
   

 

 

Abstract 

 

Recent advances in neural networks have 

revolutionized computer vision, but these algorithms are 

still outperformed by humans. Could this performance 

gap be due to systematic differences between object 

representations in humans and machines? To answer this 

question we collected a large dataset of 26,675 perceived 

dissimilarity measurements from 2,801 visual objects 

across 269 human subjects, and used this dataset to train 

and test leading computational models. The best model (a 

combination of all models) accounted for 68% of the 

explainable variance. Importantly, all computational 

models showed systematic deviations from perception: (1) 

They underestimated perceptual distances between 

objects with symmetry or large area differences; (2) They 

overestimated perceptual distances between objects with 

shared features. Our results reveal critical elements 

missing in computer vision algorithms and point to 

explicit encoding of these properties in higher visual 

areas in the brain. 

1. Introduction 

 

What is a good man but a bad man's teacher? 

What is a bad man but a good man's job? 

-- Tao Te Ching [1] 

 

Convolutional or deep neural networks have 

revolutionized computer vision with their impressive 

performance on object classification tasks [2-4]. This 

performance (~75% correct on top-1 classification), while 

impressive compared to older algorithms, is nowhere 

close to humans, whose ability is so high that it is rarely 

measured and often taken as ground-truth [5]. This 

performance gap raises the intriguing possibility that 

human vision can be used to “teach” machines to do 
better. Conversely, understanding the specific deficiencies 

in machine algorithms can elucidate the specialized 

computations performed by the brain [6, 7]. The obvious 

approach would be to compare humans and machines on a 

classification task, but this involves an additional 

classification process that complicates any inference 

about the underlying features.  

A simpler alternative would be to compare distances 

between objects in feature space. For a machine algorithm 

this involves calculating the distance between the 

corresponding feature vectors. In humans, these distances 

can be measured experimentally in behavior [8-10] or in 

distinct brain regions [11, 12]. This has permitted the 

detailed comparison of object representations in the brain 

with existing computer vision algorithms, which has 

yielded several insights. First, object representations in 

early visual areas are explained best by Gabor filters [13], 

which is not surprising given the well-known orientation 

selectivity of early visual areas. Second, object 

representations in higher visual areas (that are crucial for 

object recognition) in both human and monkey, are 

explained well by later layers in convolutional neural 

networks [12, 14-16], as well as by other computational 

models such as SIFT [11] and other hierarchical models 

such as HMAX [12]. Thus, the consensus view is that 

deep neural networks have object representations that are 

highly similar to those in the brain. But this predicts that 

these networks should perform as well as humans, yet 

they clearly do not.  

This apparent contradiction could have arisen for two 

reasons. First, most of these comparisons are based on 

~50-100 natural objects differing in many features. This 

could have produced a large correlation even if the object 

representations were entirely different. Second, there may 

be systematic patterns in the match between brain 

representations and computational models: it could be 

worse for certain types of images and better for others. 

These issues have never been investigated. 

Here, we systematically compared object 

representations in humans with a number of 

computational models. To this end, we collected a large 

dataset of 26,675 perceived dissimilarity measurements 

from 2,801 visual objects across 269 human subjects. To 

measure perceived dissimilarity in humans, we asked 

subjects to locate the oddball in an array containing one 

object among multiple instances of the other. The 

reciprocal of the visual search time was taken as an 

estimate of perceived dissimilarity. This measure behaves 

like a mathematical distance [10], shows linear 

summation across multiple features [17], explains rapid 

visual categorization [18] and is strongly correlated with 

subjective dissimilarity ratings [19]. We used this dataset 

to train and test a number of popular computational 
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models. The best individual model was a convolutional 

neural network, but it was outperformed by a combination 

of all the individual models. Importantly, however, this 

model explained only a part of the explainable variance, 

with systematic patterns in its residual error that offer 

insights into both human and machine vision. 

