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Abstract

This paper addresses the problem of ultra-large-scale

search in Hamming spaces. There has been considerable

research on generating compact binary codes in vision, for

example for visual search tasks. However the issue of effi-

cient searching through huge sets of binary codes remains

largely unsolved. To this end, we propose a novel, unsuper-

vised approach to thresholded search in Hamming space,

supporting long codes (e.g. 512-bits) with a wide-range of

Hamming distance radii. Our method is capable of work-

ing efficiently with billions of codes delivering between one

to three orders of magnitude acceleration, as compared to

prior art. This is achieved by relaxing the equal-size con-

straint in the Multi-Index Hashing approach, leading to

multiple hash-tables with variable length hash-keys. Based

on the theoretical analysis of the retrieval probabilities of

multiple hash-tables we propose a novel search algorithm

for obtaining a suitable set of hash-key lengths. The result-

ing retrieval mechanism is shown empirically to improve

the efficiency over the state-of-the-art, across a range of

datasets, bit-depths and retrieval thresholds.

1. Introduction

At present, there is a need for efficient searching in im-

age datasets that are increasingly larger in size, ranging

from millions (e.g.Flickr 1M[5], ImageNet[1]) to a billion

images (e.g. ANN1B [7]). Tackling this problem requires

two important mechanisms: 1) efficient image representa-

tion and 2) the ability to quickly search inside the represen-

tation space.

This paper addresses the second part of efficient search-

ing. For our purposes, we tackle the task of fast large-scale

retrieval of compact binary vectors, posed as a thresholded

Hamming distance search. To achieve this, we propose a

novel unsupervised approach for performing thresholded

search in Hamming space. Our approach is able to cope

efficiently with binary code dimensionalities that are large

(e.g. 512-bits) and a wide range of Hamming distance radii.

1.1. Background Review

There exists a large body of work on generating binary

codes for the purpose of large scale image retrieval, in par-

ticular the method of hashing [11, 10, 14]. They aim to ex-

tract hashing functions that binarise high dimensional fea-

ture vectors into compact binary codes.

Nonetheless, the problem of efficiently searching

through a large dataset of binary vectors remains. A lin-

ear scan is usually used at this stage, which can be acceler-

ated by the build-in CPU hardware instructions. However,

for large datasets (hundreds of millions, billions), the linear

search time for a single query is still in the order of min-

utes. One solution is the hierarchical decomposition of the

search space using multiple trees [8]. Hashing using binary

codes has also been used for fast approximate nearest neigh-

bour search in image retrieval [13], where, the binary code

is the hashtable key. Retrieval of related examples to a query

example are the colliding hashtable entries. However, this

approach is only applicable when the dimensionality of the

binary code is small (i.e. less than 32), otherwise, the mem-

ory footprint of the hashtable itself becomes prohibitively

large. Our work differs from this in that we can still cope

with large dimensionalities.

Another approach is to divide the binary code into

smaller segments and build multiple hashtables, leading to

the Multi-Index Hashing (MIH) approach [3] and its use

for large scale search by Norouzi et al.[9]. Here, a binary

code is divided into equally sized substrings and separate

hashtables are built from them. The configuration of sub-

string lengths and their number is selected such that a super-

set of relevant examples (i.e. within some r-neighbourhood

in Hamming space) are returned. Examples that are above

distance r are then removed using linear scan. The result-

ing search speeds were significantly faster than linear scan.

However, this speedup is possible only for small Hamming

thresholds r. When r increases, the time spent on removing

inaccurate retrievals increases very quickly and eventually,

becomes very similar to exhaustive linear scans. This is due

to the constraint of equal length strings.

Our work removes this constraint and we show how this
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improves in the retrieval time compared to the MIH ap-

proach, across the a large range of Hamming thresholds.

Simultaneously, our approach also provides the option for a

faster approximate search.

1.2. Contributions and Overview

In this paper, we propose a novel approach which de-

livers significant efficiency improvements over the existing

multi-index hashing methods, used for large scale retrieval

of nearest neighbours binary vectors in Hamming metric

spaces. This is achieved through the following contribu-

tions:

• Extension of the MIH method to support variable

length hashkeys for the different hashtables.

• Theoretical analysis of using variable length hashkeys.

• Novel tree-based search method for locating near-

optimal set of substring lengths.

