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Abstract

In this paper we present a system for performing low

rank matrix factorization. Low-rank matrix factorization is

an essential problem in many areas, including computer vi-

sion with applications in affine structure-from-motion, pho-

tometric stereo, and non-rigid structure from motion. We

specifically target structured data patterns, with outliers

and large amounts of missing data. Using recently devel-

oped characterizations of minimal solutions to matrix fac-

torization problems with missing data, we show how these

can be used as building blocks in a hierarchical system that

performs bootstrapping on all levels. This gives a robust

and fast system, with state-of-the-art performance.

1. Introduction

We will in this paper address the problem of robust esti-

mation of low rank factorizations of matrices with missing

data and outliers. Many problems in geometric computer

vision can be formulated as such. Two examples are

• Affine structure-from-motion (SfM), where the obser-

vation matrix containing feature tracks can be factor-

ized into the camera motions and the 3D structure.

• Photometric stereo, where the directions of light

sources and the surface normals are separated by fac-

torizing the measurement matrix composed of pixel in-

tensities under a Lambertian model.

Other applications can be found in [2, 4, 12, 36]. These

problems often lead to measurement matrices with highly

structured data, in terms of which measurements that are

available. In this paper we specifically target problems that

exhibit such structured data patterns. Without missing data,

the optimal solution to low rank matrix factorization, under

the L2-norm, is given by truncating the singular value de-

composition of the measurement matrix, see [10]. When
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there are measurements missing in the data, there is no

closed form solution to the L2-norm minimization prob-

lem. The Wiberg algorithm [35] was the first method to

handle missing data. A modified version of the Wiberg al-

gorithm was presented in [29]. In [5], a damped Newton

method is proposed to handle the missing data. If there

are gross outliers in the data, optimizing the L2-norm can

give poor results. In [1], Aanaes et al. proposed an iter-

atively re-weighted least squares approach to optimize the

objective function for robustness to outliers. Using more ro-

bust norms to outliers was considered in [20], where algo-

rithms based on alternating optimization under the Huber-

norm and the L1-norm were introduced. Eriksson and Hen-

gel generalized the Wiberg algorithm in [11], to using the

L1-norm. Sometimes, extra constraints can be posed on the

factorization matrices. In [6, 37] constraints that the so-

lution should lie on a certain manifold are considered and

incorporated in the formulation. Due to the non-convexity

of the matrix factorization, most methods mentioned above

are based on alternating optimization, and are prone to get

trapped in local minima. To address this issue, several

works, such as [9, 8, 25, 12, 30] re-formulate the problem to

minimize the convex surrogate of the rank function – the nu-

clear norm. This makes it possible to use convex optimiza-

tion to find the global optimum of the approximated objec-

tive function. These approaches can handle the problems

when the rank is not known a priori. However, for appli-

cations with a given rank, the nuclear norm based methods

usually perform inferior to the bilinear formulation-based

methods [7]. The convex formulations often have problems

with very high amounts of missing data and outliers. A way

of handling highly structured data matrices is to divide the

whole matrix into overlapping sub-blocks and combine the

sub-block solutions, see [27, 17, 24, 23, 16]. Most of these

methods do not consider both outliers and missing data at

the same time. There are a number of works that target

specific computer vision applications for incomplete data.

Examples are relative orientation problems, [18, 31], batch

structure from motion estimation, [13], multi-dimensional

scaling, [32], and shape estimation, [19]. It has also been

15820



shown that the specific problem of structure from motion

with missing data is NP-hard, [28].

In this paper we largely build upon the work in [16]

where minimal solvers for low rank factorizations of ma-

trices with missing data were introduced. The emphasis

was on how to analyze, describe and solve minimal prob-

lems. In this paper we address a number of algorithmic

challenges (speed, accuracy, avoidance of local minima, ro-

bustness to outliers). Our contribution is a system that es-

timates a low rank factorization of a measurement matrix

with, large amounts of missing data, in highly structured

data patterns. It is based on bootstrapping minimal solvers,

which gives speed and robustness to outliers. Running the

solvers in a hierarchical manner gives tractable behaviour

for larger input matrices, and easy parallelization. The sys-

tem makes it possible to add additional constraints on the

solution, throughout the pipeline.