 

2. Methods 

 
2.1 Perceived dissimilarity measurements in humans 

 
We collected a total of 26,675 perceived dissimilarity 

measurements from 2,801 objects across 269 human 

subjects. We measured perceived dissimilarities between 

isolated objects rather than natural scenes because the 

latter may produce variations in attended location and 

consequently in the feature representation. The dataset 

was compiled from 32 distinct visual search experiments 

typically with little or no overlap between subjects. Most 

experiments involved measurements of pairwise 

dissimilarity between all possible pairs of a fixed set of 

objects. Hence, we used two types of objects in the 

dataset – natural objects and silhouettes. The natural 

objects consisted of objects drawn from various natural 

categories such as animals, tools, vehicles. In some 

experiments, there were two views of each object – a 

profile (sideways) view and an oblique view 

corresponding to an in-depth rotation of 45 degrees. The 

silhouette shapes comprised both abstract and animate 

silhouettes. In some experiments, silhouette images were 

obtained by combining 7 possible parts on either end of a 

stem in all possible ways to get a total of 49 objects.  

The fact that the dataset was compiled from 

experiments performed on different subjects raises the 

question of whether the measurements are a valid estimate 

of the perceptual distances within a single subject. We 

believe they are valid for the following reasons: First, the 

dataset is extremely consistent when subjects are 

separated into random groups, implying that it would be 

even more consistent if it were feasible to collect data 

within a single subject. Second, in a separate experiment, 

we measured perceptual distances for a random subset of 

400 image pairs in a separate group of 4 subjects. These 

perceptual distances were strongly correlated with the 

distances in the original dataset (r = 0.80, p < 0.00005).  

All participants were aged 20-30 years, had normal or 

corrected-to-normal vision and were naïve to the purpose 

of the experiments. All of them gave written informed 

consent to an experimental protocol approved by the 

Institutional Human Ethics Committee. In each 

experiment, the subject was seated ~60 cm from a 

computer monitor controlled by custom programs based 

on Psychtoolbox [20] in MATLAB. Each trial began with 

the appearance of a fixation cross for 500ms followed by 

a 4 x 4 search array. The search array contained one 

oddball target item among multiple identical distracters 

(Figure 2A). All items in the array were jittered in 

position to prevent alignment cues from driving the 

search. Subjects were instructed to respond as quickly and 

as accurately as possible to indicate the side on which the 

oddball target was present using a key press (Z for left 

and M for right). If the subjects failed to make any 

response within 10s of the onset of the search array, the 

trial was aborted. All aborted or incorrect trials were 

randomly repeated later in the task. For each pair of 

objects, subjects performed between 2-8 correct trials 

(depending on the experiment) on which their response 

time was recorded. The reciprocal of the average search 

time taken by subjects to make a key press was taken as 

an estimate of perceived dissimilarity between the oddball 

target and the distracter. 

 

2.2. Computer vision models 

 
We tested a total of 19 popular computational models 

for object vision. These models fell roughly into five 

groups: pixel-based, boundary-based, feature-based, 

Figure 1 – Examples of the 2,801 objects used in the study, which ranged from simple 

and abstract silhouettes to complex/grayscale natural objects. 

Abstract silhouettes Animal silhouettes Natural/Unnatural parts Holistic objects Shape + Texture Tools

Two-part objects Animals Man-made objects

Three-part objects Vehicles
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image statistics-based and network models. Each model is 

described briefly below and in greater detail in the 

Supplementary Material (Supplementary Section S1). For 

most models, we accessed a feature vector for each image 

and calculated the Euclidean distance between two feature 

vectors as the distance. For models specified in terms of a 

distance metric rather than feature vectors (e.g. SSIM), 

we calculated the pairwise distances directly. 
 

Pixel based models (n = 2). We tested two models that 

use a pixel-based representation. In the sum-of-squared 

error model (SSE), each pixel is a feature and the distance 

is computed as the sum-of-squared differences across 

pixels after shifting the images to obtain the best match. 

