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Abstract

Finetuning from a pretrained deep model is found to

yield state-of-the-art performance for many vision tasks.

This paper investigates many factors that influence the per-

formance in finetuning for object detection. There is a long-

tailed distribution of sample numbers for classes in object

detection. Our analysis and empirical results show that

classes with more samples have higher impact on the fea-

ture learning. And it is better to make the sample num-

ber more uniform across classes. Generic object detection

can be considered as multiple equally important tasks. De-

tection of each class is a task. These classes/tasks have

their individuality in discriminative visual appearance rep-

resentation. Taking this individuality into account, we clus-

ter objects into visually similar class groups and learn

deep representations for these groups separately. A hi-

erarchical feature learning scheme is proposed. In this

scheme, the knowledge from the group with large number

of classes is transferred for learning features in its sub-

groups. Finetuned on the GoogLeNet model, experimental

results show 4.7% absolute mAP improvement of our ap-

proach on the ImageNet object detection dataset without in-

creasing much computational cost at the testing stage. Code

is available on www.ee.cuhk.edu.hk/˜wlouyang/

projects/ImageNetFactors/CVPR16.html

1. Introduction

Finetuning refers to the approach that initializes the

model parameters for the target task from the parameters

pretrained on another related task. Finetuning from the

deep model pretrained on the large-scale ImageNet dataset

is found to yield state-of-the-art performance for many vi-

sion tasks such as tracking [38], segmentation [12], object

detection [35, 25, 22], action recognition [16], and human

pose estimation [5]. When finetuning the deep model for

object detection, however, we have two observations.

The first is the long-tail property. The ImageNet image

classification dataset is a well compiled dataset, in which

objects of different classes have similar number of samples.

In real applications, however, we will experience the long-
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Figure 1. The number of samples in y-axis sorted in decreasing or-

der for different classes in x-axis on different datasets (a) and the

models obtained using different strategy (b). Long-tail property is

observed for ImageNet and Pascal object detection dataset in (a).

Models are visualized using the DeepDraw [1]. Compared with

the model on the left in (b) finetuned for all the 200 classes in Im-

ageNet detection dataset, the model finetuned for specific classes

on the right column in (b) is better in representing rabbit and squir-

rel. Best viewed in color.

tail phenomena, where small number of object classes ap-

pear very often while most of the others appear more rarely.

For segmentation, pixel regions for certain classes appear

more often than the regions for other classes. For object

detection, some object classes such as person have much

more samples than the other object classes like sheep for

both PASCAL VOC [8] and ImageNet [29] object detection

dataset, as shown in Fig. 2(a). More examples and discus-

sion on the long-tail property is given in a recent talk given

by Bengio [3]. For detection approaches using hand-crafted

features [10, 36], feature extraction is separated from the

classifier learning task. Therefore, the feature extraction is

not influenced by the long-tail property. For deeply learned
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features, however, the feature learning will be dominated

by the object classes with large number of samples so that

the features are not good for object classes with fewer sam-

ples in the long tail. We analyze the influence of long tail

in learning the deep model using the ImageNet object de-

tection dataset as a study case. We find that even if around

40% positive samples are left out from this dataset for fea-

ture learning, the detection accuracy is improved a bit if

the number of samples among different classes is more uni-

form.

The second is in learning specific feature representations

for specific classes. The detection of multiple object classes

is composed of multiple tasks. Detection of each class is a

task. At the testing stage, detection scores of different ob-

ject classes are independent. And evaluation of the results

are also independent for these object classes. Existing deep

learning methods consider all classes/tasks jointly and learn

a single feature representation [12, 35]. Is this shared repre-

sentation the best for all object classes? Objects of different

classes have their own discriminative visual appearance. If

the learned representation can focus on specific classes, e.g.

mammals, the learned representation is better in describing

these specific classes. For example, the model finetuned for

200 classes only focuses on the head of rabbit and squirrel,

as shown in Fig. 2 (b). In comparison, if the model can fo-

cus on these mammals, the model can also learn representa-

tion for the body and ear shape of rabbit, and the tail and ear

shape of squirrel, as highlighted by the blue ellipses in Fig.

2 (b). In this paper, we propose a scheme that inherits the

shared representation and learns the specific representation

for the specific subset of classes, e.g. mammals.

The contribution of this paper is as follows:

1. Analysis and experimental investigation on the fac-

tors that influence the effectiveness of finetuning. The in-

vestigated factors include the influence of the pretraining

and finetuning on different layers of the deep model, the

influence of the long tail, the influence of the training sam-

ple number, the effectiveness of different subsets of object

classes, and the influence from the subset of training data.

2. A cascaded hierarchical feature learning approach. In

this approach, object classes are grouped. Different mod-

els are used for detecting object classes in different groups.

