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Abstract

The growing availability of very high resolution

(<1 m/pixel) satellite and aerial images has opened up un-

precedented opportunities to monitor and analyze the evo-

lution of land-cover and land-use across the world. To do

so, images of the same geographical areas acquired at dif-

ferent times and, potentially, with different sensors must

be efficiently parsed to update maps and detect land-cover

changes. However, a naı̈ve transfer of ground truth labels

from one location in the source image to the correspond-

ing location in the target image is generally not feasible,

as these images are often only loosely registered (with up

to ± 50m of non-uniform errors). Furthermore, land-cover

changes in an area over time must be taken into account

for an accurate ground truth transfer. To tackle these chal-

lenges, we propose a mid-level sensor-invariant represen-

tation that encodes image regions in terms of the spatial

distribution of their spectral neighbors. We incorporate this

representation in a Markov Random Field to simultaneously

account for nonlinear mis-registrations and enforce local-

ity priors to find matches between multi-sensor images. We

show how our approach can be used to assist in several mul-

timodal land-cover update and change detection problems.

1. Introduction

In recent years, there has been a tremendous increase in

the amount and resolution of commercially available satel-

lite imagery [14]. This growth has opened numerous av-

enues to monitor and analyze the land-cover and land-use

around the world, resulting in many novel applications in-

cluding precision agriculture [45], population density esti-

mation [23], and location based services [32].

A key challenge common to these applications is the ef-

ficient generation of land-cover maps, i.e. segmenting re-

motely sensed images into semantic classes such as forests,

roads, buildings etc. This problem is exacerbated by the

need to frequently update these maps by accounting for the

constant natural and man-made changes on the Earth’s sur-

face. The growing number of available air and space-borne

sensors, together with their short revisit time makes the au-
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Figure 1. Illustration of Spatial Distribution of Spectral Neighbors

(SDSN). (a): Remotely sensed image IA in domain A. (b): Su-

perpixels computed for IA. (c): Downsampled version of IA. (d):

The SDSN features are computed as similarities of a superpixel in

(b) with every value in (c). The same procedure is applied to the

image in domain B. Superpixels belonging to the same land-cover

class tend have similar SDSN values across domains.

tomatic updating of such maps with remote sensing data an

important and challenging research direction [28].

Traditional mapping approaches cannot be directly ap-

plied to solve this problem, as the appearance-consistency

assumption they make does not generally hold true for

multi-sensor multi-temporal (heterogeneous) images. This

is due to the large variation in acquisition conditions e.g.

frequency bands, resolution, acquisition times and geome-

try. It is therefore common to view multi-sensor land-cover

update from the perspective of domain adaptation [2] where

correspondences between the source and target domains are

defined using a shared feature-space.

In this work, we propose a novel mid-level representa-

tion that assists in performing domain adaptation by ex-

tracting a domain-invariant feature for every image region

(a super-pixel, Figure 1b) in each image in terms of the

spatial distribution of its spectral neighbors (SDSN). Our

representation is particularly geared towards image series

acquired over the same geographical area at different times

and using different sensors. In order to obtain domain in-

variance we exploit the fact that satellite images are loosely

geo-registered, usually up to a non-uniform registration er-

ror of ±50 m. We can therefore divide the images into a

relatively coarse set of patches (Figure 1c) in order to ob-

tain an approximately registered shared coordinate system.
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Figure 2. (a): Remotely sensed images. (b): Superpixel segmen-

tation of the images. (c): Stack of domain invariant features com-

puted for each superpixel maintaining the neighborhoods. (d):

Graphical model used to match superpixels from both domains.

(e): Contribution of each match to MRF cost function is used as

confidence map of the matching, enabling the detection of areas

with higher probability of having undergone a land cover change.

By encoding image regions in terms of their spectral dis-

tances from the mean value of each patch in their respec-

tive domains (Figure 1d), SDSN is able to provide a simple

yet effective way to map information across different satel-

lite sensors. This sensor invariance allows to use these fea-

tures for multimodal image registration. We incorporate our

SDSN representation in a Markov Random Field (Figure 2)

where intra-domain edges are used to encourage smooth-

ness and favor matches over short distances, while inter-

domain edges encourage matching superpixels with simi-

lar domain-invariant features (Figure 2d). We show how

this can be used for domain adaptation using two different

strategies: direct transfer of land-cover ground truth (GT)

(§ 4.1) and finding super-pixel pairs for unsupervised mani-

fold alignment (§ 4.2). We also show how this approach can

be used effectively for detecting land-cover changes in an

unsupervised manner (§ 4.3).