To our knowledge, we are not aware of any other work

that uses multiple hashtables with variable length hashkeys

for efficient retrieval. We will show that this gives a re-

trieval mechanism that is significantly more efficient than

the state-of-the-art multi-index hashing method with no loss

of accuracy.

In the rest of the paper, Section 2 details the problem

statement that we tackle in this paper. The hashtable-based

retrieval mechanism is described in Section 3, it also de-

rives detailed retrieval probabilities from a combinatorial

perspective. Section 4 derives upper and lower bounds for

the retrieval probabilities. This leads to an efficient tree-

based method for finding suitable hashkey lengths, where

the theoretical bounds provide crucial pruning criteria for

efficient search. We then provide experimental results, eval-

uating the performance of the proposed method in compar-

ison to state-of-the-art approaches in Section 5. Finally, we

conclude in Section 6. To aid clarity, most of the proofs for

lemmas and theorems are given in the appendix.

2. Problem Statement

In this section, we provide a formal statement to the

problem of thresholded Hamming distance search. Let us

be given a dataset X = {x1,x2, ...,xN} of N number of

D-dimensional binary vectors. The distance metric is as-

sumed to be Hamming distance, denoted as ||H . Let q be

the D-dimensional query vector. We are also given two pa-

rameters known as the Hamming threshold, θ and minimum

required recall rate β.

The aim of the paper is then to find a retrieval func-

tion R : {0, 1}D → 2N that quickly returns a set (R)

of database example indices given some example query q,

which we denote as: R = R(q). We require that the Ham-

ming distance between q and all the examples indexed in R

be less than or equal to θ. Now, suppose that the true num-

ber of examples in X with Hamming distance less or equal

to q is N+. We also allow for an approximate retrieval,

where: 1 ≥ |R|/N+ ≥ β.

3. Multiple Hashtables Retrieval

This section describes a multiple hashtable approach that

allows us to efficiently retrieve examples that are within a

predefined Hamming distance, θ, to a given query example.

We find that the efficiency of retrieval can be further in-

creased if we allow a small factor of false negative retrieval

error to occur, denoted by the factor, ǫ ∈ [0, 1]. That is, sup-

pose the number of examples within θ Hamming distance to

the query is Nθ, then we allow ǫNθ examples to be rejected.

The factor ǫ is directly related to β as: ǫ = 1− β.

3.1. HLSets

In order to perform efficient retrieval from a large num-

ber of examples, multiple hashtables are used. The keys for

the hashtables are obtained by dividing the D-dimensional

binary feature vector into a number of M mutually exclu-

sive substrings, each acting as a hashkey. The set of M
hashkey lengths is denoted as M = (mi)

M
i=1. Note that in

this work, M is a multiset, allowing us to have multiple el-

ements with the same value. For the rest of the paper, we

will denote a set of Hashkey Lengths M as a HL-set.

Previous work [3] required that all the hashkey lengths

be equal, with the lengths summing to the feature vector

dimension, D. Here, we allow the hashkey lenghts mi to be

different and do not require their sum to equal D. We show

experimental evidence (Section 5) how both of the above

improve the retrieval efficiency and accuracy, compared to

existing work.

3.2. Retrieval Mechanism using Hashtable Sets

The retrieval mechanism consists of M separate hashta-

bles, which we denote as a hashtable set. Each hashtable

takes a substring as the hashkey and returns a set of exam-

ple indices with a similar key (i.e. colliding examples). The

full set of retrieved examples is the union of the retrieved

examples across all the M hashtables.

In this work, we aim to configure the keys such that there

is high probability of collisions in the hashtable for exam-

ples that have Hamming distances less than θ, whilst min-

imising the collisions for examples with distances greater

than θ. Formally, we can think of each hashtable as a

function, Hi : {0, 1}mi → 2N . Associated with the

ith hashtable Hi, is a set of key vector dimensions Di =
{di,j}mi

j=1. The “dimension index set” Di can then be used

to extract the hashtable key from the query binary vector.

Then, suppose we are given an input query q ∈ {0, 1}D.