The model gradually focuses on the specific group of ob-

ject classes. The knowledge from the larger number of

generic classes is transferred to the smaller number of spe-

cific classes through hierarchical finetuning. The cascade

of the models saves the computational time and helps the

models to focus on hard samples. Through cascade, each

model only focuses on around 6 candidate regions per im-

age. With the proposed feature learning approach, 4.7%

absolute mAP increase is achieved on the ImageNet object

detection dataset.

2. Related work

The long-tail property is noticed by researchers working

on scene parsing [44] and zero-shot learning [20]. Yang

et al. [44] expand the samples of rare classes and achieve

more balanced superpixel classification results. Norouzi

et al. [20] use the semantically similar object classes to pre-

dict the unseen classes of images. Deep learning is consid-

ered as a good representation sharing approach in the battle

against the long tail [3]. The influence of long tail in deep

learning, to our knowledge, is not investigated. We provide

analysis and experimental investigation on the influence of

the long tail in learning features. Our investigation provides

knowledge for training data preparation in deep learning.

Deep learning is found to be effective in many vision

tasks [38, 4, 40, 39, 21, 24, 23, 49, 19, 34, 33, 7, 48, 31].

Deep learning is applied for object detection in many

works [12, 30, 18, 14, 35, 47, 43, 11, 28, 17, 27, 25, 26,

45, 15]. Existing works mainly focus on developing new

deep models [30, 18, 35, 13, 27] and better object detection

pipeline [11, 25, 43, 28, 17, 27]. These works use one fea-

ture representation for all object classes. When using the

hand-crafted features, the same feature extraction mecha-

nism is used for all object classes [2, 41, 10]. In our work,

however, different object classes use different deep mod-

els so that the discriminative representations are specifically

learned for these object classes.

Our work is also different from the model ensemble used

in [35, 43, 25]. In model ensemble, the detection score for

an object class is from multiple deep models with different

parameters or different network architectures. The detec-

tion score for an object class is from only one model in

our approach. Therefore, our approach is complementary

to model ensemble in further improving accuracy.

Cascade is used in many object detection works [9, 6,

37]. We use cascade to speed-up the testing stage.

3. Factors in finetuning for ImageNet object
detection

3.1. Baseline model

Region proposal. The learned detector is used for clas-

sifying each candidate region as containing certain object

class or not. In this paper we use the selective search [32]

for obtaining candidate regions. By default, we use the

bounding box rejection approach in [25] so that around 6%

candidate regions from selective search are retained.

Training and Testing data. We use the large scale Ima-

geNet detection dataset for training and testing. The Ima-

geNet ILSVRC2013 detection dataset is split into three sets:

train13 (395,918), val (20,121), and test (40,152), where

the number of images in each set is in parentheses. Based

on the ILSVRC2013 dataset, the extra train14 (60,658), is

collected in the ILSVRC2014 dataset. There are 200 ob-

ject classes for detection in this dataset. val and test splits

are drawn from the same image distribution. To use val

for both training and validation, val is split into val1 and

val2 in [12]. The split is copied from [12] for our experi-

ments. The test set is not available for extensive evaluation.

Therefore, we have to resort to the val2 data, which con-
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tains around 10,000 images. If not specified, val2 images

are used for evaluation, and the train13, val1, and train14

images are used for training. If not specified, we use the se-

lective search to obtain negative and extra positive bounding

boxes in val1 and the ground truth positive bounding boxes

in train13 and train14.

Network, pretraining, and fintuning. The GoogLeNet

[35] is shown to be the state-of-the-art in many recent works

[25, 35, 43] for ImageNet object detection. We use exactly

the same model structure as that in [35]. The pretrained

GoogLeNet with bounding box annotations provided online
1 is used for finetuning. The mAP on val2 is 40.3% in our

four of five trials, another trial has 40.4% mAP. Therefore,

the pretrained model we use with 40.3% mAP after fine-

tuning is better than that in [35], which is 38.8%. At the

finetuning stage, aside from replacing the CNNs 1000-way

pretrained classification layer with a randomly initialized

(200 + 1)-way softmax classification layer (plus 1 for back-

ground), the CNN architecture is unchanged.

SVM learning. After the features are learned, one-vs-rest

linear SVMs are learned for obtaining the detectors for each

object class, the same as that in [12]. Since this paper fo-

cuses on learning deep model, training data preparation for

SVM is kept unchanged for all experiments, although we

will investigate different training data preparation for deep

model learning.

Summary. Pretrained with bounding box annotations, the

baseline GoogLeNet has 40.3% mAP on val2 when trained

using ILSVRC14 detection data with selective search for

region proposal. This deep model is finetuned by 200+1

softmax loss and then linear SVM is used for learning the

classifier based on the learned deep model.