2. Related Work

The problem of land-cover segmentation in multi-sensor

and multi-temporal scenarios can be formulated as an in-

stance of the more general problem of domain adaptation,

which addresses the transfer of available domain-specific

knowledge to a different but related domain. Both semi-

supervised [10, 43] and unsupervised [20, 21] approaches

have been proposed to perform domain adaptation.

For semi-supervised approaches, techniques involving

co-training [38], label propagation [44], variants of expec-

tation maximization [9] and SVM [16] have been success-

fully proposed. More recently, approaches involving co-

regularization [26] and data rotation [31] have also been put

forth. These approaches still require some labeled exam-

ples in the target domain, which prevents their application

to problems where such labels are not available.

Unsupervised domain adaptation is generally consid-

ered a harder problem since we do not have any labeled

correspondence between the domains. In this regard, ap-

proaches relying on source-target partial distribution simi-

larity [19], clustering [35, 24, 7], structural correspondence

learning [6], domain divergence minimization [5], manifold

alignment [42] and deep learning [17] have been proposed.

However, these methods require a certain level of corre-

lation between the distributions of both domains. In this

work, we put forth a strategy that is able to deal with dis-

tributions from different domains without requiring them to

be correlated by exploiting the fact that for our setting the

images are loosely spatially geo-registered.

A third approach, not always explicitly referred to as do-

main adaptation, consists of using engineered domain in-

variant features. It has been successfully applied in both

remotely sensed [39, 22] and natural images [27]. Some

of these features (e.g. SIFT [27] or shape descriptors [22])

achieve domain-invariance at the cost of discarding relevant

information, e.g. color in R-G-B imagery, while focusing

only on geometrical information. In contrast, we propose

to fully take into account spectral information while also

offering the possibility to include task-specific appearance

descriptors in the process. SDSN is related to the local self-

similarity (LSS) [33] and global self-similarity (GSS) [11]

features. However, unlike these approaches, SDSN uses ap-

proximate geographical correspondences to allow for cross-

domain comparisons, hence offering both the expressive-

ness of GSS and the simplicity of LSS.

In remote sensing, domain adaptation has been tradition-

ally used for land-cover map update tasks [8, 3]. Most of

these pipelines assume a perfect pixel-to-pixel registration

between multi-temporal images, which is a serious limit-

ing factor for high resolution and multi-sensor data. An

object-based variant resides in the semantic tie points strat-

egy proposed in [30] and used in [29] for remote sensing

domain adaptation. An MRF-based approach [27] signif-

icantly relaxing the co-registration constraint is presented

in [39], where registration and change detection are simul-

taneously performed. They use several correlation similar-

ity measures that imply using the same number of spectral

bands in both domains. Our approach extends this work

to the multi-sensor setting where feature spaces are usually

composed by different types and number of spectral chan-

nels, making it more general.

3. Proposed Method

We use super-pixels as our basic computational unit

since they reduce the size of the problem while offering a

meaningful spatial support. In this work we use the SLIC

segmentation method presented in [1]. Given an image ID
of size m × n in domain D, and a SLIC segment size pa-

rameter s, we build a super-pixel image HD of size roughly

(m/s× n/s).
We formulate our problem as an object matching prob-

lem by using a Markov Random Field (MRF), similar
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to [39, 27]. An important feature of this model is that the

contribution to the MRF energy associated to each matched

pair can be used as an estimate of matching confidence. Ev-

ery super-pixel Hj
B ∈ HB in domain B (target) is matched

to super-pixel Hi
A ∈ HA in the domain A (source) with a

certain confidence relative to rest of the matches.