The coarse footprint model (CFP) was previously used to 

explain perceived and neural dissimilarity, and calculates 

the pixel-wise difference between two images after they 

undergo size-dependent blurring [21].  

 

Boundary-based models (n = 4). These models only 

represent the boundary of an object and not its internal 

detail. We therefore reduced each object into a silhouette 

for the purposes of these models. The curvature scale 

space model (CSS) was used previously for planar curve 

matching, and uses local curvature zero-crossings as 

features. The curvature-length (CL) and tangent-angle-

length (TAL) models represent a contour either using the 

curvature or the tangent angle at regular intervals along its 

length. The Fourier descriptor (FD) model represents the 

contour using the Fourier transform coefficients of a 

closed contour represented in the complex plane [22]. It 

has previously been used to study perceived dissimilarity 

in humans [23].  

 

Feature-based models (n = 7). These are the most 

common type of computational models, and involve 

extracting specific features from an image that are then 

used for vision tasks. The Gabor filterbank (GABOR) 

model represents the image as coefficients of a wavelet 

pyramid and has been used previously to model early 

visual cortex [13]. The Geometric Blur (GB) model 

computes local image properties at selected interest points 

and calculates the distance using all pairwise comparisons 

of interest points. This model has also been used widely 

in object detection [24, 25]. The scale invariant feature 

transform (SIFT) is an extremely popular computer vision 

algorithm for describing and matching local image 

features [26]. It finds a set of distinctive interest points 

across a set of images, and represents each image by the 

histogram of interest points of each type present in the 

image. The Histogram of Oriented Gradients (HOG) 

model is another widely used feature descriptor in which 

the image is broken down into overlapping blocks 

spanning the entire image each containing a histogram of 

orientations [27]. Scene gist (GIST) is a variant of the 

Gabor filter bank in which each image is represented as a 

weighted sum of Gabor filters. Scene Gist is different 

from Gabor wavelet representation in that it uses Gabor 

wavelet filters on non-overlapping windows of the image. 

Fourier phase (FPH) and Fourier power (FP) are the phase 

and power of the 2-d Fourier transform of the image.  

 

Statistical models (n = 2). We tested two models that 

represent images using their statistical properties. Texture 

Synthesis (TSYN) is a popular texture synthesis/analysis 

algorithm where a texture image is represented by a set of 

statistics (central moments, range of pixel intensities and 

correlations) calculated on the wavelet filtered image 

[28]. The Structural Similarity Index (SSIM) is used to 

measure similarity between distorted images using the 

mean and covariance of pixel intensities [29]. 

 

Network models (n = 4).  We tested four models that use 

hierarchical or network models inspired by biological 

vision. For each network model, the output of each unit in 

a specific layer of the network is concatenated into a 

single feature vector. The Jarrett (Jar) model has one stage 

of random filters followed by divisive normalization, 

output nonlinearity and pooling. This model uses random 

filters generated using white noise with no learning and 

was shown to achieve competitive performance on object 

classification tasks [30]. HMAX is a popular biologically 

inspired model that uses cascades of linear summation 

and nonlinear pooling (max) operations to build 

selectivity and invariance [31]. We used the outputs of 

complex cell (C1) layer model units. The V1 model is a 

simple model for area V1 in the early visual cortex 

containing Gabor filters with input and output divisive 

normalization and pooling [32]. The Convolutional 

Neural Network (CNN) model was an implementation of 

a deep neural network (VGG-16) trained on object 

localization and classification that shows the best 

performance to date [4]. 

Figure 2 – Visual search dissimilarities (A) Example visual 

search array with target and distracters arranged in a 4x4 array. 

