of time in SC step at each

iteration. For a N -order signal X ∈ R
I1×I2···×IN , the MD

sparse coefficient B ∈ R
M1×M2···×MN is computed with

fixed dictionaries {Dn}Nn=1, where Dn ∈ R
In×Mn . Corre-

spondingly, the 1D sparse coefficient b ∈ R
M is sparse ap-

proximated by the 1D dictionary D ∈ R
I×M and x ∈ R

I ,

where I =
∏N

n=1 In, and M =
∏N

n=1 Mn.

In terms of DU, given a set of training samples I =
(X 1,X 2, · · · ,XS) ∈ R

I1×I2···×IN×S , we learn MD dic-

tionaries {Dn}Nn=1, where Dn ∈ R
In×Mn . In order to up-

date Dn via (19), we need calculate A(n) in our scheme.

In fact, A(n) can be computed in two ways, a) n−mode

product which directly unfolds the tensor A = J ×1

D1 ×2 D2 · · · ×n−1 Dn−1 ×n+1 Dn+1 · · · ×N DN , and b)

Kronecker product, A(n) = [A1
(n),A2

(n), · · · ,AS
(n)] where

Aj
(n) = Bj

(n)(DN · · · ⊗Dn+1 ⊗ Dn−1 · · · ⊗D1)
T [40].

The complexity of these two ways are all given in Ta-

ble 1. Clearly, our n−mode product method is less com-

plicated than the Kronecker product one. For 1D dic-

tionary learning, the correspondingly 1D training set is

I = [x1,x2, · · · ,xS ] ∈ R
I×S , thus the 1D dictionar-

ies D ∈ R
I×M is updated by minD ‖I − DB‖2F , where

B = [b1,b2, · · · ,bS ] ∈ R
M×S .

Table 2 summarizes the total time complexity of SC and

DU for 1D and MD sparse model. Without loss of gener-

ality, we assume In = d and Mn is c times of In, denoted

as Mn = cd, where c reflects the redundancy rate of dic-

Figure 1. Convergence rates of sparse coding algorithms 1D

FISTA[3] and our MD TISTA. Y−label is objective function value

of (5), X−label is the computational time in the log10(t) coordi-

nate. (a) shows the case of 2D patch (N = 2) of size d × d and

(b) is the one of 3D cube (N = 3) of size d×d×d, respectively.

tionary Dn. We can observe that our proposed MD sparse

coding and dictionary learning algorithms will greatly re-

duce the time complexity especially for high order signals.

In addition, the memory usage of our MD model is also sig-

nificantly less than that of the 1D model.

4. Experimental Results

We demonstrate the effectiveness of our TenSR model by

first discussing the convergence of our dictionary learning

and sparse coding algorithms in the Simulation Experiment

and then evaluate the performance on 3D Multispectral Im-

age (MSI) Denoising.

4.1. Simulation Experiment

Fig. 1 shows the convergence rate of our sparse cod-

ing algorithm Tensor-based Iterative Shrinkage Threshold-

ing Algorithm (TISTA) with regard to that of the classic 1D

sparse coding method FISTA [3]. Two sets of convergences

curves are shown in Fig 1 (a) and (b) for 2D patch (N = 2)
at sizes d× d (d = 8, 16, 20) and 3D cube (N = 3) at sizes

d× d× d (d = 4, 6, 8), respectively. The dictionaries used

in both simulations are Overcomplete DCT (ODCT) dictio-

naries {Dn}Nn=1, where Dn ∈ R
d×cd, c = 2 (definitions

of parameters can be found in subsection 3.5). This figure

shows that the reconstruction precisions determined by (5)

of these two methods are similar whereas the convergence
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Table 3. Time complexity (in seconds) of recovering three sets

of sampling cubes of 1D FISTA as well as our TISTA. Here Sin-

gle, Batch, and All denote that the reconstruction are performed

sequentially, in batch of 500, and altogether, respectively.

FISTA TISTA

Cube Size (cubes) Single Single Batch All

12× 12× 31(1758) 15674 247.7 16.9 16.1

16× 16× 31(3888) 35912 556.2 36.4 35.4

32× 32× 31(21168) 193490 3038.7 200.7 189.0

times (in logarithmic coordinates) are quite different. Our

TISTA method converge much more rapidly. The higher the

dimension as well as data size, the higher the acceleration

of our sparse coding algorithm.

