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Figure 1: We train a model to synthesize plausible impact sounds from silent videos, a task that requires implicit knowledge of material

properties and physical interactions. In each video, someone probes the scene with a drumstick, hitting and scratching different objects.

We show frames from two videos and below them the predicted audio tracks. The locations of these sampled frames are indicated by the

dotted lines on the audio track. The predicted audio tracks show seven seconds of sound, corresponding to multiple hits in the videos.

Abstract

Objects make distinctive sounds when they are hit or

scratched. These sounds reveal aspects of an object’s ma-

terial properties, as well as the actions that produced them.

In this paper, we propose the task of predicting what sound

an object makes when struck as a way of studying physical

interactions within a visual scene. We present an algorithm

that synthesizes sound from silent videos of people hitting

and scratching objects with a drumstick. This algorithm

uses a recurrent neural network to predict sound features

from videos and then produces a waveform from these fea-

tures with an example-based synthesis procedure. We show

that the sounds predicted by our model are realistic enough

to fool participants in a “real or fake” psychophysical ex-

periment, and that they convey significant information about

material properties and physical interactions.

1. Introduction

From the clink of a ceramic mug placed onto a saucer,

to the squelch of a shoe pressed into mud, our days are

filled with visual experiences accompanied by predictable

sounds. On many occasions, these sounds are not just statis-

tically associated with the content of the images – the way,

for example, that the sounds of unseen seagulls are associ-

ated with a view of a beach – but instead are directly caused

by the physical interaction being depicted: you see what is

making the sound.

We call these events visually indicated sounds, and we

propose the task of predicting sound from videos as a way

to study physical interactions within a visual scene (Fig-

ure 1). To accurately predict a video’s held-out soundtrack,

an algorithm has to know about the physical properties of

what it is seeing and the actions that are being performed.

This task implicitly requires material recognition, but unlike

traditional work on this problem [4, 36], we never explicitly

tell the algorithm about materials. Instead, it learns about

them by identifying statistical regularities in the raw audio-

visual signal.

We take inspiration from the way infants explore the

physical properties of a scene by poking and prodding at

the objects in front of them [34, 3], a process that may help

them learn an intuitive theory of physics [3]. Recent work

suggests that the sounds objects make in response to these

interactions may play a role in this process [37, 41].

We introduce a dataset that mimics this exploration

process, containing hundreds of videos of people hitting,

scratching, and prodding objects with a drumstick. To syn-

thesize sound from these videos, we present an algorithm

that uses a recurrent neural network to map videos to audio

features. It then converts these audio features to a wave-

form, either by matching them to exemplars in a database
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Figure 2: Greatest Hits: Volume 1 dataset. What do these materials sound like when they are struck? We collected 977 videos in which

people explore a scene by hitting and scratching materials with a drumstick, comprising 46,577 total actions. Human annotators labeled

the actions with material category labels, the location of impact, an action type label (hit vs. scratch), and a reaction label (shown on right).

These labels were used only for analyzing what our sound prediction model learned, not for training it. We show images from a selection

of videos from our dataset for a subset of the material categories (here we show examples where it is easy to see the material in question).

and transferring their corresponding sounds, or by paramet-

rically inverting the features. We evaluate the quality of our

predicted sounds using a psychophysical study, and we also

analyze what our method learned about actions and materi-

als through the task of learning to predict sound.

2. Related work

Our work closely relates to research in sound and mate-

rial perception, and to representation learning.

Foley The idea of adding sound effects to silent movies

goes back at least to the 1920s, when Jack Foley and collab-

orators discovered that they could create convincing sound

effects by crumpling paper, snapping lettuce, and shaking

cellophane in their studio1, a method now known as Foley.

Our algorithm performs a kind of automatic Foley, synthe-

sizing plausible sound effects without a human in the loop.