In the actual experiment, all the elements of the search array 

were presented on a black background with a red vertical line 

down the middle of the display; (B) 2D embedding of a set of 

abstract objects. The embedding is obtained using 

Multidimensional scaling on search dissimilarities (1/RT). The 

r-value indicates the agreement between search dissimilarities 

and embedded distances (**** is p < 0.00005); (C) Similar plot 

as in (B) for a set of natural objects. 

0.1 s-1r = 0.83**** r = 0.81**** 0.1 s-1

A B C
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2.3. Model evaluation 
 

Some models (e.g. CNN) are already optimized for 

object classification, and therefore we were interested in 

knowing how well they match the perceptual data 

directly. In other cases (e.g. Fourier power), the model is 

not optimized in any way, yet a weighted sum of its 

features may explain the perceptual data. We therefore 

tested each model in two ways: First, we calculated the 

direct correlation between the distances of each model 

and the observed perceptual distances without any explicit 

fitting to the perceptual data. Second, we fit each model to 

the data by weighting its features to obtain the best match 

to the perceptual data. To avoid overfitting, we used a 

standard cross-validation procedure: we trained each 

model using 80% of the data and then tested it on the 

remaining 20%. This cross-validation procedure was 

repeated 10 times to obtain average model performance. 

To equate the number of free parameters across all 

models, we performed a dimensionality reduction on the 

feature vectors for each model using principal component 

analysis (PCA). Specifically, we compiled the feature 

vectors corresponding to all 2,801 objects in the dataset 

and performed a PCA. We then projected each feature 

vector onto the first 100 principal components to obtain a 

100-dimensional feature vector for that object. We then 

asked whether the observed perceptual distances could be 

explained as a weighted sum of distances along each of 

these principal components. Specifically, if x1 = [x11 x12 

x13… x1n] and x2 = [x21 x22 x23… x2n] are the n-

dimensional feature vectors corresponding to two images 

(n = 100), then our model predicts the observed distance 

y12 between these two images to be: 

 

y12 = w1|x11-x21| + w2|x12-x22| + … + wn|x1n-x2n| (1) 

where w1, w2 etc. represent the importance or contribution 

of that particular principal component to the overall 

perceptual distance. Writing down these equations for all 

26,675 observed distances results in the matrix equation y 

= Xw that can be solved using simple linear regression. 

We obtained qualitatively similar results on changing the 

number of principal components available to each model. 

 

2.4. Combination models 

 
In addition to analyzing each model separately, we 

asked whether combining all models would yield an even 

better model. We tested two possible combined models. 

In the first model (comb1), we concatenated the z-scored 

features across 15 models (among the excluded four 

models, the SSIM model does not use explicit features, 

CSS and GB have too few features to calculate 100 

principal components and V1 model has too many 

features (~106) to calculate the principal components). We 

then obtained a 100-dimensional reduced feature vector 

using PCA. We then repeated the procedures described 

above to characterize model performance. In the second 

model (comb2), we tried to predict the observed distances 

as a weighted sum of the net distances of each model. 

This resulted in a matrix equation of the form y = Xb 

where y is a 26,675 x 1 vector containing observed 

distances, X is a 26,675 x 19 matrix containing distances 

predicted by each of the 19 models (without fitting to the 

data) and b is an unknown 19 x 1 weight vector that 

represents the relative contributions of each model to the 

observed distances.  

 

2.5. Model quality of fit 

 
A simple measure of the quality of fit for a model is 

the squared-correlation (R2) measure which represents the 

percentage of total variance explained by the model. 

However, this number alone is not meaningful because it 

does  not capture the “explainable variance” or intrinsic 

reliability of the data. To estimate the explainable 

variance, we first separated the subjects into two random 

groups and calculated the perceptual distances separately. 

We then reasoned that the upper limit for any model 

would be the degree to which two random groups of 

subjects might be correlated. However there is a small 

issue because the split-half correlation obtained in this 

Figure 3 – Model performance on human perceptual data.  