2. Problem formulation

We will look at the problem of finding a low rank matrix

approximation to a given matrix X . Any rank K matrix X

of size M × N can be written as UV = X , where U is a

rank K matrix of size M ×K and V is a rank K matrix of

size K × N . If X represents measurements of something,

that in theory should have rank K, we can not expect this

equation to hold exactly due to noise. We could then instead

look at the norm of the residual between the measurement

matrix X and the model UV , i.e.

e = ‖X − UV ‖F . (1)

In many cases one does not have access to all measure-

ments, i.e. not all entries of X are known. We can then

represent which measurements are known by the index ma-

trix W of size M ×N , where the entries are either zero, if

the corresponding measurement is unknown, or one if the

corresponding measurement is known. We can then write

the corresponding residual norm as,

e = ‖(X − UV )⊙W‖F , (2)

where ⊙ represents element-wise multiplication. In addi-

tion to measurement noise, one can also have gross out-

liers in the data, in some applications. In this case mini-

mizing an error norm based on an L2-distance often gives

bad results. In order to decrease the influence of the out-

liers, robust norms are used, such as the L1-norm or the

Huber norm. In [3] a more refined loss function is proposed.

If we assume that the inlier residuals approximately follow

a Gaussian distribution, whereas outlier residuals have ap-

proximately uniformly distributed errors, then this leads to

the loss function

l(r) = − log(c+ exp(−r2)), (3)

where r is the residual error. Truncating the squared error

l(r) =

{

r2 if |r| ≤ ǫ

ǫ2 otherwise
(4)

gives a good approximation. If we denote the residual ma-

trix R = (X−UV )⊙W , with entries rij , we can formulate

our problem as

minimize
U,V

∑

i,j

l(rij). (5)

The final error depends on ǫ which we set as a parameter in

our algorithm. This is the bound that differentiates an inlier

from an outlier measurement.

3. Matrix factorization with missing data

We will use the characterization of low rank matrix fac-

torization problems that was described in [16]. For com-

pleteness and readability, we will in short describe some of

the results from that paper.

A key question is to study for which index matrices W

of type M ×N , the problem of calculating the rank K ma-

trix X = UV is minimal and well-defined. For this we

introduce the manifold Ω = RM×K × RK×N of possible

solutions z = (U, V ). The solution set ΩX,W ⊂ Ω for a

given data matrix X and a index matrix W is defined as

ΩX,W = {z = (U, V ) ∈ Ω|W ⊙ (X − UV ) = 0}. (6)

Typically if the index matrix W has to many non-zero

elements, then there are too many constraints in W ⊙ (X −
UV ) = 0 and the solution set ΩX,W is empty for general

X . If there is a solution X = UV , then we are interested

to known if the solution is unique up to the so called Gauge

freedom z = (U, V ) vs z = (UH,H−1V ), where H is a

general invertible K ×K matrix.

Assume that input data matrix X = U0V0 of size M ×
N has been generated by multiplying matrices U0 of size

K × M and V0 of size K × N . Assume also that both

of these matrices are general in the sense that all K × K

submatrices of both U0 and V0 have rank K. Furthermore

assume that M ≥ K and N ≥ K. An index matrix W

is said to be rigid, if the solution set ΩX,W locally around

the point z0 = (U0, V0) only consists of the set z(H) =
{(U0H,H−1V0)|H invertible K ×K matrix}.

Since we are assuming that every sub-minor of U0 and

V0 has full rank, one may actually fix the Gauge freedom by

keeping one such sub-minor fixed. For example we could

study the solutions for the points z = (U, V ) such that the

first K rows of U are equal to those of U0.

For two index matrices W1 and W2 of the same size we

say that W1 ≤ W2 if the inequality holds for every element.

We say that W1 < W2 if W1 ≤ W2 and W1 6= W2. It is
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trivial to see that if W is rigid and if W ≤ W ′ then W ′

is also rigid. It also can be shown that if W ′ is rigid and

overdetermined, then there is at least one W < W ′ that

is rigid and minimal. We say that an index matrix W is

minimal if it is rigid and satisfies
∑

ij W (i, j) = MK +

NK −K2. For a minimal index matrix W and for general

data X the solution set ΩX,W consists of a finite number of

points nW up to the gauge freedom.