Sound and materials In the classic mathematical work

of [25], Kac showed that the shape of a drum could be par-

tially recovered from the sound it makes. Material proper-

ties, such as stiffness and density [35, 29, 14], can likewise

be determined from impact sounds. Recent work has used

these principles to estimate material properties by measur-

ing tiny vibrations in rods and cloth [8], and similar methods

have been used to recover sound from high-speed video of

a vibrating membrane [9]. Rather than using a camera as

an instrument for measuring vibrations, we infer a plausible

sound for an action by recognizing what kind of sound this

action would normally make in the visually observed scene.

Impact sounds have been used in other work to recognize

objects and materials. Arnab et al. [2] recently presented a

semantic segmentation model that incorporates audio from

impact sounds, and showed that audio information could

1To our delight, Foley artists really do knock two coconuts together to

fake the sound of horses galloping [6].

help recognize objects and materials that were ambiguous

from visual cues alone. Other work recognizes objects us-

ing audio produced by robotic interaction [39].

Sound synthesis Our technical approach resembles

speech synthesis methods that use neural networks to pre-

dict sound features from pre-tokenized text features and

then generate a waveform from those features [28]. There

are also methods, such as the FoleyAutomatic system, for

synthesizing impact sounds from physical simulations [43].

Work in psychology has studied low-dimensional repre-

sentations for impact sounds [7], and recent work in neu-

roimaging has shown that silent videos of impact events ac-

tivate the auditory cortex [19].

Learning visual representations from natural signals

Previous work has explored the idea of learning visual rep-

resentations by predicting one aspect of a raw sensory sig-

nal from another. For example, [11, 21] learned image rep-

resentations by predicting the spatial relationship between

image patches, and [1, 22] by predicting the egocentric mo-

tion between video frames. Several methods have also used

temporal proximity as a supervisory signal [31, 17, 45, 44].

Unlike in these approaches, we learn to predict one sensory

modality (sound) from another (vision). There has also been

work that trains neural networks from multiple modalities.

For example, [32] learned a joint model of audio and video.

However, while they study speech using an autoencoder, we

focus on material interaction, and we use a recurrent neural

network to predict sound features from video.

A central goal of other methods has been to use a proxy

signal (e.g., temporal proximity) to learn a generically use-

ful representation of the world. In our case, we predict a sig-

nal – sound – known to be a useful representation for many

tasks [14, 35], and we show that the output (i.e. the pre-

dicted sound itself, rather than some internal representation
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in the model) is predictive of material and action classes.

3. The Greatest Hits dataset

In order to study visually indicated sounds, we collected

a dataset containing videos of humans (the authors) prob-

ing environments with a drumstick – hitting, scratching, and

poking different objects in the scene (Figure 2). We chose to

use a drumstick so that we would have a consistent way of

generating the sounds. Moreover, since the drumstick does

not occlude much of a scene, we can also observe what hap-

pens to the object after it is struck. This motion, which we

call a reaction, can be important for inferring material prop-

erties – a soft cushion, for example, will deform more than

a firm one, and the sound it produces will vary with it. Sim-

ilarly, individual pieces of gravel will scatter when they are

hit, and their sound varies with this motion (Figure 2, right).

Unlike traditional object- or scene-centric datasets, such

as ImageNet [10] or Places [46], where the focus of the im-

age is a full scene, our dataset contains close-up views of a

small number of objects. These images reflect the viewpoint

of an observer who is focused on the interaction taking place

(similar to an egocentric viewpoint). They contain enough

detail to see fine-grained texture and the reaction that oc-

curs after the interaction. In some cases, only part of an

object is visible, and neither its identity nor other high-level

aspects of the scene are easily discernible. Our dataset is

also related to robotic manipulation datasets [39, 33, 15].

While one advantage of using a robot is that its actions are

highly consistent, having a human collect the data allows

us to rapidly (and inexpensively) capture a large number of

physical interactions in real-world scenes.