We first extract the substring keys (of length mi) for each
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Figure 1. An illustration of the hashtable based retrieval mech-

anism given in Eq. 1. Here, the feature vector is split into 3

hashkeys of lengths m1,m2,m3 respectively. Each substring is

a hashkey to the corresponding hashtables H1, H2, H3 respec-

tively. Given a query vector q, its substrings are used to retrieve

relevant example indices before a final union to give the final re-

trieved indices.

of the hashtables using their respective dimension index set

Di as follows: qi = (qdi,j
)mi

j=1. The final set of retrieved

examples, R, is then given as:

R =
M
⋃

i=1

Hi(q
i) (1)

An illustration of the multiple hashtable based retrieval

in Eq. 1 can be seen in Fig. 1. Eq. 1 returns a superset of

examples that have distances less than θ, thus, may return

some with distances that are greater than θ, an equivalent of

“false positives”. Subsequently, the retrieved false positives

are filtered by explicitly computing and thresholding based

on their Hamming distances to the query example.

Thus, this paper proposes the retrieval function R de-

scribed in the problem statement (Section 2) to be as fol-

lows:

R(q) = {i ∈ R : |q− xi| ≤ θ}
where R is defined in Eq. 1, and xi is the ith example in

the dataset described in Section 2.

3.3. Probability of Collisions: Combinatorial Per
spective

In this section, we will consider the probability of re-

trieving examples within θ Hamming distance to a query

using Eq. 1. More specifically, we seek to determine the

probability of retrieval of an example with Hamming dis-

tance r from the query example, using M hashtables. The

lengths of the hashkeys of these hashtables are given in the

set M and corresponding dimension indices Q.

Considered from a combinatorial perspective, when the

Hamming distance between an database example and query

is r-bits, the number of valid “different bit” configurations

is the binomial coefficient: DCr . Now, suppose we have

a collision with the ith hashtable, this implies that at least

mi bits between the query and the dataset example are the

same. Thus, a collision in hashtable Hi implies that there is

only D−miCr valid configurations left. Hence, the proba-

bility of a query having collisions with entries in hashtable

Hi is:

Pmi
(r) =

D−miCr

DCr

=
(D −mi)

r

Dr
(2)

where, for conciseness, we write the falling power as: Ar =
A(A− 1)(A− 2)...(A− r + 1).

Eq. 2 can be given a more convenient form by moving

the variable r from the reducing power into multiplying fac-

tors (derivation details in Appendix C):

Pmi
(r) =

(D − r)mi

Dmi
(3)

In order to obtain the probability of a query contain-

ing a substring that collided with at least one entry in one

hashtable, we use the assumption that all the substrings as-

sociated with the hashtables are independent and therefore

the product rule can be used, resulting in the following prob-

ability retrieval curve P for different Hamming distances r:

P (r) = 1−
M
∏

i=1

(1− Pmi
(r)) (4)

3.4. Fixed Length vs Variable Length Hashkeys

Given a configuration of hashkey lengths, M, P (r) in

Eq. 4 allows us to theoretically predict the probability of

retrieval of an example with respect to their distances from

a query example. This in turn allows one to predict the

percentage of retrieved examples within distance θ from

a query example. Importantly, P (r) (Eq. 4) predicts the

proportion of examples that requires filtering using explicit

Hamming distance computation. Consequently, we seek to

minimise the probability of retrieval for Hamming distances

above θ whilst maximimising the retrieval probabilities for

Hamming distances below θ.

When the hashkey lengths are restricted to be equal and

sum to D, the possible curves P (r) are limited. As an ex-

ample, when D = 20 bits, only 5 such curves are possible,

as shown in Fig. 2a. As a result, we find that there are

only a small set of threshold values that will not result in

the retrieval of a large number of irrelevant examples (i.e.

distance greather than θ) or the rejection of a large number

of relevant examples.
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Figure 2. Retrieval probability curves with fixed length hashkeys (a) and with variable hashkey lengths (b). (c) shows the advantage of fixed

vs variable length hashkeys, where we require retrieval of examples less than distance 3. It can be seen that the variable length hashkeys

(red curve) has lower probability of retrieving examples greater than distance 3 compared to fixed length hashkeys (blue curve).

In contrast, when variable hashkey lengths are used, the

number of possible P (r) curves are increased greatly, al-

lowing us more efficiently handle a much larger range of

required threshold values. This can be seen in Fig. 2b,

showing all possible retrieval probability curves generated

by different HL-sets (i.e. hashkey length configurations).

The increase in the number of retrieval probability curves is

crucial in allowing us to effectively deal with different Ham-

ming distance thresholds and minimum recall rates. This is

illustrated in Fig. 2c, showing a retrieval probability curve

that has lower probability of retrieving examples of dis-

tance greater than a threshold (5 in the figure) when variable

length hashkeys are used. In particular, the retrieval proba-

bility when variable length hashkeys (red curve) is consis-

tently lower than when fixed lenght hashkeys (blue curve)

are used for Hamming distances over threshold.