For the experiments we conduct in this paper, we only

change one of the factors while keeping others the same as

the baseline.

3.2. Investigation on freezing the pretrained layer
in finetuning

In this experiment, we investigate how finetuning spe-

cific layers influences the detection performance. Given the

pretrained GoogLeNet, we freeze the parameter of certain

layers and only finetune parameters of the remaining layers.

The experimental results are shown in Table 1. There are 11

modules in the GoogLeNet: two convolutional layers, i.e.

conv1 and conv2, and nine inception modules, i.e. icp (3a),

icp (3b), icp (4a), icp (4b), icp (4c), icp (4d), icp (4e), icp

(5a), and icp (5b). If we freeze all the 11 modules and use

the features learned from the pretrained model for learning

SVM classification, the mAP is 33.0%, much worse than

finetuning of all 11 modules that has mAP 40.3%. Fine-

tuning all the 11 modules has the same mAP as freezing

the conv1-icp(4a) during finetuning. These frozen modules

are extracting general low level features, which have been

well-learned by the pretrained model. Therefore, it is so not

1www.ee.cuhk.edu.hk/˜wlouyang/projects/

imagenetDeepId/index.html

necessary to finetune these modules. The mAP only drops

by 0.7% even if we fix the eight modules conv1-icp(4d),

which takes 43% the number of parameters, and 80% the

number of operations. As we freeze more and more mod-

ules to higher levels, the mAP decreases more and more

rapidly. The upper layers are more responsible for discrim-

inating semantic objects. Therefore, finetuning of the upper

layers have more impact on the detection performance.

3.3. Investigation on training data preparation

In this section, we investigate the use of different training

data for learning features. The same as the baseline setting

in Section 3.1, train13, train14 and val1 are used for learn-

ing the SVM. In this way, only the learned features are the

factors in influencing the detection performance.

3.3.1 Investigation on different subset of training data

As illustrated in Section 3.1, there are three different sub-

sets of training data. The performance of single subset and

leave-one-subset-out is shown in Table 2. Experimental re-

sults show that train13 is not so effective in learning features

when compared with train14 and val1. The val1, val2 and

test images are scene-like. The train13 images are drawn

from the ILSVRC2013 classification image distribution. It

has a skew towards images of a single centered object. The

mismatch in train13 and val leads to the lower mAP in using

train13 only.

If positive samples are from train14, the model trained

using negative samples from val1 has mAP 35.2%, while

the model using the negative samples from train14 has mAP

39.6%. Therefore, for the same positive samples, it is bet-

ter to use negative samples from the same image instead of

from other images for learning the model.

If the positive samples and the negative samples are from

the same images, val1 has mAP 39% and train14 has mAP

39.6%. There are 60,658 train14 images and 9,887 val1 im-

ages. The increase of training images by about 6 times only

results in 0.6% mAP improvement. We find that train14, al-

though claimed to be fully annotated, still has many objects

not annotated. The unannotated objects are much less on

val1 and val2. The noise in having potential objects not an-

notated is one of the reasons for the small increase in mAP

with the large increase in training images. We will further

investigate the relationship between the number of samples

and mAP in Section 3.3.3.

3.3.2 The long-tail property

Fig. 2 shows the number of samples in val1 for the 200 ob-

ject classes. It can be seen from Fig. 2 that the number of

samples varies a lot for different classes. When the object

classes are sorted by the number of samples, we observe the

long-tail property. 59.5% ground-truth samples are from 20

object classes with largest sample number. Similar statis-

tics are observed in the val2 data. Although we are not
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Num. modules frozen 0 3 6 7 8 9

Modules frozen none conv1-icp(4a) conv1-icp(4d) conv1-icp(4e) conv1-icp(5a) conv1-icp(5b)

mAP 40.3 40.3 39.6 38.8 36.5 33

Table 1. Detection mAP (%) on val2 when freezing modules in GoogLeNet.

positive train13 val1(s) train14(g) train14(s) train14(g)+val1(s) train13+train14(g) train13+val1(s)

negative val1 val1 val1 train14 val1 val1 val1

mAP 37.5 39 35.2 39.6 39.3 37.2 40.1

Table 2. Detection mAP (%) on val2 trained from different combination of training data. The performance of using train13+val1+train14

is 40.3%. (s) denote the augmentation of positive data by boxes from selective search. (g) denotes the use of only ground-truth data.

0 50 100 150 200

1000

2000

3000

4000

5000

6000

0 50 100 150 200

1000

2000

3000

4000

5000

6000

Figure 2. The number of annotated positive samples in val1 as a

function of the object class index in ImageNet (left) and the num-

ber of samples for each class sorted in decreasing order (right).