We captured 977 videos from indoor (64%) and outdoor

scenes (36%). The outdoor scenes often contain materi-

als that scatter and deform, such as grass and leaves, while

the indoor scenes contain a variety of hard and soft mate-

rials, such as metal, plastic, cloth, and plastic bags. Each

video, on average, contains 48 actions (approximately 69%

hits and 31% scratches) and lasts 35 seconds. We recorded

sound using a shotgun microphone attached to the top of

the camera and used a wind cover for outdoor scenes. We

used a separate audio recorder, without auto-gain, and we

applied a denoising algorithm [20] to each recording.

Detecting impact onsets We detected amplitude peaks in

the denoised audio, which largely correspond to the onset

of impact sounds. We thresholded the amplitude gradient

to find an initial set of peaks, then merged nearby peaks

with the mean-shift algorithm [13], treating the amplitude

as a density and finding the nearest mode for each peak. Fi-

nally, we used non-maximal suppression to ensure that on-

sets were at least 0.25 seconds apart. This is a simple onset-

detection method that most often corresponds to drumstick

impacts when the impacts are short and contain a single
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(a) Mean cochleagrams (b) Sound confusion matrix

Figure 3: (a) Cochleagrams for selected classes. We extracted

audio centered on each impact sound in the dataset, computed our

subband-envelope representation, and then estimated the mean for

each class. (b) Confusion matrix derived by classifying sound fea-

tures. Rows correspond to confusions made for a single category.

The row ordering was determined automatically, by similarity in

material confusions (see the supplementary material).

peak2. In many of our experiments, we use short video clips

that are centered on these amplitude peaks.

Semantic annotations We also collected annotations for

a sample of impacts (approximately 62%) using online

workers from Amazon Mechanical Turk. These include ma-

terial labels, action labels (hit vs. scratch), reaction labels,

and the pixel location of each impact site. To reduce the

number of erroneous labels, we manually removed annota-

tions for material categories that we could not find in the

scene. During material labeling, workers chose from finer-

grained categories. We then merged similar, frequently con-

fused categories (please see the supplementary material for

details). Note that these annotations are used only for analy-

sis: we train our models on raw audio and video. Examples

of several material and action classes are shown in Figure 2.

4. Sound representation

Following work in sound synthesis [40, 30], we com-

pute our sound features by decomposing the waveform into

subband envelopes – a simple representation obtained by

filtering the waveform and applying a nonlinearity. We ap-

ply a bank of 40 band-pass filters spaced on an equivalent

rectangular bandwidth (ERB) scale [16] (plus a low- and

high-pass filter) and take the Hilbert envelope of the re-

sponses. We then downsample these envelopes to 90Hz

(approximately 3 samples per frame) and compress them.

More specifically, we compute envelope sn(t) from a wave-

2Scratches and hits usually satisfy this assumption, but splash sounds

often do not – a problem that could be addressed with more sophisticated

onset-detection methods [5].
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form w(t) and a filter fn by taking:

sn = D(|(w ∗ fn) + jH(w ∗ fn)|)
c, (1)

where H is the Hilbert transform, D denotes downsam-

pling, and the compression constant c = 0.3. In the sup-

plementary material, we study how performance varies with

the number of frequency channels.

The resulting representation is known as a cochleagram.

In Figure 3(a), we visualize the mean cochleagram for a

selection of material and reaction classes. This reveals, for

example, that cloth sounds tend to have more low-frequency

energy than those of rock.

How well do impact sounds capture material properties

in general? To measure this empirically, we trained a lin-

ear SVM to predict material class for the sounds in our

database, using the subband envelopes as our feature vec-

tors. We resampled our training set so that each class con-

tained an equal number of impacts (260 per class). The re-

sulting material classifier has 45.8% (chance = 5.9%) class-

averaged accuracy (i.e., the mean of per-class accuracy val-

ues), and its confusion matrix is shown in Figure 3(b).

These results suggest that impact sounds convey signifi-

cant information about materials, and thus if an algorithm

could learn to accurately predict these sounds from images,

it would have implicit knowledge of material categories.