3.5. Approximation of Retrieval Probability

In the previous section, we have shown how the proba-

bility of a query feature vector colliding with an entry in at

least one hashtable can be computed using Eq. 4. In prac-

tice, this equation has an inconvinient form involving falling

factorials. Instead, we use an approximation to Eq. 4:

PM(r) = 1−
M
∏

i=1

(

1−
(

1− r

D

)mi
)

(5)

Empirical analysis on the probabilities calculated from

Eq.5 show minimal deviation from Eq. 4. An example of

this (D = 128) can be seen in Fig. 3a, with the difference

between the 2 curves across all valid Hamming distances

is shown in Fig.3b). The histogram of maximum differ-

ences between the approximate and exact curves is shown in

Fig.3c). We can see there that the majority of differences is

less than 0.05. When all the possible retrieval curves given

D = 128 are considered, the mean maximum difference is

0.01. In fact, it is possible to show that both curves con-

verge as D increases. For the remainder of the paper, we

shall denote PM(r) as the retrieval probability curve.

4. HL-Set Tree-based Searching

The use of variable length hashkeys allow us to gener-

ate a large number of possible probability retrieval curves.

However, the total number of possible HL-sets for dimen-

sion D is the partition number of the integer D. We find

that the partition number (p(n)) for an integer n increases

exponentially and can be approximated as:

p(n) ≈ 1

4n
√
3
exp

(

π

√

2n

3

)

As an example, when n = 1024, the partition number is

on the order of 1031 possible HL-sets. Thus, exhaustively

searching for the optimial hashkey length set would be im-

possible, except for very small bit-depths. Unfortunately,

many configurations do not lead to efficient retrieval.

To address this issue, in this section, we propose a

novel efficient tree-based search algorithm for finding ef-

ficient HL-sets given a Hamming distance threshold θ ∈
{1, ..., D} whilst resulting in retrievals that meet the mini-

mum recall rate β ∈ [0, 1]. In order to make the tree-search

efficient, pruning based on the lower bounds of retrieval

probabilities will be employed.

4.1. Retrieval Probability Lower Bounds

One important property is that by adding a new hashkey

to an existing hashkey set, the original probability retrieval

curve will be “lifted”, in that the new retrieval probability

values will be raised for all Hamming distances. This prop-

erty establishes a lower-bound of the retrieval performance

of a hashkey set and all its supersets. This in turn is crucial

for the pruning criteria HL-set search algorithm proposed in

the next section.
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Figure 3. An example of the retrieval probability curves for a

hashkey length set (D = 128) using the approximation and exact

calculation (a). The difference between the computed exact and

approximation retrieval probability curves (b). The histogram of

maximum difference between exact and approximate values over

all valid retrieval curves when D = 128-bits.

Lemma 1. Let (m1,m2, ...,mi,mi+1) be a HL-set, Aj =

1−(1−r/D)mj and Pi(r) = 1−∏i

j=1 Aj . Then, Pi(r) ≤
Pi+1(r) for all 0 ≤ r ≤ D. (Proof in Appendix A)

We find that adding a shorter hashkey to an existing

hashkey set will raise the retrieval probability more than

adding a longer hashkey over all Hamming distances:

Lemma 2. Let M = (m1,m2, ...,mn) be a HL-set. Let

m′
1 < m′

2 and M1 = M∪{m′
1} and M2 = M∪{m′

2}. Let

PM(r) = 1−∏m∈M
(1− (1− r/D)m). Then, PM2

(r) <
PM1

(r) for all 0 ≤ r ≤ D. (Proof in Appendix B.)

4.2. Search Tree Pruning Criteria

In order to increase the efficiency of the search process,

a pruning criteria based on the lower bounds of extending

HL-sets is proposed. Firstly, we define the cost of the HL-

set, M = (m1,m2, ...,mn) using the following function

S:

S(M, θ) =

D
∑

r=θ+1

PM(r) (6)

The value of the function S represents the sum of example

proportions after the threshold distance θ. A larger value of

S would require us to filter more examples by means of ex-

plicit computation of the Hamming distance. Consequently,

the aim is to minimise S whilst ensuring that the minimum

recall requirement β is still met.