3.1. Henneberg extensions

We will now describe how to generate the minimal prob-

lems. The inspiration comes from rigid graph theory, where

the Henneberg construction is used to generate the Laman

graph, see [22, 14]. The idea is that one starts with the

smallest minimal index matrix, and by a series of exten-

sions generate every minimal index matrix. For the rank K

problem the smallest index matrix is a matrix of size K×K

consisting of ones only.

There are both constructive extensions and non-

constructive extensions. For a constructive extension from

W to W ′, one can infer the number of solutions nW ′ from

nW and construct the solver, denoted by fW ′ from fW . For

non-constructive extensions, it can be shown that W is min-

imal if and only if W ′ is minimal. However, we can in gen-

eral neither infer the number of solutions nW ′ from nW nor

derive a solver fW ′ from fW . Certain of these constructive

extensions are particularly fast and efficient. The simplest

one is as follows.

Given a minimal index matrix W for a rank-K problem

of size M × N , an extended minimal index matrix W ′ of

size M × (N + 1) is formed by adding a column with ex-

actly K elements set to one. The number of solutions are

identical, i.e. nW = nW ′ . Extending an algorithm from fW
to fW ′ is straightforward. A similar extension can be done

by adding a row with K indices.

3.2. Henneberg reductions

There is also a simple recursive method to check if an

index matrix W can be generated using only Henneberg 1

extensions. The procedure is as follows. Start with an index

matrix of size M × N . If M = N = K then the index

matrix is minimal if and only if the matrix consists only of

ones. If M or N is larger than K, we calculate the minimal

number of ones for a row or column. If this number is less

than K, then it can be shown that the index set in question

is non-rigid. If this number is larger than K it can be shown

that the index set (if minimal) cannot be generated by Hen-

neberg 1 extensions only. Finally if the number is K, then

we can remove the row (or column) with exactly K ones

and study this index matrix, which now is of smaller size.

The algorithm terminates after at most M + N − 2K
steps. After running the algorithm we determine if the in-

dex set is minimal and can be constructed by a series of

Henneberg 1 extensions. But we also obtain the pattern of

extensions. Thus we obtain an efficient method of calculat-

ing the unique solution (U, V ) from a data matrix X so that

W ⊙ (X − UV ) = 0.

3.3. Glues

Assume that the solutions to two sub-problem {W1, X1}
and {W2, X2} are given by {U1, V1} and {U2, V2} respec-

tively. To construct the solution to {W,X}, the idea is to

find a transformation matrix H ∈ R
K×K to transform the

subspace U2 to the same coordinate framework as the sub-

space U1. Using this transformation we have

U2V2 = (U2H)(H−1V2). (7)

Now U2H and H−1V2 are in the same coordinate frame-

work as U1 and V1 respectively. The remaining problem is

to solve for H . We have the following constraint, that states

that U1 and U2H should coincide for the overlapping rows

as

U1(I12, :) = U2(I12, :)H, (8)

where I1 and I2 denotes the indices of overlapping rows in

U1 and U2 respectively and U(I, :) denotes the sub-matrix

of U by taking the rows given by I. Similarly we have the

overlapping constraints for V1 and H−1V2 as

HV1(:, J12) = V2(:, J12), (9)

where J1 and J2 denotes the indices of overlapping columns

in V1 and V2 respectively.

If we have enough constraints from (8) and (9), H can

be solved linearly. Two examples are if there are at least

K overlapping rows or K overlapping columns. For the

cases where the overlap doesn’t give sufficiently many con-

straints, we need some extra constraint outside W1 and W2

to solve for the transformation matrix H .

4. Building blocks

In this section we will describe the basic components that

are used in our matrix factorization method. Our full system

will be described Section 5.