5. Predicting visually indicated sounds

We formulate our task as a regression problem – one

where the goal is to map a sequence of video frames to a

sequence of audio features. We solve this problem using

a recurrent neural network that takes color and motion in-

formation as input and predicts the subband envelopes of

an audio waveform. Finally, we generate a waveform from

these sound features. Our neural network and synthesis pro-

cedure are shown in Figure 4.

5.1. Regressing sound features

Given a sequence of input images I1, I2, ..., IN , we

would like to estimate a corresponding sequence of sound

features ~s1, ~s2, ..., ~sT , where ~st ∈ R
42. These sound fea-

tures correspond to blocks of the cochleagram shown in Fig-

ure 4. We solve this regression problem using a recurrent

neural network (RNN) that takes image features computed

with a convolutional neural network (CNN) as input.

Image representation We found it helpful to represent

motion information explicitly in our model using a two-

stream approach [12, 38]. While two-stream models often

use optical flow, it is challenging to obtain accurate flow

estimates due to the presence of fast, non-rigid motion. In-

stead, we compute spacetime images for each frame – im-

ages whose three channels are grayscale versions of the pre-

vious, current, and next frames. This image representation
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Figure 4: We train a neural network to map video sequences to

sound features. These sound features are subsequently converted

into a waveform using either parametric or example-based synthe-

sis. We represent the images using a convolutional network, and

the time series using a recurrent neural network. We show a sub-

sequence of images corresponding to one impact.

is closely related to 3D video CNNs [23, 26], as derivatives

across channels correspond to temporal derivatives.

For each frame t, we construct an input feature vector xt

by concatenating CNN features for the spacetime image at

frame t and the color image from the first frame3:

xt = [φ(Ft), φ(I1)], (2)

where φ are CNN features obtained from layer fc7 of the

AlexNet architecture [27] (its penultimate layer), and Ft is

the spacetime image at time t. In our experiments (Sec-

tion 6), we either initialized the CNN from scratch and

trained it jointly with the RNN, or we initialized the CNN

with weights from a network trained for ImageNet classi-

fication. When we used pretraining, we precomputed the

features from the convolutional layers and fine-tuned only

the fully connected layers.

Sound prediction model We use a recurrent neural net-

work (RNN) with long short-term memory units (LSTM)

[18] that takes CNN features as input. To compensate

for the difference between the video and audio sampling

rates, we replicate each CNN feature vector k times, where

k = ⌊T/N⌋ (we use k = 3). This results in a sequence of

CNN features x1, x2, ..., xT that is the same length as the

sequence of audio features. At each timestep of the RNN,

we use the current image feature vector xt to update the

3We use only the first color image to reduce the computational cost.
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vector of hidden variables ht
4. We then compute sound fea-

tures by an affine transformation of the hidden variables:

~st = Wht + b

ht = L(xt, ht−1), (3)

where L is a function that updates the hidden state [18].

During training, we minimize the difference between the

predicted and ground-truth predictions at each timestep:

E({~st}) =

T
∑

t=1

ρ(‖~st − ~̃st‖2), (4)

where ~̃st and ~st are the true and predicted sound features at

time t, and ρ(r) = log(ǫ + r2) is a robust loss that bounds

the error at each timestep (we use ǫ = 1/252). We also in-

crease robustness of the loss by predicting the square root

of the subband envelopes, rather than the envelope values

themselves. To make the learning problem easier, we use

PCA to project the 42-dimensional feature vector at each

timestep down to a 10-dimensional space, and we predict

this lower-dimensional vector. When we evaluate the net-

work, we invert the PCA transformation to obtain sound

features. We train the RNN and CNN jointly using stochas-

tic gradient descent with Caffe [24, 12]. We found it help-

ful for convergence to remove dropout [42] and to clip large

gradients. When training from scratch, we augmented the

data by applying cropping and mirroring transformations to

the videos. We also use multiple LSTM layers (the number

depends on the task; please see the supplementary material).