With respect to an existing “minimal” cost Smin, we find

that if adding a hashkey of length m′ to an existing set M

results in a higher cost than Smin, then adding any shorter

hashkey will also result in a higher cost than Smin. Addi-

tionally, any superset of M ∪ {m′} will have a higher cost

than Smin. More formally:

Theorem 1. Let M = (m1,m2, ...,mn) be a set of hashkey

lengths, with PM(r) its retrieval probability curve. Let

θ be a given Hamming distance threshold and Smin be

a minimum hashkey set cost, and m′ < D be some in-

teger. Then, if S(M ∪ {m′}, θ) ≥ Smin, then for all

1 ≤ l ≤ m′, S(M ∪ {l}, θ) ≥ Smin. Also, for any

M′ ⊃ M ∪ {l}, we have S(M ∪ {l}, θ) ≥ Smin.

Proof. Since S(M ∪ {m′}, θ) ≥ Smin, we have
∑D

r=θ PM∪{m′}(r) ≥ Smin (Eq. 6). From Lemma 2,

PM∪{l}(r) ≥ PM∪{m′}(r) for all 0 ≤ l ≤ m′. Thus,

it follows that S(M ∪ {l}, θ) =
∑D

r=θ PM∪{l}(r) ≥
∑D

r=θ PM∪{m′}(r) ≥ Smin. Hence, we have shown that

for all 1 ≤ l ≤ m′, S(M ∪ {l}, θ) ≥ Smin.

To show that for any M′ ⊃ M ∪ {l}, then S(M ∪
{l}, θ) ≥ Smin, we follow similar lines. Since M′ ⊃ M ∪
{l}, then from Lemma 1, PM′(r) ≥ PM∪{l}(r), and so,

S(M′, θ) =
∑D

r=θ PM′(r) ≥ ∑D

r=θ PM∪{l}(r) ≥ Smin.

Hence, we have shown that for any M′ ⊃ M∪{l}, we have

S(M ∪ {l}, θ) ≥ Smin.

This means, we can stop considering any branches,

breadth or depth-wise when adding a new hashkey results

in a cost greater than the current optimal cost Smin.

4.3. Search Algorithm

The proposed algorithm for obtaining a HL-set is

given in Algorithm 1 (procedure SUBLENSEARCH).

This algorithm aims to efficiently find a HL-set, M =
(m1,m2, ...,mn) with a minimal cost, S(M, θ) and have

PM(θ) ≥ β. The search problem is tackled as an integer

partitioning task, where the valid range of integers are con-

sidered in a tree-manner, implemented recursively. To this

end, it considers every multiset of integers that will sum up

to D. The requirement that the integers must sum to at most

D is checked in line 12. The breadth search is done as a

for loop in line 10, whilst depth searching performed re-

cursively in line 24. To allow the algorithm to consider all

HL-sets in a reasonable time, Theorem 1 provides a simul-

taneous breadth and depth pruning of irrelevant branches in

Line 17 by breaking out of the for loop (line 10) and stop-

ping the recursive call (line 24) from being called.

5. Experiments

This section describes the experiments conducted to

evaluate the performance of the proposed method against
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Algorithm 1 Hashkey Length Set Search

1: Smin = D
2: Mopt = ∅
3: procedure SUBLENSEARCH(D, θ, β,M)

4: if M = ∅ then

5: mmax = D
6: else

7: mmax = min(M )

8: end if

9: SM =
∑

m∈M
m

10: for i ∈ mmax,mmax − 1, ..., 1 do

11: M′ = M ∪ {i}
12: if SM + i > D then

13: continue;

14: end if

15: βcur, Acur = FindTPandArea(D,M′, θ)
16: if Acur ≥ Smin then

17: break; (Theorem 1)

18: end if

19: if βcur ≥ β then

20: Smin = Acur

21: Mopt = M′

22: else

23: if Acur < Smin then

24: SubLenSearch( D, θ, β,M′)

25: end if

26: end if

27: end for

28: end procedure

29: function FINDTPANDAREA(D,M, r)

30: Sr =
∑D

i=r PM(r)
31: return PM(r), Sr.

32: end function

related state-of-the-art methods. Specifically, we have per-

formed experiments on thresholded Hamming distance re-

trieval using a number of large scale datasets. In particular,

we tackle the problem of a retrieval of a percentage (β) of

examples below a given Hamming distance (θ) to an exam-

ple query.