The three classes largest in sample number are person (6,007), dog

(2,142) and bird (1643), where the number of samples for each

class is in parentheses. In comparison, the three classes smallest

in sample number are hamster (16), lion (19), and centipede (19).

provided with the test data annotations, it is reasonable to

assume that the test data also has similar long-tail property.

In order to make the number of samples more uniformly dis-

tributed, the number of samples from train13 is constrained

to be less than or equal to 1,000 in [12]. With this constraint,

49.5% ground-truth samples are from 40 object classes with

largest sample number when considering the train13, val1

and train14 data altogether. The long tail still exists.

The softmax (cross entropy) loss used for learning the

deep model is as follows:

L = −
N∑

n=1

C∑

c=1

tn,c log pn,c,

where pn,c =
enetn,c

e
∑

C
c=1

netn,c

.

(1)

tn,c denotes the target label and pn,c denotes the prediction
for the nth sample and cth class. tn,c = 1 if the nth sam-
ple belongs to the cth class, tn,c = 0 otherwise. netn,c is
the classification prediction from the neural network. De-
note θ as the parameters to be learned from the network, the
derivative is as follows:

∂L

∂θ
=

∑

n,c

(pn,c − tn,c) ·
∂netn,c

∂θ
. (2)

It can seen from (2) that the gradient of the parameters

is influenced by two factors. First, the accuracy of pn,c in

predicting tn,c. The more accurate pn,c is, the smaller the

gradient in back-propagation (BP) for the nth sample. Sec-

ond, the number of samples belonging to class c. Suppose

the prediction error (pn,c − tn,c) in (2) is of similar mag-

nitude for all samples. If the class bird has 16,00 samples

but the class hamster has only 16 samples, then the magni-

tude of the gradient from bird will be around 100 times of

the magnitude of the gradient from hamster. In this case,

although the network representation is shared by different

classes, the network parameters will be dominated by the

class bird which has much more samples. This is fine for ap-

plications where the importances of classes are determined

by their sample number. For applications like object detec-

tion, however, each class is equally important. The features

learned from deep model dominated by the class bird may

not be good for the class hamster.

3.3.3 Experimental results on the long-tail property

In this experiment, we use train13, train14 and val1

as the training data, which are supposed to have

N+ positive samples/bounding-boxes and N− negative

samples/bounding-boxes. We obtain subset from these data

by the following three schemes:

1. Rand-pos. In this scheme, the N+ positive boxes are

reduced to be N ′

+ boxes by random sampling so that

N ′

+/N+ = r = {2−1, 2−2, 2−3, . . .}. r corresponds to

the ratio of the remaining positive boxes. The negative

boxes are kept unchanged.

2. Rand-all. In this scheme, the numbers of positive

and negative boxes are reduced to be N ′

+ and N ′

−

respectively by random sampling so that N ′

+/N+ =
N ′

−
/N− = r.

3. Pseudo-uniform. In this scheme, the classes with sam-

ples larger than Nmax will be randomly sampled to have

Nmax remaining samples. Classes with samples smaller

than Nmax are untouched. We also require that the re-

maining samples divided by N+ is r. Denote the number

of positive boxes for class c by N+,c. After sampling, we

have N ′

+,c positive boxes for class c. In this scheme, we

have r = (
∑

c N
′

+,c)/N+, N
′

+,c <= Nmax.

In the pseudo-uniform scheme, the number of positives

samples for different classes becomes more uniform when

Nmax is smaller. In the Rand-pos and Rand-all scheme, the

long-tail property is preserved.

Fig. 3 shows the experimental results on the three dif-

ferent schemes. Using all negative samples, we can see

that pseudo-uniform performs better than rand-pos if the

same number of positive samples are used. In fact, when

log2 r = −1,−2,−3,−4,−5, pseudo-uniform requires

only half the number of positive samples to achieve the
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Figure 3. mAP on val2 as a function of the ratio r for remaining

positive boxes for three different schemes – rand-pos, rand-all, and

pseudo-uniform.

same mAP as rand-pos. For example, pseudo-uniform has

mAP 39.9% when log2 r = −3(r = 12.5%), and rand-

pos has mAP 39.9% when log2 r = −2(r = 25%). The

baseline that uses all samples has mAP 40.3%. In the

pseudo-uniform scheme, we observe small improvement

(mAP 40.5%) when Nmax = 3, 000, in which around 40%

positive samples are not used in the finetuning. If we keep

all the training samples and enforce that the mini-batches in

the stochastic gradient descent based BP should have uni-

form distribution in positive sample number, the mAP is

40.7%. The approaches in increasing mAP are not used in

the other experimental results of this paper for fair compari-

son. Therefore, our empirical results show that it is better to

have uniform number of samples per class than long-tailed

samples for learning features.