4.1. Initializing solutions

We use RANSAC to find small initial solutions. We

choose a sub-problem to problem 5, by choosing a sub-

matrix Wi of W . We further randomly select a minimal

number of measurements, represented by Wm < Wi. These

index-matrices have corresponding measurement matrices

Xi and Xm. Even though we have chosen a minimal subset

of measurements, this need not represent a well posed mini-

mal problem. In order to check this, we perform Henneberg

reductions as described in Section 3.2. If Wm indeed rep-

resents a minimal problem, we can, if we have a solver for
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this case, solve the corresponding matrix factorization of

Xm. This gives a minimal solution (Um, Vm). We can now

look at how well this solution matches the other measure-

ments in Wi by looking at the residuals (UmVm−Xi)⊙Wi.

Repeating this process gives a set of initial good solutions.

4.2. Extending solutions

If we have a solution, represented by (Ui, Vi) we can

minimally extend this solution row- or columnwise using

Henneberg-1 extensions, for every column (or row) that has

at least K measurements. For every such column a, we

randomly select K rows that are represented in the corre-

sponding index sub-matrix Wi, and use the Henneberg-1

extension to find the new column va so that V̄i =
[

Vi va
]

.

To handle outliers we check how many of the measurements

that fit this new Ūi. If we have a substantial enough num-

ber of inliers we keep this solution, otherwise we repeat the

process a number of times.

4.3. Glueing solutions

If we have two solutions, represented by (Ui, Vi) and

(Uj , Vj) we can, depending on the overlap of the two so-

lutions, glue these solutions into one using the methods de-

scribed in Section 3. Basically this can be done if there is

enough information to estimate the K ×K transformation

matrix H so that UiH and H−1Vi are given in the same

coordinate frame as Uj and Vj . Using a randomly selected

minimal set of measurements to estimate H gives a new

solution (Uk, Vk) where Uk is the union of UiH and Uj ,

and Vk is the union of H−1Vi and Vj . To handle outliers we

check how many inliers we get for this new solution. Again,

if we have a substantial enough number of inliers we keep

this solution, otherwise we repeat the process a number of

times.

4.4. Refining solutions

Since we use minimal solvers, and extend these solutions

iteratively, we need to refine our solutions in order to avoid

error propagation. We non-linearly refine our solutions, by

minimizing (5) iteratively using Gauss Newton descent. We

handle the truncation, at each step, by only optimizing over

the inlier set, and then updating the inlier set using the new

estimate of U and V . Since the error on the inlier set is

quadratic in U and V the derivatives with respect to U and

V are easily obtained.

5. Sampling scheme

Using the building blocks from the previous section, we

can now describe our full sampling scheme. The basic idea

behind our method is that we will have several solutions

competing against each other. These solutions will expand

and merge, but at all steps we will try to be robust against

outliers and inlier errors, so that we do not propagate errors.

We do this by random sampling at all instances.

We assume that we have four functions available: INIT,

EXTEND, GLUE and REFINE, that do initialization, ex-

tensions, glues and non-linear refinement respectively as

described in Sections 4.1-4.4. We start by initializing a

number of seed solutions. For each solution i, we have

Ui and Vi. We then, for each of these seed solutions, at-

tempt to extend it and refine it. If two solutions overlap,

we try to glue them together. We repeat this procedure un-

til we have at least one solution that covers the whole data

matrix X . Sometimes the errors of a solution will grow

during this process, and we remove solutions that have a

residual norm larger than some fixed threshold. This means

that we could end up with an empty solution set. In this

case we re-initialize a number of seed solutions. The steps

of our procedure are summarized in Algorithm 1. There

Algorithm 1 Matrix factorization sampling scheme

1: Given an M ×N data matrix X with index matrix W ,

2: initialize a solution set S = INIT,

3: (S = {S1, S2, . . . , Sn}, Si = (Ui, Vi)).
4: while no Si is of size M ×N do

5: for all i do

6: Si = EXTEND Si (column-wise)

7: Si = EXTEND Si (row-wise)

8: Si = REFINE Si

9: if ‖(UiVi −Xi)⊙Wi‖F > C then

10: S = S \ Si

11: end if

12: end for

13: for all overlapping Si, Sj do

14: Sk = GLUE Si, Sj

15: S = S ∪ Sk

16: end for

17: if S = ∅ then

18: Initialize n new seed solutions S = INIT.