5.1. Datasets and experimental setup

The datasets considered in this section are as follows: 1

Billion SIFT 128D dataset [7], 1 Million SIFT dataset us-

ing 128-bits [6] and Flickr 1 Million [4] dataset using 512

bits. For the ANN datasets, the provided 128D SIFT fea-

tures were binarised using Gaussian random projection fol-

lowed by binarisation as detailed in [2] and as is consistent

with the method used in [9]. The Flickr 1 Million dataset

used a 512D binary feature vector extracted using the Ro-

bust Visual Descriptor method[12].

For all the experiments, we will compare the perfor-

mance of the proposed variable length hashkey method

against the multi-index hashing (MIH) method using fixed

length hashkeys and the linear scan method proposed in [3].

For each dataset, 10000 examples were reserved for the test

set. The remaining were used to build the search database.

In all experiments, the Hamming distance thresholds (

Θ ) considered lie in the range of [1, D/3] at increments

of 16. We consider a set of required minimum recall rates:

B = {0.999, 0.9, 0.8, 0.7}. Then, for each given threshold

θ ∈ Θ, and required minimum recall rate β ∈ B, the appro-

priate HL-set is obtained using the proposed search method

(Section 4.3).

Next, the required hashtables, as dictated by the HL-set

are built. The feature dimensions for the hashkeys in each

hashtable were randomly chosen, but ensured to only be

used by a single hashtable. To compare against the MIH

method, fixed hashkey lengths based on the length log2(N),
where N is the dataset size was used, as described in [3].

Following this, each example in the test set is used as a

query q ∈ {0, 1}D. Using the retrieval mechanism from

Section 3.2, with q as input, a set R, of |R| number of

retrieved examples is obtained. The Hamming distance of

members in R to q is then computed, allowing the extrac-

tion of the set of retrieved examples with Hamming distance

equal or less than θ, R+:

R+ = {r ∈ R : |r− q|H ≤ θ}

To compute the recall rate to query q, the subset of exam-

ples N+ with distance less or equal to θ from q in dataset

D is obtained using linear scan. The recall rate is then:

MRR = |R+|/|N+|, and is used to verify whether the

minimum recall rate β is met. The retrieval size |R| is used

to evaluate the improvement of the proposed method over

linear scan and MIH.

5.2. Results and Analysis

For all the experiments, in terms of search time for the

hashkey lengths, the proposed method took less than 10

seconds on a single threaded Intel Processor (2.2GHz) for

most cases. However, for a small minority of cases, the

search took up to 6 minutes for 512D vectors. However,

the current implementation is in Python, and this hashkey

search time can be significantly improved by implementa-

tion in C++. The largest memory footprint was 200GB for

the 128D 1Billion ANN dataset.

The results of the experiments can be seen in Fig. 4.

Firstly, as can be seen in Fig. 4a),b),c), MIH will only sat-

isfy a limited range of minimum recal rates. For example,

for the 1Billion ANN dataset, with β = 0.999, the MIH

method recovers at the required minimum recall rate up-

till θ = 12. From then onwards, the required dataset is

too small and rejects too many examples below the required

threshold. In contrast, the proposed method always finds a
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β 0.999 0.9 0.8 0.7

ANN 1B 12 12 16 16

1 Million SIFT 128 6 12 12 16

1 Million Flickr 512 97 113 129 129
Table 1. This table shows the maximum Hamming thresholds

where the MIH method met the required minimum recall rate,

shown in the first row.

Min. Rec. Rate 0.999 0.9 0.8 0.7

1 Billion ANN 30 875 784 785

1 Million 128 13 818 1359 1064

1 Million 512 18 86 98 103
Table 2. Average speedup factor over MIH using the proposed

method for different minimum recall rate values.

suitable set of hashkey lengths that result in the β satisfied

for any Hamming distance threshold θ. Table 1 shows the

other values for other minimum recal rates and datasets.

Next, we find that the hashtable retrieval is consistently

more efficient than linear scan over all values of θ and β.

This can be seen in Fig. 4d,e,f) showing the speedup fac-

tors of both the proposed method and MIH over linear scan.