5.2. Generating a waveform

We consider two methods for generating a waveform

from the predicted sound features. The first is the simple

parametric synthesis approach of [40, 30], which iteratively

imposes the subband envelopes on a sample of white noise

(we used just one iteration). This method is useful for ex-

amining what information is captured by the audio features,

since it represents a fairly direct conversion from features

to sound. However, for the task of generating plausible

sounds to a human ear, we find it more effective to impose

a strong natural sound prior during conversion from fea-

tures to waveform. Therefore, we also consider an example-

based synthesis method that snaps a window of sound fea-

tures to the closest exemplar in the training set. We form a

query vector by concatenating the predicted sound features

~s1, ..., ~sT (or a subsequence of them), searching for its near-

est neighbor in the training set as measured by L1 distance,

and transferring the corresponding waveform.

6. Experiments

We applied our sound-prediction model to several tasks,

and evaluated it with a combination of human studies and

4To simplify the presentation, we have omitted the LSTM’s hidden cell

state, which is also updated at each timestep.

automated metrics.

6.1. Sound prediction tasks

In order to study the problem of detection – that is, the

task of determining when and whether an action that pro-

duces a sound has occurred – separately from the task of

sound prediction, we consider two kinds of videos. First, we

focus on the prediction problem and consider only videos

centered on audio amplitude peaks, which often correspond

to impact onsets (Section 3). We train our model to predict

sound for 15-frame sequences (0.5 sec.) around each peak.

For the second task, which we call the detection problem,

we train our model on longer sequences (approximately 2

sec. long) sampled from the training videos with a 0.5-

second stride, and we subsequently evaluate this model on

full-length videos. Since it can be difficult to discern the

precise timing of an impact, we allow the predicted fea-

tures to undergo small shifts before they are compared to

the ground truth. We also introduce a two-frame lag in

the RNN output, which allows the model to observe future

frames before outputting sound features. Finally, before

querying sound features, we apply a coloring procedure to

account for statistical differences between the predicted and

real sound features (e.g., under-prediction of amplitude), us-

ing the silent videos in the test set to estimate the empirical

mean and covariance of the network’s predictions. For these

implementation details, please see the supplementary ma-

terial. For both tasks, we split the full-length videos into

training and test sets (75% training and 25% testing).

Models For the prediction task, we compared our model

to image-based nearest neighbor search. We computed fc7
features from a CNN pretrained on ImageNet [27] for the

center frame of each sequence, which by construction is the

frame where the impact sound occurs. We then searched

the training set for the best match and transferred its corre-

sponding sound. We considered variations where the CNN

features were computed on an RGB image, on (three-frame)

spacetime images, and on the concatenation of both fea-

tures. To understand the influence of different design de-

cisions, we also considered several variations of our model.

We included models with and without ImageNet pretrain-

ing; with and without spacetime images; and with example-

based versus parametric waveform generation. Finally, we

included a model where the RNN connections were broken

(the hidden state was set to zero between timesteps).

For the RNN models that do example-based waveform

generation (Section 5.2), we used the centered impacts in

the training set as the exemplar database. For the predic-

tion task, we performed the query using the sound features

for the entire 15-frame sequence. For the detection task,

this is not possible, since the videos may contain multiple,

overlapping impacts. Instead, we detected amplitude peaks

of the parametrically inverted waveform, and matched the
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Psychophysical study Loudness Centroid

Algorithm Labeled real Err. r Err. r

Full system 40.01% ± 1.66 0.21 0.44 3.85 0.47

- Trained from scratch 36.46% ± 1.68 0.24 0.36 4.73 0.33

- No spacetime 37.88% ± 1.67 0.22 0.37 4.30 0.37

- Parametric synthesis 34.66% ± 1.62 0.21 0.44 3.85 0.47

- No RNN 29.96% ± 1.55 1.24 0.04 7.92 0.28

Image match 32.98% ± 1.59 0.37 0.16 8.39 0.18

Spacetime match 31.92% ± 1.56 0.41 0.14 7.19 0.21

Image + spacetime 33.77% ± 1.58 0.37 0.18 7.74 0.20

Random impact sound 19.77% ± 1.34 0.44 0.00 9.32 0.02

0.25

0.00

0.50

(a) Model evaluation (b) Predicted sound confusions (c) CNN feature confusions

Figure 5: (a) We measured the rate at which subjects chose an algorithm’s synthesized sound over the actual sound. Our full system,