If both positive and negative boxes are randomly sam-

pled using the scheme rand-all, the performance drops by

0.4%-0.5% compared with the rand-pos scheme that only

samples positive boxes.

When r = 0.01, rand-all have mAP 35.5%. In this case,

only around 34 positive boxes per class are used for fine-

tuning. Finetuning (mAP 35.5%) still has observable in-

crease in mAP (2.5%) compared with the model without

fine-tuning (mAP 33%).

3.4. Experimental study on subsets of object classes

There are 200 object classes in the ImageNet object de-

tection challenge. In this section, we investigate using fea-

tures learned from a subset of object classes for the other ob-

ject classes. As analyzed in Section 3.3.2, both the number

of samples in each class and the estimation accuracy deter-

mine the gradient in learning the deep model. We conduct

experiments on using subsets of object classes that have

largest/smallest number of samples and largest/smallest ac-

curacy. The results are shown in Table 3.

We can use the C = {50, 100, 150} object classes having

the largest accuracy for finetuning, and then use this model

for extracting features for all the 200 classes and learning

their SVMs. In this way, the mAP is 37.9% when C =
50. Much better than the model without finetuning, which

has mAP 33%. Therefore, finetuning on the 50 classes has

learned representations that can be shared by the other 150

classes that are not used for finetuning the deep model. For

example, a learned feature that is good at describing the dog

is good for describing the tiger.

If we leave the 50 object classes with fewest samples out

and use 150 object classes with most samples for finetuning,

the mAP is 40.1%. If all the 200 classes are used for fine-

tuning, the mAP is 40.3%. The inclusion of the 50 object

classes with the fewest samples in finetuning only increases

mAP by 0.2%.

It can be seen from the results that the number of ob-

ject classes used for finetuning is the key factor in influ-

encing the mAP. For example, the use of 50 object classes

have only at most 37.9% mAP in Table 3. Among the

200-class positive boxes used for finetuning, these 50-class

boxes have around 50% samples. In comparison, if the 50%

positive samples are randomly sampled from 200 classes for

finetuning, the mAP is 40.1%, as shown in Fig 3. In fact,

even if only 6.25% positive boxes are randomly sampled,

the mAP is 38.6% and performs better than the use of only

50 classes. Among the four choices of subsets in Table 3,

the choice of the C least accurate object classes has the low-

est mAP. Thus it is the worst choice in obtaining features

that can be shared by other object classes.

This section investigates the use of C classes for 200

classes in finetuning. The next section investigates the use

of C classes for C classes in finetuning.

4. Cascaded hierarchical feature learning for
object detection

4.1. Grouping objects into hierarchical clusters

The 200 object classes are grouped into hierarchical

clusters. Our approach is not constrained to any clustering

method. In Section 5.2.1, we will investigate different clus-

tering methods, in which we find visual similarity to be the

best in detection accuracy. Thus we use visual similarity as

the example for illustration. The visual similarity between

classes a and b is as follows:

Sim(a, b) =

Ni∑

i=1

Nj∑

j=1

< ha,i,hb,j > /NiNj , (3)

where ha,i is the last GoogleNet hidden layer for the ith
training sample of class a, hb,j is for the jth training sam-

ple of class b. < ha,i,hb,j > denotes the inner product

between ha,i and hb,j . With the similarity between two

classes defined, we use the approach in [46] for grouping

object classes into hierarchical clusters. At the hierarchical

level l, denote the jlth group by Sl,jl . In our implementa-

tion, l = 1, . . . , L, L = 4, jl = {1, . . . , Jl}, J1 = 1, J2 =
4, J3 = 7, J4 = 18. Since there are 200 object classes in

ILSVRC object detection, initially, S1,1 = {1, . . . , 200}.

On average, there are 200 object classes per group at level

1, 50 classes per group at level 2, 29 classes per group at

level 3, and 11 classes per group at level 4. The hierar-

chical cluster result is shown in Fig. 4 by a few exemplar

classes. In Fig. 4, we have S1 = S2,1 ∪ S2,2 ∪ S2,3 ∪ S2,4
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Choice Largest accuracy Smallest accuracy Largest number Smallest number

Num. cls 150 100 50 150 100 50 150 100 50 150 100 50

pos num ratio 86.50% 65.80% 47.00% 53.00% 34.20% 13.50% 91.20% 79.59% 62.40% 37.61% 20.42% 8.80%

mAP 40.1 39.4 37.9 39.6 38.3 35.9 40.1 39.1 37.9 39.7 39.2 37.2

Table 3. Object detection accuracy in mAP when finetuned using different number of classes. Num. cls denotes the number of classes used

for finetuning. pos num ratio denotes ratio, i.e. the number of positive samples for class subset choice divided by the number of the all

positive samples. Largest/least accuracy denotes the use of the most/least accurate 50/100/150 classes for finetuning. Softmax accuracy of

the training data is used for evaluating accuracy. Largest/least number denotes the use of the 50/100/150 classes with the largest/smallest

training sample number for finetuning.