19: end if

20: end while

is of course no guarantee that Algorithm 1 will converge,

but given a well posed problem and relevant parameter set-

tings, it is our experience that it will. We terminate after a

fixed number of iterations or when we have at least one so-

lution that covers the whole measurement matrix. We will

in the experimental section validate this, on both synthetic

and real data. There are a number of parameters that need

to be set in order for the algorithm to work properly. The

most important one is the error bound, i.e. the reprojection

error that differentiates between an inlier and an outlier. In

order to increase the robustness, we have introduced an ab-

solute threshold on the number of inliers for the EXTEND,

and GLUE functions. For each row and column the num-
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Figure 1. Results from running Algorithm 1 on the Dinosaur experiment (See Section 6.1 for details). Measured data points in blue, and

the extent of the solutions are depicted as green boxes. The figure shows from left to right how the solution set evolves.

ber of inliers should exceed this threshold. We have used

the rank plus a small integer as threshold. We also need

to set the number of RANSAC iterations for each of these

functions, but this will mainly affect the total running time.

If we assume structured data, it makes sense to smooth the

index matrix W with a two-dimensional Gaussian, to ob-

tain Wsm. We then sample initialization matrices guided by

Wsm as a probability measure. Sampled positions are re-

moved from Wsm to avoid multiple initial points. In [16]

they do a manual block subdivision (with relatively large

blocks e.g. 50 × 50). This means that the model that is fit-

ted is very large (e.g. 50K + 50K − K2 parameters for a

rank K problem) algorithm. In our approach there is no

need for any explicit block subdivision, and the initial mod-

els that are fitted are much smaller. This gives a much more

tractable and robust algorithm.

6. Experiments

We have applied our method to a number of different ma-

trix factorization problems, in order to show the usefulness

of it in terms of robustness, accuracy and speed.

We have compared our results to a number of state-of-

the-art methods for low rank matrix factorization, namely

the method of Larsson et al., [24], the method of Jiang et al.,

[16], the Truncated Nuclear Norm Regularization (TNNR-

ADMM) [15], OptSpace [21], the damped Wiberg algo-

rithm using the implementation of Okatani et al. [29], and

the L1Wiberg algorithm, [11], using the C++ implementa-

tion from [33]. In the results we have included the relevant

comparisons, in order to make the tables and graphs more

readable. It has been previously reported (in [16]) that the

methods of [15] and [21] perform much worse for struc-

tured data patterns with high amounts of missing data. This

is also our experience end hence we have omitted these re-

sults. Most of the methods do not handle outliers, and in

the absence of outliers the Wiberg algorithm gives best ac-

curacy. For this reason we mainly focus on comparison

with the L1- and L2-versions of the Wiberg algorithm in

the synthetic experiments in Section 6.3. All tests were con-

ducted on a desktop computer running Ubuntu, with an In-

tel Core i7 3.6 GHz processor. The Matlab implementation

of our method is available at https://github.com/

hamburgerlady/miss-ranko.

6.1. Affine structure from motion

Given a full data matrix and an affine camera model it is

possible to solve the structure from motion problem using

factorization. The standard way of doing this is by first re-

moving the centroid of each point in the images. This leads

to a rank 3 factorization problem. When there is missing

data, we can neither use SVD for factorization nor remove

the centroid since this is not known. We can still write the

problem as a rank 4 matrix factorization problem with miss-

ing data, see e.g. [34]. An affine camera is of the form

Pi =





Ai

Bi

0 0 0 1



 . (10)

If we collect the N (homogeneous) 3D points in the 4×N

matrix V, one usually writes the rank 4 problem as UV =
X , where U is the 2M × 4 matrix containing the stacked

camera rows Ai and Bi, and the 2M×N matrix X contains

the x and y coordinates of image points. However, solv-

ing this rank 4 matrix factorization problem ignores the fact

that the last row of the camera matrices should be equal to

[0 0 0 1], and that the last coordinate of each homogeneous

point should be equal to one. In our model we include this

constraint by simply adding a row in the measurement ma-

trix with just ones. We have found this to be a very powerful

constraint, since we know it should hold even for missing

data, and we use it throughout our pipeline. If the constraint

is fulfilled, we can simply upgrade to the affine model by

Ua = UH so that the last row of Ua is equal to [0 0 0 1].
We have run Algorithm 1 on the well known Dinosaur se-