We further evaluate the time efficiency of our TISTA

for recovering a series of MD signals in comparison with

that of 1D FISTA in Table 3. In this simulation, we sam-

ple cubes of size 5 × 5 × 5 from a 3D sub-MSI of size

L×W ×H(12×12×31, 16×16×31, and 32×32×31).
ODCT dictionaries {Dn}3n=1, where Dn ∈ R

5×10, are

used for the reconstructions. As illustrated in Fig. 1, TISTA

and FISTA are similar in precision at each iteration. We thus

measure the time efficiencies of these two methods by the

running time of reconstructing a same number of sampled

cubes at iteration num = 50 and λ = 1. As shown in Ta-

ble 3, three set of time complexities are provided for TISTA

when the cubes are recovered sequentially (Single), in batch

of 500 (Batch), and altogether (All), respectively. We pro-

vide the complexity comparisons in sequential in both Fig. 1

and Tab. 3, respectively. It is clear that our sparse coding is

much fast in this case. Moreover, our scheme supports par-

allel naturally and can be easily speeded up as shown in

Tab. 3.

The convergence of the presented MD dictionary learn-

ing algorithm is evaluated in Fig. 3. Here we train three

dictionaries D1,D2,D3 of size 5× 10 from 40, 000 cubes,

which are of size 5× 5× 5 randomly sampled from the 3D

Multi-spectral images ‘beads’ [38]. The learned 3D dictio-

naries D1,D2,D3 are illustrated Fig. 2. These two figures

show that our dictionary learning method is able to capture

the feature at each dimension along with the convergence

property.

4.2. Multi­spectral Image Denoising

In this subsection, we evaluate the performance of our

TenSR model using 3D real-word examples − MSI im-

ages in Columbia MSI Database [38]2. The denoising

problem which has been widely studied in sparse repre-

sentation is used as the target application. We add Gaus-

sian white noise to these images at different noise lev-

els σ = 5, 10, 20, 30, 50. In our TenSR-based denoising

method, the 3D dictionaries D1,D2,D3 of size 5× 10 are

2The dataset contains 32 real-world scenes at a spatial resolution of

512× 512 and a spectral resolution of 31 ranging from 400nm to 700nm.

Figure 2. Exemplified dictionary in our TenSR model. (a) Learned

dictionaries D1,D2,D3 using TenSR model and (b) The Kro-

neker product D of learned dictionaries in (a) of arbitrary dimen-

sions, where each column of D1,D2,D3 is an atom of each di-

mension of the cube and each square of D is an atom of size 5×5.

Figure 3. Convergent Analysis. The X-label is the iteration num-

ber and the Y -label is the objective function of Eq.(17). It is shown

the our Tensor-based dictionary learning algorithm is convergent.

initialized by ODCT and trained iteratively (≤ 50 times)

in the same configuration of Fig. 3. Then we use the

learned dictionaries to denoise the MSI images, with over-

lap of 3 pixels between adjacent cubes of size 5 × 5 × 5.

Parameters in our scheme are λ = 9, 20, 45, 70, 160 for

σ = 5, 10, 20, 30, 50, respectively.

Table 4 shows the comparison results in terms of average

PSNR and SSIM. There are 6 state-of-the-art MSI denoising

methods are involved, including tensor dictionary learning

(Tensor-DL) method [24], BM4D method [21], PARAFAC

method [20], low-rank tensor approximation (LRTA)

method [30], band-wise KSVD (BwK-SVD) method [10]

and 3D-cube KSVD (3DK-SVD) method [10]3. We further

classify these methods in two categories (1) without any ex-

tra constraint, e.g. nonlocal similarity, and (2) with addi-

tional prior like nonlocal similarity. As shown in Table 4,

our current solution belongs to category (1). Our scheme

outperforms most of methods and is comparable with LRTA

in category (1). Due to lack of additional constraint, all the

algorithms in category (1) achieves lower PSNR and SSIM

values than those in category (2). Fig. 4 shows one exem-

plified visual result of a portion of the MSI image ‘cloth’ at

the 420nm band with Gaussian noise at σ = 10.