(S1,1,M1)

(S2,1,,M2,1)

(S2,2,,M2,2)

(S2,3,,M2,3)

(S2,4,,M2,4)
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(S4,4,,M4,4)

...
...

...

...

Figure 4. Grouping object classes into hierarchical clusters Sl,jl

and finetuning them to obtain multiple models Ml,jl .

and S2,1 = S3,1 ∪ S3,2. In the hierarchical clustering re-

sults, the parent node par(l, jl) and children set ch(l, jl)
of a node (l, jl) are defined such that Sl+1,j′ ⊂ Sl,jl ,
∀(l + 1, j′) ∈ ch(l, jl), Sl,jl = ∪(l+1,j′)∈ch(l,jl)Sl+1,j′ , and

Sl,jl ⊂ Sl−1,par(l,jl). Therefore, a hierarchical tree struc-

ture is defined as shown by examples in Fig. 4.

4.2. Our approach at the Testing Stage

Our approach at the testing stage is described in Algo-

rithm 1. In this approach, a testing sample is evaluated from

root to leaves on the tree. At the node (l, jl), the detection

scores for the classes in group Sl,jl are evaluated (line 6 in

Agorithm 1). These detection scores are used for deciding

if the children nodes ch(l, jl) need to be evaluated (line 8 in

Agorithm 1). For the child node (l+1, j′) ∈ ch(l, jl), if the

maximum detection score among the classes in Sl+1,j′ is

smaller than a threshold Tl, this sample is not considered as

a positive sample in class group Sl+1,j′ , and then the node

(l+1, j′) and its children nodes are not evaluated. Tl chosen

so that the recall on val1 is not influenced much and a large

number of candidates can be rejected. For example, initially

the detection scores for 200-classes {yc}c∈S1,1 are obtained

at the node (1, 1) for a given sample of class bird. These

200-class scores are used for accepting this sample as an an-

imal S2,1 and rejecting this sample as ball S2,2, instrument

S2,3 or furniture S2,4. And then the scores {yc}c∈S2,1 of an-

imals are used for accepting the bird sample as vertebrate

and rejecting it as invertebrate. Therefore, each node fo-

cuses on rejecting the sample as not belonging to a group of

object classes. Finally, only the groups that are not rejected

have the SVM scores for their classes (line 13 in Agorithm

1).

Algorithm 1: Our Approach at the Testing Stage.

Input: {x, the testing sample.

{Sl,jl}, hierarchical clusters of object classes.

Ml,jl , the models.

}
Output: {y = [y1, . . . , yC ], the detection score of x }

1 f1,1 = true ;

2 fl,jl = false for l = 2, . . . , L, jl = 1, . . . , Jl ;

3 for l = 1 to L do

4 for jl = 1 to Jl do

5 if fl,jl then

6 Get scores {yc}c∈Sl,jl
of x using Ml,jl ;

7 for (l + 1, j′) ∈ ch(jl) do

8 If maxc∈Sl+1,j′
yc ≥ Tl, then

fl+1,j′ = true ;

9 end

10 end

11 end

12 end

13 yc = sc,L for c ∈ SL,jL if fL,jL is true; yc = −∞
otherwise.

4.3. Hierarchical Feature Learning

The proposed feature learning approach is described in

Algorithm 2. Each node (l, jl) corresponds to a group of

object classes Sl,jl . For the node (l, jl), a deep model Ml,jl

is finetuned using the model of its parent node Ml−1,par(jl)

as initial point (lines 3-4 in algorithm 2). When finetun-

ing the model Ml,jl , the positive samples are constrained

to have class labels in the group Sl,jl (line 7 in Algorithm

2), and the negative samples are constrained to be accepted

by the its parent node (line 8 in Algorithm 2). Therefore,

only a subset of object classes are used for finetuning the

model Ml,jl . In this way, the model focuses on learning the

representations for this subset of object classes.

When learning the model Ml,jl , we use the model in its

parent node as the initial point so that the knowledge from
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Algorithm 2: Hierarchical Learning of the models.

Input: { Ψ = {x} training samples.

{Sl,jl}, hierarchical clusters of object classes .

X0,1,+, set of all positive samples.

X0,1,−, set of all negative samples .

M0,1, pretrained deep model.