(A) Bar plot of explainable variance explained by all models 

with un-weighted feature distances. Models are color coded by 

category. (B) Similar plot as in (A) for weighted PC model 

distances.  
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manner (by comparing two halves of the subjects) may 

underestimate the true reliability of the data (which is 

based on all subjects). We accordingly corrected this 

split-half correlation using a Spearman-Brown correction. 

The corrected split-half correlation, which represents the 

upper limit on any model performance, is given by rc = 

2r/(1+r), where r is the split-half correlation and rc is the 

corrected correlation. To obtain a single composite 

number representing the percentage of explainable 

variance explained by each model, we divided the 

squared-correlation of the model with the observed data 

by the square of the corrected split-half correlation.  

For all models with the same number of degrees of 

freedom, model performance can be compared directly 

using the measure of explainable variance explained. This 

is true in all models except comb2 with 19 free parameters 

compared to other models with 100 free parameters. In 

this case, comb2 is expected to perform worse by default 

due to its fewer free parameters. However its performance 

was in fact better than all other models despite their 

greater complexity. This obviates the need for detailed 

model comparisons using quality-of-fit measures that take 

model complexity into account. 

 

2.6. Strength of symmetry 

 
We quantified the strength of symmetry of an image by 

calculating the degree to which the two halves of the 

image are mirror images of each other. For a symmetric 

object, the pixel-wise difference between its halves 

mirrored about the axis of symmetry will be zero. Thus 

the strength of symmetry about the vertical axis (Sv) for 

an image A can be written as: 

 

 

 

where flipv(A) represents the image mirrored about the 

vertical axis, and abs() is the absolute value, and the 

summation is taken over all pixels. This measure ranges 

from 0 when the image and its vertical mirror reflection 

do not overlap at all, to 1 when the image and its vertical 

mirror reflection are identical in every pixel i.e. the image 

is symmetric. We calculated the strength of symmetry 

about the horizontal axis (Sh) in an analogous fashion.  

For each image pair, we calculated the strength of 

symmetry about the vertical axis averaged across both 

objects in the pair, and likewise the average strength of 

symmetry about the horizontal axis across both objects. 

We then took the overall strength of symmetry for the 

image pair as the larger of the vertical and horizontal 

symmetry measures. 

 

3. Results 

 
To compare object representations in humans and 

computational algorithms, we collected a large dataset of 

perceptual dissimilarity measurements from human 

subjects using visual search. This dataset consisted of 

26,675 perceived dissimilarity measurements made from 

2,801 objects across 269 human subjects. The objects 

consisted of abstract and familiar silhouettes as well as 

natural objects (Figure 1). We tested only a small subset 

of all possible object pairs both due to experimental 

Figure 4 – Best model performance. (A) Plot of the observed perceptual distances versus the distances predicted by the best model 

(comb2) for all 26,675 pairs. Object pairs whose dissimilarity is underestimated by the model (residual error more than 1 standard 

deviation above the mean) are shown as filled black circles with example pairs highlighted in orange. Pairs whose dissimilarity is 

overestimated by the model (residual error less than 1 standard deviation below the mean) are shown as filled black diamonds with 

example pairs highlighted in blue. Pairs whose dissimilarity is explained by the model (residual error within 1 standard deviation of the 

mean) are shown as gray circles with example pairs highlighted in green. ; (B) Examples of over-estimated pairs of objects; (C) 

Examples of under-estimated pairs of objects. 
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constraints as well as to avoid testing completely 

dissimilar objects (e.g. natural versus silhouette) that 

would saturate the range. The dissimilarity between each 

pair of objects was obtained using visual search: subjects 

had to locate the oddball item in a field of identical items, 

as illustrated in Figure 2A. We used the reciprocal of 

search time as an estimate of the perceived dissimilarity 

(see Introduction).  