quence. This is a sequence that contains very little outliers,

but a large amount of missing data (88%). Even though

the underlying structure from motion can be (and has been)

solved using a multitude of methods, the Dinosaur sequence

works well as a benchmark problem for matrix factoriza-

tion. We have compared our results with to those of Lars-

son et al., [24]. In their work they also did experiments on

using the nuclear norm and we have included these results

here. In Jiang et al., [16] it was reported that the Trun-

cated Nuclear Norm Regularization (TNNR-ADMM) [15]
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Algorithm

Dataset [16] [24] [29] Proposed

Dino ∼300 pts 99 73.3 28.0 17.0

Dino ∼2000 pts - - 144.1 48.45

Linnaeus ∼2000 pts - - 580000 380.5

Linnaeus ∼4000 pts - - - 543.4

Table 1. Comparison of results from the Dinosaur and Linnaeus

reconstruction experiments. The table shows the Frobenius er-

rors using the proposed method compared to the Nuclear norm

minimization, the method of Larsson et al. [24], and the damped

Wiberg algorithm [29].

−2 −1 0 1 2

10%

20%

Residual error (pixels)

−4 −2 0 2 4

10%

20%

Residual error (pixels)

Figure 2. Left: Histogram of the final (non-truncated) residuals

from the Dinosaur experiment using our proposed method. The

results are from the larger dataset, with approximately 2000 3D

points. Right: Histogram of the final (non-truncated) residuals

from the Linnaeus experiment using our proposed method.

and OptSpace [21] failed to recover the 2D tracks from the

Dinosaur sequence. This is also our experience, as we con-

sistently failed to recover a reasonable solution using these

methods. In addition we have also run the damped Wiberg

algorithm using the implementation of Okatani et al. [29].

In Table 1 the Frobenius norm of the final factorizations are

shown. The average running time for the Wiberg algorithm

was 144 seconds, compared to around 3 seconds for our

method. We have also run our method on a larger point set.

For this set we didn’t have access to results from [24]. We

have run our method multiple times, and we always end up

in the same optimum. Here the running time for the Wiberg

algorithm was 4087 seconds, compared to 5.4 seconds for

our method. A histogram of the residuals (in pixels) from

our reconstruction is shown in Figure 2. Using the calibra-

tion of the projective camera model, we can upgrade our

affine reconstruction to an orthographic. The resulting cal-

ibrated affine reconstruction is shown to the right in Fig-

ure 3. In a second experiment, we recorded a sequence of a

statue of Carl Linnaeus. We extracted Harris corner points,

and tracked these using the Kanade-Lucas-Tomasi (KLT)

tracker [26]. This resulted in a sequence with 86 images

Figure 3. Results from the Dinosaur experiment, with approxi-

mately 2000 points. Left: Measured tracks (green) and recon-

structed tracks (blue). Right: The calibrated affine reconstruction.

Figure 4. The figure shows three frames of the Linnaeus sequence.

Also shown are the tracked Harris points (orange circles) and the

reprojected points (white dots) using the proposed method. For

visibility a random subset of 250 points are shown

and a total of 3977 3D points. This sequence also contains

closed loops, i.e. points were tracked from the last frames to

the first. Three frames of the sequence can be seen in Fig-

ure 4. The results of running our algorithm on this sequence

can be seen in Table 1. The running time for the full dataset

was 39.8 s. The extracted points (orange circles) and the

reprojected points (white dots) can be seen in Figure 4. The

sequence constains approximately 1% outliers. As for the

Dinosaur sequence, the Truncated Nuclear Norm Regular-

ization (TNNR-ADMM) [15] and OptSpace [21] failed to

recover reasonable 2D tracks from the Linnaeus sequence.

We were not able to run the damped Wiberg algorithm on

the full dataset, but the results for a subset of around half

the points can be seen in Table 1. The running time for our

method on the smaller Linnaeus sequence was 10.4 s com-

pared to 1068 s for the Wiberg algorithm. We didn’t have

access to results from [24].