}
Output: {Ml,jl , the finetuned models.}

1 for l = 1 to L do

2 for jl = 1 to Jl do

3 Ml,jl = Ml−1,par(jl) ;

4 Finetune Ml,jl using Xl,jl,+ and Xl,jl,− ;

5 for (l + 1, j′) ∈ ch(jl) do

6 Use Ml,jl to obtain detection scores

{yx=maxc∈Sl+1,j′
yc(x)|x ∈ Xl,jl,−} ;

7 Xl+1,j′,−={x|x ∈ xl,jl,− & yx > Tl} ;

8 Xl+1,j′,+={x|x is a class in Sl+1,j′} ;

9 end

10 end

11 end

the parent node is transferred to the current model. Since

the root node is the pretrained for the 1000-class problem

and finetuned for the 200+1 class problem, the model with

larger level l have inherited the knowledge from both 1000-

class problem and the 200+1 class problem. Cascade is used

for negative samples so that the model Ml,jl focuses on

hard examples that can not be handled well by the model

Ml−1,par(jl) in the parent node.

When finetuning the deep model, we use the multi-class

cross-entropy loss to learn the feature representation. Then

the 2-class hinge loss is used for learning the classifier based

on the feature representation.

5. Experimental results on the Hierarchical
Feature Learning

5.1. Comparison with existing works

We compare with single-model results across state-of-

the-art methods. Table 4 summarizes the result for RCNN

[12] and the results from ILSVRC2014 object detection

challenge. It includes the best results on the test data

submitted to ILSVRC2014 from GoogLeNet, DeepID-Net,

DeepInsignt, UvA-Euvision, and Berkeley Vision, NIN,

SPP, which ranked top among all the teams participating in

the challenge. Our model is based on the GoogLeNet model

without adding any other layer and provided by the authors

in [25] online, which has mAP 40.3%.2 We also include the

recent approach in [43]. The approach in [43] uses context

2There are results higher than 40.3% reported in [25], using additional

layers, better region proposals, additional context and bounding box re-

gression that we did not use but complementary to our approach. We use

the 40.3% baseline result they provide online to be consistent with the

baseline introduced in Section 3.1.

(1.3% mAP increase), better region proposal (0.9% mAP

increase in [43]), pair wise term for bounding box relation-

ship (3.5% mAP increase in [43]), which are not used us but

complementary to our all of implementations in Table 6.

5.2. Ablation study

The experiments in this section are only different in fine-

tuining from the baseline introduced in Section 3.1.

5.2.1 Investigation on different clustering methods

The experimental results that investigate different cluster-

ing methods are shown in Table 5. In these experiments,

we cluster the 200 object classes into 4 groups, which cor-

responds to the tree of level 2 in Fig. 4. The models for the

4 groups are finetuned from the model finetuned using 200

object classes, which is the baseline with mAP 40.3% intro-

duced in Section 3.1. It can be seen from Table 5 that all

the clustering approaches improved the detection accuracy

except for the approach that randomly assigns the object

classes into 4 groups, Random in Table 5. The use of con-

fusion matrix and the use of visual similarity perform better

than the other clustering approaches. When the wordnet id

(WNID) is used, we cluster the 200 object classes into the

following 4 groups: 1) animals and person; 2) device and

traffic light; 3) instrumentation that is not device; 4) other

remaining artifacts e.g. food, substance.

We find that the clustering results obtained from visual

similarity is very similar to the results obtained from word-

net id for animals. We also find many examples of excep-

tions for artifacts and person. Person is assigned to arti-

facts that frequently contact with person, e.g. accordion,

baby bed. Bookshelf, which belongs to instrumentation, is

grouped with refrigerator, which does not belong to instru-

mentation in wordnet id. Baseball, which belongs to in-

strumentation, is grouped with bathing cap, which does not

belong to instrumentation.

Experimental results show that the confusion matrix and

the visual similarity have similar performance. We also find

that their clustering results are very similar. Visually similar

objects of different classes often cause confusion. There-

fore, both confusion matrix and the visual similarity are

good choices for clustering for our approach. Since the em-

pirical results show that the visual similarity performs better

than the other approaches, we have adopted it for clustering

in our final implementation.

5.2.2 Investigation on the influence of hierarchy level

The experimental results evaluating the influence of level L
in hierarchical feature learning is shown in Table 6. Con-

sistent mAP improvement is observed when the level in-

creases. As the level increases from 1 to 4, the mAP in-

creases from 40.3% to 45%. When the level increases, each

model focuses on learning more specific feature represen-

tations. With the more specific representations, the fea-

tures are more discriminative in distinguishing them from
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approach SPP∗ NIN ∗ RCNN Berkeley UvA DeepInsight DeepID-Net GoogLeNet S-Pixels ours

[14] [18] [12] [12] [32] [42] [25] [35] [43]

ImageNet val2 n/a 35.6 31.0 33.4 n/a 40.1 40.3 38.8 44.8 45.0

ImageNet test 31.8 n/a 31.4 34.5 35.4 40.2 n/a 38.0 42.5 n/a

Table 4. Detection mAP (%) on ILSVRC2014 for top ranked approaches with single model. For fair comparison with [25], we use their

learned GoogLeNet parameters provided online as our baseline. The methods marked with * do not use classification data for pre-training.