which was pretrained from ImageNet and used example-based synthesis to generate a waveform, significantly outperformed models based

on image matching. For the neural network models, we computed the auditory metrics for the sound features that were predicted by the

network, rather than those of the inverted sounds or transferred exemplars. (b) What sounds like what, according to our algorithm? We

applied a classifier trained on real sounds to the sounds produced by our algorithm, resulting in a confusion matrix (c.f . Figure 3(b), which

shows a confusion matrix for real sounds). It obtained 22.7% class-averaged accuracy. (c) Confusions made by a classifier trained on fc7

features (30.2% class-averaged accuracy). For both confusion matrices, we used the variation of our model that was trained from scratch.

sound features in small (8-frame) windows around each

peak (starting the window one frame before the peak).

6.2. Evaluating the sound predictions

We assessed the quality of the sounds using psychophys-

ical experiments and measurements of acoustic properties.

Psychophysical study To test whether the sounds pro-

duced by our model varied appropriately with different ac-

tions and materials, we conducted a psychophysical study

on Amazon Mechanical Turk. We used a two-alternative

forced choice test in which participants were asked to distin-

guish real and fake sounds. We showed them two videos of

an impact event – one playing the recorded sound, the other

playing a synthesized sound. We then asked them to choose

the one that played the real sound. The sound-prediction

algorithm was chosen randomly on a per-video basis. We

randomly sampled 15 impact-centered sequences from each

full-length video, showing each participant at most one im-

pact from each one. At the start of the experiment, we re-

vealed the correct answer to five practice videos.

We measured the rate at which participants mistook our

model’s result for the ground-truth sound (Figure 5(a)),

finding that our full system – with RGB and spacetime in-

put, RNN connections, ImageNet pretraining, and example-

based waveform generation – significantly outperformed

the image-matching methods. It also outperformed a base-

line that sampled a random (centered) sound from the train-

ing set (p < 0.001 with a two-sided t-test). We found that

the version of our model that was trained from scratch out-

performed the best image-matching method (p = 0.02). Fi-

nally, for this task, we did not find the difference between

our full and RGB-only models to be significant (p = 0.08).

We show results broken down by semantic category in

Algorithm Labeled real

Full sys. + mat. 41.82% ± 1.46

Full sys. 39.64% ± 1.46

fc7 NN + mat. 38.20% ± 1.47

fc7 NN 32.83% ± 1.41

Random + mat. 35.36% ± 1.42

Random 20.64% ± 1.22

Real sound match 46.90% ± 1.49

Features Avg. Acc.

Audio-supervised CNN 30.4%

ImageNet CNN 42.0%

Sound 45.8%

ImageNet + sound 48.2%

ImageNet crop 52.9%

Crop + sound 59.4%

Figure 6: (a) We ran variations of the full system and an image-

matching method (RGB + spacetime). For each model, we include

an oracle model (labeled with “+ mat”) that draws its sound exam-

ples from videos with the same material label. (b) Class-averaged

material recognition accuracy obtained by training an SVM with

different image and sound features.

Figure 7. For some categories, such as grass and leaf, par-

ticipants were frequently fooled by our results. Often when

a participant was fooled, it was because the sound predic-

tion was simple and prototypical (e.g., a simple thud noise),

while the actual sound was complex and atypical. True leaf

sounds, for example, are highly varied and may not be fully

predictable from a silent video. When they are struck, we

hear a combination of the leaves themselves, along with

rocks, dirt, and whatever else is underneath them. In con-

trast, the sounds predicted by our model tend to be closer to

prototypical grass/dirt/leaf noises. Participants also some-

times made mistakes when the onset detection failed, or

when multiple impacts overlapped, since this may have de-

fied their expectation of hearing a single impact.