We would like to point out that the size of our dictio-

nary is the smallest among those of all sparse-based test

methods including Bw-KSVD [10], 3DK-SVD [10], and

Tensor-DL [24]. The total size of dictionary of our method

is 3 × 5 × 10 as we learned three small dictionaries of size

5×10. The total size of learned dictionaries of Bw-KSVD is

64×128×31, where a dictionary of size 64×128 is trained

for each band image of all the 31 frame images. A dictio-

3We thank all the authors of [24, 21, 20, 30, 10] for providing their

source codes in their websites.
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Table 4. Average PSNR and SSIM results of the different methods for different noise levels on the set of test multispectral images. (1)

Methods without nonlocal similarity, (2) Methods with nonlocal similarity and additional priority.

method σ = 5 σ = 10 σ = 20 σ = 30 σ = 50

(1)

PARAFAC [20] 32.77 0.8368 32.72 0.8344 32.48 0.8235 32.15 0.8052 30.22 0.7051

BwK-SVD [10] 37.79 0.8873 34.11 0.7854 30.99 0.6571 29.34 0.5727 27.35 0.4614

3DK-SVD [10] 39.47 0.9199 36.33 0.8612 33.47 0.7927 31.80 0.7457 29.63 0.6761

LRTA [30] 43.69 0.9664 40.56 0.9421 37.29 0.9018 35.29 0.8661 32.71 0.8030

TenSR 43.74 0.9750 39.05 0.9264 35.01 0.8473 33.31 0.7837 31.38 0.7778

(2)
BM4D [21] 47.72 0.9894 44.33 0.9792 40.70 0.9560 38.46 0.9289 35.55 0.8687

TensorDL [24] 47.29 0.9896 44.05 0.9800 40.57 0.9638 38.53 0.9482 35.86 0.9139

Figure 4. Visual comparison of reconstruction results by different methods on ‘cloth’ in dataset [38]. From left to right: Original image at

420nm band, PARAFAC [20], BwK-SVD [10], 3DK-SVD [10], LRTA [30], BM4D [21], TensorDL [24], and Ours.

nary of size 448 × 500 is learned in 3DK-SVD [10] with

each cube size 8× 8× 7. The Tensor-DL [24] has a dictio-

nary of size 8 × 8 × 31 × 648 by first building 162 groups

of 3D band patches with each cube of size 8 × 8 × 31 and

then obtaining a dictionary with 4 atoms for each groups

via Tucker decomposition. The total dictionary size of Bw-

KSVD [10], 3DK-SVD [10], and Tensor-DL [24] are 1693,

1493, and 8570 times of our TenSR model, respectively. We

believe that if we integrate nonlocal similarity to our model

and train dictionaries for each group of MD signals, our per-

formance for denoising will be significantly improved.

5. Conclusion

In this paper, we propose the first tensor sparse model

TenSR to capture features and explore the correlations in-

herent in MD signals. We also propose the correspond-

ing formulations as well as algorithms for calculating MD

sparse coefficients and learning MD dictionaries. The pro-

posed MD sparse coding algorithm by proximal method re-

duces the time complexity significantly so as to facilitate

the dictionary learning and the recovery problem for high

order data. The presented dictionary learning method is ca-

pable of approximating structures in each dimension via a

series of adaptive separable structure dictionaries. We fur-

ther analyze the properties of the TenSR model in terms of

convergence as well as complexity. The presented TenSR

model is applied to 3D multi-spectral image denoising and

achieves competitive performance with the state-of-the-art

related methods but with much lower time complexity and

memory cost.

On the other hand, as shown in the denoising results,

the performance of our current solution is not as good as

the ones with additional prior, e.g. nonlocal similarity. We

would like to further improve the performance of our al-

gorithm by introducing prior, e.g. non-local similarities, in

our future work. Moreover, in our current TenSR model,

we assign each dimension a dictionary which may not be

adaptive enough. For dimensions who have similar struc-

tures or strong correlations, we may support much flexible

combinations of dimensions in our future dictionary learn-

ing algorithm.
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