6.2. Linear shape basis estimation

If we have non-rigid structures in a scene, a linear shape

basis can be used to model the deformations. The under-

lying assumption is that the non-rigid deformation of the

object can be represented as a linear combination of a set of
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Algorithm

Dataset [24] [16] [29] Proposed

Book 0.3522 0.1740 0.1740 0.1740

Hand 0.8613 0.6891 0.2802 0.2802

Book-10% 8.0436 0.1772 0.1534 0.1534

Hand-10% 1.5495 0.7297 0.2634 0.2634

Table 2. Comparison of the result on linear shape basis estimation

using the Book and Hand dataset. The second experiment contains

an additional 10% missing data. The table shows the Frobenius er-

rors using the proposed method compared to the methods of [24],

[16] and the damped Wiberg algorithm [29].

shapes. Typically the size of the shape basis is much smaller

than either the number of frames, or the tracked points, so

the measurement matrix containing the point tracks can be

factorized into a coefficient matrix and a shape basis matrix.

For our experiments we used the datasets from [24],

Book and Hand. In these experiments the image points

are tracked using a standard Kanade-Lucas-Tomasi (KLT)

tracker [26]. Due to occlusions, the tracker fails after a

number of frames for a subset of points, which leads to

missing data. To compare with the results in [16] we use

the same setup as they do, using a subset of 42 frames

with 60 tracked points from the Book and 38 frames with

203 points from the Hand dataset. We then find rank-3

and rank-5 factorizations of the two datasets respectively.

We ran our algorithm, and also the Wiberg algorithm using

the implementation in [29]. The results can be seen in Ta-

ble 2. The Wiberg algorithm was initialized randomly. Our

method and the Wiberg minimization achieve the same op-

tima, which are slightly better than the other methods. The

reason is probably that the Wiberg and our method finds the

same optimum– that we believe is the global one – since the

set is practically outlier free. The other methods do not in

this case find an equally good optimum. For these smaller

problems the Wiberg algorithm works well, but for larger

problems it becomes intractable in terms of running time,

as described in Section 6.1.

6.3. Performance tests

We have conducted a number of synthetic tests to test

the performance of our method. The basic setup was done

by randomly drawing two matrices UM×K and VK×N . The

product X0 = UV was then perturbed with Gaussian noise,

i.e. X = X0 + ǫij with ǫij ∈ N(0, σ). A band diagonal

matrix WM×N was used to prescribe which measurements

were available. The bandwidth b for the matrix W (with en-

tries wij) is defined using wij = 0 for j < i−b or j > i+b.

Finally, a certain percentage of the seen measurements were

replaced with entries drawn randomly from a uniform dis-

tribution, to simulate gross outliers. In a first experiment

we tested the sensitivity to the proportion of outliers in the

measurement matrix. We used a 300 × 300 measurement

matrix X , with bandwidth 20. The entries were approx-

imately between minus one and plus one, with Gaussian

noise with standard deviation 1e − 3. A certain percent-

age of the measurements were then replaced with gross out-

liers. We ran Algorithm 1 and compared the results with the

L1-Wiberg algorithm, [11], using the C++ implementation

from [33]. The results can be seen to the left, in Figure 5.