Clustering method Random Accuracy Num Sample Size WNID Confusion Visual Sim

Increase in mAP -1.1% 0.48% 0.56% 0.66% 0.77% 0.91% 0.967%

Table 5. Detection accuracy increase in mAP on ILSVRC val2 for different methods compared with the baseline model with mAP 40.3%.

The classification accuracy of object classes in the training data as the descriptor for clustering for accuracy. The number of samples is used

as the descriptor for Num. Sample. The average size of bounding boxes (measured by area of bounding box) is used as the descriptor for

size. The hierarchy in wordnet id (WNID) is used for clustering for WNID. The confusion matrix of object classes is used as the similarity

among classes for confusion. The visual similarity in (2) is used as the similarity among classes for Visual Sim.

Hierarchy level L 1 2 3 4

#. groups (=Nm) 1 4 7 18

avg #. classes per group 200 50 29 11

Nb,l 136 25.8 15.2 5.6

Nb,l ·Nm 136 103.2 106.4 100.8

mAP 40.3% 41.3% 42.5% 45%

Table 6. Detection accuracy in mAP and other statistics on

ILSVRC14 val2 for the cascaded hierarchical feature learning with

different levels. Nb,l denotes the average number of boxes per im-

age evaluated per model for a given hierarchy level l. Nm denotes

the number of models for a given tree depth.

approach 0⇒1 0⇒2 0⇒1 ⇒2 0⇒1 ⇒2⇒3 0⇒1⇒3

mAP 40.3% 38.9% 41.3% 42.5% 41.8%

Table 7. Detection accuracy in mAP on ILSVRC val2 for different

finetuning strategies. 0 denotes the pretrained model, l = 1, 2, 3
denotes the model at the tree level l. For example, 0 ⇒ 1 denotes

finetuning 200 object classes from the 1000-class model. 0 ⇒ 2
denotes finetuning 4 class groups from the 1000-class model.

the background. Therefore, these better features lead to bet-

ter detection accuracy.

Since we have adopted the bounding box rejection ap-

proach in [25] for the model with level 1, there are only

136 boxes per image left for the model with level 1. When

the level is 4, there are 18 models to be evaluated for each

bounding box. This seems to be a huge number. However,

with the cascade, we can reject a large number of boxes for

each model. On average, there are only 5.6 boxes per image

evaluated for each model. Even if the 18 models are consid-

ered altogether, there are only around 100 boxes per image

used for feature extraction and classification. Therefore, the

use of multiple models that extract features for different ob-

ject classes does not take much computational time.

5.2.3 Investigation on the finetuning strategy

In our final implementation, the deep models at higher lev-

els (larger l) are finetuned based on the deep model at lower

levels. The experimental results in Table 7 shows the varia-

tions on the finetuning strategy.

If we use only one model for 200 classes and finetune

this model from the 1000-class ImageNet pretrained model,

the performance is 40.3%, which the baseline described in

Section 3.1 and denoted by 0 ⇒ 1 in Table 7.

If we directly finetune the 4 models at level 2 from the

1000-class pretrained model, the mAP decreases to 38.9%.

In comparison, when learning 4 models by using the 200-

class finetuned model at level 1 as the initial point, the mAP

increases to 41.3%. The 4 models at level 2 focuses on dis-

criminating around 50 object classes from the background.

Direct finetunng of the 4 models from the pretrained model

does not use the knowledge of their correlated other 150

object classes. In comparison, finetuning from the model at

level 1, which is finetuned using the 200 object classes, has

used the knowledge from the 200 object classes. There-

fore, improvement is observed when using the 200-class

finetuned model as initial point.

When finetuning the models at level 3, the use of the

models at level 2 as initial point has mAP 42.5%, and the

use of the models at level 1 as initial point has mAP 41.8%.

The learning strategy that gradually focuses the model from

200 to 50 and then to 29 classes performs better than the

abrupt jump from 200 classes to 29 classes.

5.2.4 Results on the PASCAL VOC

We also observe 1.2% mAP improvement on PASCAL

VOC 2007 when its object classes are clustered into 4

groups for GoogLeNet.

6. Conclusion

This paper provides analysis and experimental results on

the factors that influences finetuning on the object detec-

tion task. We find that it is better to have the number of

samples uniform across different classes for feature learn-

ing. A cascaded hierarchical feature learning is proposed

to improve the effectiveness of the learned features. 4.7%

absolute mAP improvement is achieved using the proposed

scheme without much increase in computational cost.
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