Subjects were extremely consistent in their 

performance as indicated by a highly significant 

correlation between the perceived dissimilarity of the 

26,675 object pairs obtained from two random groups of 

subjects (r = 0.84, p < 0.00005). To visualize these 

dissimilarity measurements graphically, we performed 

multidimensional scaling to embed these distances for 

two subsets of the objects tested (Figure 2B,C). In these 

plots, nearby images represent hard searches. Both plots 

showed interesting patterns: in Figure 2B, silhouette 

objects that share parts are close together, as are objects 

that are vertical mirror images. In Figure 2C, profile and 

oblique views of natural objects are close together, 

indicative of pose or viewpoint invariance. These plots 

show that perceptual distances between objects are highly 

systematic and structured.  

Next we asked whether the perceptual distances 

between objects can be explained using computational 

models. As a first step, we asked whether the distances 

between objects in each computational model (without 

any fitting to the data) are correlated with the perceptual 

data. We expressed each model’s variance explained (R2) 

relative to the explainable variance in the data (see 

Methods). All models showed a significant positive 

correlation with the perceptual data, but the convolutional 

neural network (CNN) was the best model (r = 0.68, p < 

0.00005; Figure 3A). It explained 55.1% of the 

explainable variance in the data.  

Although some of the tested models, such as the CNN, 

have been optimized for vision tasks, other models (such 

as Fourier power) are not optimized at all. We therefore 

investigated the ability of each model to fit the data by 

allowing it to prioritize its features to fit the data. For 

instance, in the case of Fourier power, we asked whether a 

weighted sum of Fourier power differences between two 

images – where the weights reflect the importance of each 

spatial frequency – could explain the perceptual data. 

However this cannot be done directly on all the 

parameters of each model, because models varied widely 

in the number of features (from a minimum of 6 features 

in the CSS model to 940,800 features for the V1 model). 

We therefore reduced the dimensionality of each model 

by projecting the feature vectors of each model along its 

first 100 principal components, and then asked whether a 

weighted sum of these PCA-based features could predict 

the perceptual data. Note that four models could not be fit 

using their principal components (CSS, GB, SSIM and 

V1; see Methods). We fit the perceptual data to each 

model using a standard cross-validation approach: 80% of 

the data was used for training and 20% for testing. Model 

performance after fitting using 100 PCs is shown in 

Figure 3B. As expected the performance of all models 

improved after fitting to the perceptual data. The best 

individual model was still the CNN model, which 

explained 62.6% of the explainable variance (r = 0.72, p < 

0.00005; Figure 3B).  

We then asked whether combining all models in some 

way would produce an even better fit to the data. We 

explored this possibility in two ways: First, we 

concatenated the features of each model and projected 

these features onto their first 100 principal components, 

and fit this model (denoted as comb1) as before. Second, 

we asked whether a weighted sum of the individual model 

distances (without fitting) could predict the perceptual 

data – we denote this model as comb2. The performance 

of these two combined models is also shown in Figure 

3B. It can be seen that the comb1 model has a 

performance that is actually worse than some of the 

individual models. This could be because the 

concatenated features may contain more irrelevant 

variations that are captured by the principal components. 

In contrast, the comb2 model had the best match to the 

perceptual data compared to all other models (variance 

explained = 68.1%; r = 0.74, p < 0.00005; Figure 3B). 

Note that the performance of the comb2 model (with only 

19 parameters) is better than any single individual model 

fit to the data with 100 free parameters based on their 

principal components. 

 

3.1 Does the best model show systematic residual 

errors? 