We have also constructed an oracle ground truth solution to

compare the results. This solution was attained by running

the non-linear refinement, using the ground truth inlier set,

and the ground truth U and V as starting solution. This

will in general give a better optimum than U and V . One

can see that both the tested algorithms perform on par. The

average running times are depicted in Figure 5. The mid-

dle graph shows both algorithms in the same plot, and the

right hand plot shows a magnification of the running times

for the proposed algorithm. The L1-Wiberg algorithm has

very unattractive time complexity in terms of the size of

the input measurement matrix, and we failed to run it for

larger sizes than 200 × 200. Our method works well for

moderate amounts of outliers, but as the outlier percentage

increases, the RANSAC initialization will take longer and

longer time, and for this test the break-down point for our

method was around 20%. In a second experiment we used a

similar setup, but instead of varying the outlier rate, we var-

ied the size of the input measurement matrix X . Here we

used a fixed outlier ratio of 5%. In Figure 6 the results can

be seen. We show two versions of our algorithm, with and

without using the GLUE step. The left of the figure shows

the truncated L2-error for the two versions, compared with

the oracle ground truth solution, obtained in the same way

as in the previous experiment. The right shows the average

running times, as a function of the number of rows (equal

to the number of columns) in the measurement matrix. One

can see that for smaller problems, there is no need for the

GLUE. For larger problems using the GLUE leads to (in

this case) near linear time complexity. As can be seen from

the error plot, using the GLUE method doesn’t lead to any

error accumulation. We have also investigated our algo-

rithm’s dependence on the bandwidth of the measurement

matrix. Using a similar setup as in the previous experi-

ments, we constructed measurement matrices with varying

bandwidth. We did not include any outliers in the data, and

compared our results with the damped Wiberg algorithm.

The results can be seen in Figure 7. Both algorithms give

final norms very close to the oracle solution, but for smaller

bandwidths the Wiberg algorithm has worse convergence.

For very small bandwidths our algorithm becomes unsta-

ble, and the RANSAC loops will take excessive amounts of

time. In this case, the breakdown point for our algorithm

was for a bandwidth around 5. This will depend on the rank
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Figure 5. Results from the outlier test, as described in Section 6.3. Left: The graph shows the mean L
1error for the proposed method

compared to the L
1Wiberg algorithm, [11, 33] and the oracle ground truth solution, as functions of the outlier rate. Middle: The aver-

age running times, as functions of the outlier rate, for the proposed method compared to the L
1Wiberg algorithm, [11, 33]. Right: A

magnification of the timing results for the proposed method.
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Figure 6. Timing results from the size test, as described in Sec-

tion 6.3. The left graph shows the truncated L
2-error, as functions

of the image size, for the proposed method (with and without using

GLUE) compared to the oracle ground truth optimum. The right

graph shows the average running times for the proposed method,

with and without using GLUE.
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Figure 7. Timing results from the missing data test, as described

in Section 6.3. The left graph shows the L
2-error, as functions of

the bandwidth of the data, for the proposed method compared to

the damped Wiberg algorithm and oracle ground truth optimum.

The right graph shows the average running times for the proposed

method, compared to the damped Wiberg algorithm.

of the solution, which in this case was 4.

Algorithm 1 is highly parallelizable. We have conducted

a simple timing experiments using our Matlab implementa-

tion. We simply change the for-loop to Matlabs parfor-

loop. This runs the extensions and refinement of the ini-

tial solutions in parallel, but not the initialization. The ini-

tialization could of course also be run in parallel, but for

Number of cores

Dataset 1 2 3 4

Book 0.793s 0.470s 0.382s 0.369s

Hand 28.6s 16.1s 12.2s 10.3s

Dino ∼2000 points 5.38s 3.61s 3.02s 2.19s

Table 3. Timings for the linear shape basis estimation using the

Book and Hand dataset. The results are based on running parfor

in Matlab with different number of cores on an Intel Core i7 3.6

GHz processor.

most of our conducted experiments the initialization takes

a smaller fraction of the total running time. The average

running times, using different number of parallel cores, are

shown in Table 3. We get slightly less than linear speed-ups.

7. Conclusion

We have in this paper presented a method for doing ro-
bust low rank matrix factorization for structured data pat-
terns. It can handle very large amounts of missing data, and
moderate amounts of outliers. It gives results on par, or bet-
ter than, using the L1-Wiberg algorithm or the damped L2-
Wiberg algorithm, with substantial speed-up. The presented
method is also trivially parallelizable. Future work includes
investigating two interesting properties of our method, that
we have not exploited in any detail in this paper. Firstly
we have the ability to solve for multiple models in the data.
For instance, if we have two rigid motions in a structure
from motion sequence, we could – at least in theory – run
our algorithm and find the two solutions corresponding to
the two motions. Another property, that easily can be in-
corporated in our framework, is the ability to add additional
constraints on the solution space, e.g. for the affine structure
from motion setting we can constrain the pair-wise rows of
U to be orthogonal to model a scaled orthographic cam-
era.
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