We found that the model in which the RNN connections

were broken was often unable to detect the timing of the hit,

and that it under-predicted the amplitude of the sounds. As a

result, it performed poorly on automated metrics and failed
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Figure 7: Semantic analysis of psychophysical study. We show

the rate that our algorithm fooled human participants for each

material, action, and reaction class. The error bars show 95%

confidence intervals. Our approach significantly outperforms the

highest-performing image-matching method (RGB + spacetime).

to find good matches. The performance of our model with

parametric waveform generation varied widely between cat-

egories. It did well on materials such as leaf and dirt that

are suited to the relatively noisy sounds that the method pro-

duces but poorly on hard materials such as wood and metal

(e.g., a confusion rate of 62%± 6% for dirt and 18%± 5%
for metal). On the other hand, the example-based approach

was not effective at matching textural sounds, such as those

produced by splashing water (Fig. 7).

Auditory metrics We measured quantitative properties of

sounds for the prediction task. We chose metrics that were

not sensitive to precise timing. First, we measured the loud-

ness of the sound, which we took to be the maximum energy

(L2 norm) of the compressed subband envelopes over all

timesteps. Second, we compared the sounds’ spectral cen-

troids, which we measured by taking the center of mass of

the frequency channels for a one-frame (approx. 0.03 sec.)

window around the center of the impact. We found that

on both metrics, the network was more accurate than the

image-matching methods, both in terms of mean squared

error and correlation coefficients (Figure 5(a)).

Oracle results How helpful is material category infor-

mation? We conducted a second study that controlled for

material-recognition accuracy. Using the subset of the data

with material annotations, we created a model that chose a

random sound from the same class as the input video. We

also created a number of oracle models that used these ma-

terial labels (Table 6(a)). For the best-performing image-

matching model (RGB + spacetime), we restricted the pool

of matches to be those with the same label as the input

(and similarly for the example-based synthesis method).

We also considered a model that matched the ground-truth

sound to the training set and transferred the best match. We

found that, while knowing the material was helpful for each

method, it was not sufficient, as the oracle models did not

outperform our model. In particular, our model significantly

outperformed the random-sampling oracle (p < 10−4).

Impact detection We also used our methods to produce

sounds for long, uncentered videos, a problem setting that

allows us to evaluate their ability to detect impact events.

We provide qualitative examples in Figure 8 and videos

in the supplementary material. To quantitatively evaluate

its detection accuracy, we used the parametric synthesis

method to produce a waveform, applied a large gain to that

waveform, and then detected amplitude peaks (Section 3).

We then compared the timing of these peaks to those of the

ground truth, considering an impact to be detected if a pre-

dicted spike occurred within 0.1 seconds of it. Using the

predicted amplitude as a measure of confidence, we com-

puted average precision. We compared our model to an

RGB-only model, finding that the spacetime images signif-

icantly improve the result, with APs of 43.6% and 21.6%

respectively. Both models were pretrained with ImageNet.

6.3. Learning about material and action by
predicting sounds

By learning to predict sounds, did the network also learn

something about material and physical interactions? To as-

sess this, we tested whether the network’s output sounds

were informative about material and action class. We ap-

plied the same SVM that was trained to predict mate-

rial/action class on real sound features (Sec. 4) to the

sounds predicted by the model. Under this evaluation

regime, it is not enough for the network’s sounds to merely

be distinguishable by class: they must be close enough to

real sounds so as to be classified correctly by an SVM that

has never seen a predicted sound. To avoid the influence

of pretraining, we used a network that was trained from

scratch. We note that this evaluation method is different

from that of recent unsupervised learning models [11, 1, 45]

that train a classifier on the network’s feature activations,

rather than on a ground-truth version of the output.

Using this idea, we classified the material category from

predicted sound features. The classifier had class-averaged

accuracy of 22.7%, and its confusion matrix is shown in Fig.