 
To investigate the performance of the comb2 model in 

greater detail, we plotted the observed perceptual 

distances against the predicted distances (Figure 4A). For 

each image pair, we calculated the residual error as the 

signed difference between the observed distance and 

predicted distance. We then asked whether the residual 

errors varied consistently with the nature of the image 

pair. To this end, we examined all image pairs whose 

residual error was one standard deviation above or below 

model predictions (Figure 4A). This revealed many 

interesting patterns. Image pairs whose dissimilarity was 

underestimated by the model (i.e. predicted < observed) 

usually contained symmetric objects or pairs in which one 

object occupied a large area compared to the other (Figure 

4B). Image pairs whose dissimilarity was overestimated 

by the model (predicted > observed) tended to be objects 

that shared features (Figure 4C): these could be objects 

with shared contours, texture or shape. The model tended 

to overestimate the dissimilarity even between two views 
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of a single object, and mirror images (which can be 

construed as a 180-degree rotation in depth). 
To confirm that these residual error patterns are not 

intrinsic to the data, we analyzed the residual error 

patterns obtained when data from one half of the subjects 

was used as a predictor for the other half. This yielded 

qualitatively different error patterns. Thus, the systematic 

residual error patterns present between models and data 

are not intrinsic to the data itself.  

Because of the large number of image pairs it is quite 

possible that image pairs with small residuals also have 

the same properties as detailed above. Also it is possible 

that the combined model has these residual error patterns 

but individual models do not. To assess these 

possibilities, we quantified each of the above observations 

to assess the degree to which they modulate residual error. 

For each model, we calculated the residual error between 

the observed perceptual data and the predicted distances 

(without fitting the model explicitly to the data for 

individual models). We present these results for simplicity 

but obtained qualitatively similar results even when we 

used the models to fit the data based on their 100 

principal components (Supplementary Section S2). 

 

3.2. Symmetric objects are more distinct in 

perception than models 

 
To quantify our observation that computational models 

underestimate the dissimilarity between symmetric 

objects, we note that symmetric objects by definition 

contain mirrored halves about their axis of symmetry. We 

therefore devised a measure of symmetry for each object 

pair (see Methods). We then asked whether this strength 

of symmetry co-varies with the residual error of each 

model across all image pairs. A positive correlation would 

confirm our observation that, as the objects in a pair 

become more symmetric, the residual error becomes 

larger – in other words, symmetric objects are more 

distinct in perception than in models. The correlation for 

all models between symmetry strength and residual error 

is shown in Figure 5A. All models including comb2 

showed a significant positive correlation. The only two 

exceptions to this trend were the SSE and SIFT models. 

We conclude that computational models underestimate 

the dissimilarity between symmetric objects. Even in 

perception, we have shown that symmetric objects are 

more distinct than expected due to local part differences 

[19].  

 

3.3. Objects with large area differences are more 

distinct in perception than models 

 
To quantify our observation that objects with large 

area differences are more distinct in perception, we 

calculated for each image pair the ratio of the area of the 

larger object to area of the smaller object. For all 

individual models, the area ratio had a significant positive 

correlation with residual error (Figure 5B). However the 

comb2 model showed no significant correlation with area 

ratio, because it tended to assign positive and negative 

weights across models, which reduced its dependence on 

area ratio (r = -0.03, p = 0.08). Nonetheless, the fact that 

Figure 5 – Patterns of residual errors across models. (A) Correlation between symmetry strength and residual error across object pairs 

for each model. Error bars indicate bootstrap-derived estimates of standard deviation (i.e. by repeatedly calculating the correlation on 

image pairs sampled randomly with replacement ten times). All correlations are significant with p < 0.005. Non-significant correlations 

are indicated as “n.s”; (B) Correlation between area ratio and residual error across object pairs for each model; (C) Average residual 

error across image pairs with zero, one or two shared parts; (D) Average residual error for objects pairs related by view, mirror 

reflection, shape and texture. 
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the area ratio correlates with the residual error indicates 

that objects with large area differences are more distinct 

in perception than in models. 