Since the MIH method uses only a constant hashkey length

(log2(N)) for building the hashtables, it has a constant re-

trieval size, regardless of the required threshold θ or mini-

mum recall rate, β. It is therefore shown as a constant hori-

zontal line in Fig. 4a,b,c. Here, it can be seen that the pro-

posed method retrieves sets that can be significantly smaller,

ranging from 10−7 the size of the dataset for 1 Billion ex-

amples to 10−6 for 1 million examples. When the minimum

recall rate is met, as detailed in Table 2, we find that the

proposed method on average returns retrieval sets that are

smaller than those of MIH. However, we have found that

this is not always the case. For the Flickr 1 Million dataset,

we find that the MIH method returns retrieval sets that are

smaller for Hamming thresholds between 100 and 150. This

limitation is due to the assumption in the search method

that examples are equally distributed across all Hamming

distances. In the future we will aim to incorporate informa-

tion on the Hamming distance distribution into the search

method.

6. Conclusions and Future Work

In this paper, we have proposed a novel, unsupervised

approach to thresholded search in Hamming space, support-

ing long codes (e.g. 512-bits) with a wide-range of Ham-

ming distance radii. Based on the theoretical analysis of the

retrieval probabilities of multiple hash-tables we have pro-

posed a novel tree-based search algorithm for obtaining a

suitable set of hash-key lengths that guarantees a minimum

required recall rate for retreival of examples below a given

Hamming distance threshold. We have shown empirically

that our method is capable of handling bit depths up to 512

bits and working efficiently up to a billion codes delivering

resulting one to three orders of magnitude acceleration, as

compared to the MIH method.

For future work, we aim to extend the variable length

hashkey method for weighted Hamming distances. Addi-

tionally, more theoretical analysis is required for the accu-

racy bounds of the approximation to the retrieval probability

used here. Finally, we have also experimentally observed

that during the search process, hashkeys that are long in

length or too short are always pruned in the search tree. It

would be beneficial to obtain a better bounds for the range

of hashkey lengths that will eventually be useful.
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Appendix

A. Proof of Lemma 1

Proof. We have Pi(r) = 1 − A1A2...Ai and Pi+1(r) =
1−A1A2...AiAi+1. Then,

Pi(r)− Pi+1(r) = 1−A1A2...Ai − (1−A1...AiAi+1)

= (Ai+1 − 1)

i
∏

j=1

Aj

≤ 0 (since Ai+1 ≤ 1)

Hence, since Pi(r) − Pi+1(r) ≤ 0, we have shown that

Pi(r) ≤ Pi+1(r).

B. Proof of Lemma 2

Proof. To prove that PM2
(r) < PM1

(r), we consider the

difference between PM1
(r) and PM2

(r):

PM1
(r)− PM2

(r) = 1−
∏

m∈M1

(

1−
(

1− r

D

)m)

−1 +
∏

m∈M2

(

1−
(

1− r

D

)m)

= −
∏

m∈M1

(

1−
(

1− r

D

)m)

+

∏

m∈M2

(

1−
(

1− r

D

)m)

=

[

∏

m∈M

(

1−
(

1− r

D

)m)
]

×
[

(

1− r

D

)m′

1 −
(

1− r

D

)m′

2

]

> 0
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Figure 4. Results for the ANN 1B SIFT dataset with 128-bit vectors, ANN 1M SIFT dataset and Flickr 1M Datasets. (a,b,c) show the

achieved minimum recall rates (denoted as “True Positive Rate”) for the variable length method and for the fixed length hashkey method.

(d,e,f) show the speedup over linear scan for different minimum recall values across different Hamming thresholds.

Since PM1
(r) − PM2

(r) > 0, we have shown that

PM1
(r) > PM2

(r) > 0 when m′
1 < m′

2.

C. Proof of Eq. 3

To get Eq. 3 from Eq. 2, we first expand the RHS of Eq.

2 into its factorial factors (index i dropped for convinience):

(D −m)r

Dr
=

(D −m)!

(D −m− r)!
× (D − r)!

D!
(7)

Next, we note that the first factor on the right hand side

of Eq. 7 can be simplified as follows:

(D − r)!

(D −m− r)!
=

(D − r)...(D − r −m+ 1)(D −m− r)!

(D −m− r)!

= (D − r)(D − r − 1)...(D − r −m+ 1)

= (D − r)m

The RHS second factor of Eq. 7 is similarly simplified:

(D −m)!

D!
=

(D −m)!

D(D − 1)...(D −m+ 1)(D −m)!

=
1

Dm

Substituting both the above formulas into Eq. 7 gives:

(D −mi)
r

Dr
=

(D − r)m

Dm
(8)

Hence, Eq. 2 can be rewritten as:

Pmi
(r) =

(D − r)mi

Dmi
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