5(b). This accuracy indicates that our model learned an out-

put representation that was informative about material, even

though it was only trained to predict sound. We applied

a similar methodology to classify action categories from

predicted sounds, obtaining 68.6% class-averaged accuracy

(chance = 50%), and 53.5% for classifying reaction cate-

gories (chance = 20%). We found that material and reaction

recognition accuracy improved with ImageNet pretraining

(to 28.8% and to 55.2%, respectively), but that there was a

slight decrease for action classification (to 66.5%).

We also tested whether the predicted sound features

convey information about the hardness of a surface. We

grouped the material classes into superordinate hard and

soft classes, and trained a classifier on real sound features

(sampling 1300 examples per class), finding that it obtained
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Figure 8: Automatic sound prediction results. We show cochleagrams for a representative selection of video sequences, with a sample

frame from each sequence on the left. The frame is sampled from the location indicated by the black triangle on the x-axis of each

cochleagram. Notice that the algorithm’s synthesized cochleagrams match the general structure of the ground truth cochleagrams. Dark

lines in the cochleagrams indicate hits, which the algorithm often detects. The algorithm captures aspects of both the temporal and spectral

structure of sounds. It correctly predicts staccato taps in rock example and longer waveforms for rustling ivy. Furthermore, it tends to

predict lower pitched thuds for a soft couch and higher pitched clicks when the drumstick hits a hard wooden railing (although the spectral

differences may appear small in these visualizations, we evaluate this with objective metrics in Section 6). A common failure mode is

that the algorithm misses a hit (railing example) or hallucinates false hits (cushion example). This frequently happens when the drumstick

moves erratically. Please see our video for qualitative results.

66.8% class-averaged accuracy (chance = 50%). Here we

have defined soft materials to be {leaf, grass, cloth, plas-

tic bag, carpet} and hard materials to be {gravel, rock, tile,

wood, ceramic, plastic, drywall, glass, metal}.

We also considered the problem of directly predicting

material class from visual features. In Table 6(b), we trained

a classifier using fc7 features – both those of the model

trained from scratch, and of a model trained on ImageNet

[27]. We concatenated color and spacetime image features,

since we found that this improved performance. We also

considered an oracle model that cropped a high-resolution

(256 × 256) patch from the impact location using human

annotations, and concatenated its features with those of the

full image (we used color images). To avoid occlusions

from the arm or drumstick, we cropped the patch from the

final frame of the video. We found that performing these

crops significantly increased the accuracy, suggesting that

localizing the impact is important for classification. We

also tried concatenating vision and sound features (similar

to [2]), finding that this significantly improved the accuracy.

The kinds of mistakes that the visual classifier (video →
material) made were often different from those of the sound

classifier (sound → material). For instance, the visual clas-

sifier was able to distinguish classes that have a very differ-

ent appearance, such as paper and cloth. These classes both

make low-pitched sounds (e.g., cardboard and cushions),

and were sometimes are confused by the sound classifier.

On the other hand, the visual classifier was more likely to

confuse materials from outdoor scenes, such as rocks and

leaves – materials that sound very different but which fre-

quently co-occur in a scene. When we analyzed our model

by classifying its sound predictions (video → sound → ma-

terial), the resulting confusion matrix (Fig. 5(b)) contains

both kinds of error: there are visual analysis errors when

it misidentifies the material that was struck, and sound syn-

thesis errors when it produces a sound that was not a con-

vincing replica of the real sound.

7. Discussion

In this work, we proposed the problem of synthesizing

visually indicated sounds – a problem that requires an al-

gorithm to learn about material properties and physical in-

teractions. We introduced a dataset for studying this task,

which contains videos of a person probing materials in the

world with a drumstick, and an algorithm based on recurrent

neural networks. We evaluated the quality of our approach

with psychophysical experiments and automated metrics,

showing that the performance of our algorithm was signifi-

cantly better than baselines.

We see our work as opening two possible directions for

future research. The first is producing realistic sounds from

videos, treating sound production as an end in itself. The

second direction is to use sound and material interactions as

steps toward physical scene understanding.
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