 

3.4. Objects with shared features are more similar in 

perception than in models 

 
We observed that objects that share parts tend to be 

more similar in perception than in the combined model 

(comb2) (Figure 4). We tested several ways in which 

objects could share features. First, we measured the 

average residual error for pair of objects that shared parts 

at one or two locations across two objects. Across all 

models, the residual error was large and negative for 

objects that shared two parts, smaller but still negative for 

objects sharing a single part and near-zero for objects 

with no shared parts (Figure 5C). Thus, objects with 

shared parts are more similar in perception compared to 

models. Second, we considered objects that share features 

because they are two views of the same object, or because 

they are mirror images of each other. The residual error 

was consistently negative for these objects as well (Figure 

5D). Finally, this pattern was true even for objects that 

differed in texture but not shape (i.e. shared shape) and 

for objects that differed in shape but not texture (i.e. 

shared texture) (Figure 5D). Together these observations 

indicate that objects with shared features are more similar 

in perception than according to all computational models.  

To confirm that these results (3.2-3.4) are not specific 

to the validation procedures used here, we repeated our 

analysis by training the comb2 model using a leave-one-

experiment out procedure (Supplementary Section S3) as 

well as on individual experiments (Supplementary Section 

S4) – and obtained similar results.  

 

4. Discussion 

 
Here, we systematically compared object 

representations in humans with a number of 

computational models. Our main finding is that all 

computational models show similar patterns of deviation 

from human perception. Importantly these deviations 

occur for specific types of images with identifiable 

properties, allowing us to make qualitative inferences 

about the missing elements in computational models. We 

observed two types of deviations: First, symmetric objects 

and objects with large differences in area are more 

distinctive in perception than predicted by all 

computational models. Second, objects that share 

features, objects in multiple views and mirror images are 

more similar in perception compared to all computational 

models. We propose that incorporating these properties 

into existing computational models should improve their 

performance.  

We have found that convolutional neural networks 

outperform nearly all other computational models in 

explaining perceptual data. This is consistent with recent 

findings that these networks explain neural dissimilarities 

in higher visual areas [12, 14-16]. However we have gone 

further to show that these networks – and even all 

computational models – show systematic deviations from 

perception. The fact that all computational models, 

despite their extremely diverse formulations, exhibit the 

same systematic differences from perception indicates 

that they all lack specific properties that must be 

explicitly incorporated. It also suggests that these 

deviations are potentially properties that are explicitly 

computed by higher visual areas in the brain.  

We have found that symmetry makes objects more 

distinct than predicted by computational models. 

Although symmetry is a salient percept that has been 

localized to higher visual areas [33, 34], we have shown 

for the first time that symmetry has a specific 

consequence for the ability of computational models to 

predict perceptual dissimilarity. We have also shown 

recently that symmetry also makes objects more distinct 

than expected in perception itself [19]. Our finding that 

mirror images and multiple views of an object are more 

similar in perception agrees with recent findings that these 

properties are encoded in high level visual areas [35,36]. 

Our finding that mirror confusion and view invariance in 

perception are not explained by convolutional neural 

networks is somewhat surprising considering that they 

show pose-invariant classification and are trained on 

vertical mirror images. It implies that view invariance 

may be implemented differently by these networks 

compared to perception. Finally, we speculate that there 

may well be other systematic patterns in the perceptual 

data that are not explained by computational models. Our 

dataset is made available publicly to facilitate their 

discovery  as well as  for  benchmarking  other models.  

To conclude, our results constitute the first systematic 

analysis of how computational models deviate from 

perception. A direct implication of our results is that 

incorporating these deviations into computational models 

should improve their performance on classification tasks. 

This may not be straightforward for several reasons: First, 

we have compared object representations for isolated 

objects whereas real-world scenes contain typically many 

other objects as well as contextual scene information. 

Second, properties such as view invariance, mirror 

confusion, symmetry may be incorporated in several ways 

into models. Therefore, a thorough investigation may be 

required to confirm whether these properties do indeed 

improve classification. Nonetheless our results are an 

important first step towards understanding the 

performance gap between machine vision and human 

  .noisiv

(http://www.cns.iisc.ernet.in/~sparun/searchmodels/)
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