3.1. Spatial Distribution of Spectral Neighbors

Our main hypothesis is that objects that are spectrally

similar in one domain tend to be spectrally similar in other

domains, except when they have undergone a land cover

change. For instance, a patch of vegetation in an RGB im-

age is likely to have a similar color to other areas of vegeta-

tion in that image. At the same time, a patch of vegetation in

a near infrared (NIR) image is likely to look very similar to

other vegetated areas in the same NIR image. This within-

image similarity is independent to how similar or dissimilar

a particular patch of vegetation might look across the two

images. We use this observation to encode each super-pixel

Hi
D in domain D in terms of its similarity to other regions

of the image (see Figure 1).

To do so, we start by computing a downscaled version

JD of the original image ID as the average spectral signa-

ture of every non-overlaping d× d patch in ID. Here JD is

of size (m/d× n/d) and contains Q = (mn)/d2 elements.

We then compute the SDSN feature f iSDSN for Hi
D as:

f iSDSN = [f i1
SDSN · · · f iq

SDSN · · · f iQ
SDSN], (1)

where

f iq
SDSN = e−σ‖S(Jq

D
)−S(Hi

D
)‖2

. (2)

Here, S(Jq
D) and S(Hi

D) are the spectrum (e.g. RGB color)

associated to Jq
D and the mean spectrum of Hi

D respec-

tively. Note that f iSDSN has Q dimensions. Each element

f iq
SDSN of f iSDSN encodes the similarity of the spectrum of

Hi
D to the average spectrum of a particular patch of the im-

age, Jq
D. Downscaling allows for robustness against regis-

tration noise between the images in the different domains.

For example, a 15 pixel shift in the original image becomes

a sub-pixel shift of 0.15 pixels using downscaling factor of

100.

3.2. Matching Formulation

We build on previous matching approaches relying on

MRF such as [34, 27, 15, 39]. We define a graph G = (V, E)
where every edge ǫij ∈ E connects two nodes i, j ∈ V with

a weight c(ǫij). Every node i corresponds to a super-pixel

Hi
B in the target domain. Since we expect the misregis-

tration shifts to be consistent within a region of the image,

possibly with shift larger than the superpixel size, we con-

sider mid-range connections for node i, Ni, beyond first or-

der neighborhoods. In our experiments (Section 4) we use

a 25 × 25 super-pixel neighborhood. We make use of the

SLIC grid initialization to define the neighborhood systems

efficiently. We set weights c(ǫij) inversely proportional to

the geographical distance between node i and its neighbors

and we normalize them such that
∑

ǫij∈Ni
c(ǫij) = 1. Each

node is defined by its geographical coordinates pi = (x, y)
and is assigned to a matching vector wi = (u, v) towards

a super-pixel Mi = Hk
A in the source domain, defined by

its coordinates qk = pi + wi. M is a look-up table stor-

ing the currently selected matches. The matching process is

formulated as an energy minimization over the graph G as:

E(M) =
∑

i

Θdata(H
i
B, H

k
A) + λsmall

∑

i

Φsmall(wi)

+ λsmooth

∑

i

Φsmooth(Ni). (3)

The data term Θdata measures the dissimilarity between

Hi
B and its match Hk

A, defined by:

Θdata =
∑

f∈F

αfΘf (4)

where αf is the weight given to each dissimilarity measure

Θf , computed using the feature f , e.g. SDSN, SIFT, color,

etc. Here F defines the set of all features considered.

The dissimilarity between a pair of superpixels Hk
A and

Hj
B in feature f ∈ F is computed as:

Θf (H
k
A, H

i
B) = −log

(

f(Hk
A)

⊤ · f(Hi
B)
)

(5)

We normalize each feature to have unit ℓ2-norm. To further

spread the samples over the unit ball, we center every vector

to zero mean. Note that the matrix version of this formula-

tion can use optimized BLAS Level-3 [18] and therefore

can be computed efficiently by optimally using all the re-

sources of modern computing architecture.

In Equation (3), the term Φsmall penalizes big matching

displacements and depends only on the matching vector:

Φsmall(i) = ‖wi‖2 (6)

Similarly, Φsmooth penalizes matching vectors deviating too

much from the average matching vector in a neighborhood:

Φsmooth(Ni) = ‖wi −
∑

j∈Ni

c(ǫij)wj‖2 (7)

where all j ∈ Ni are the neighbors of i and each ǫij the

corresponding edge, with c(ǫij) being the edge weight.

The confidence of the match of node i in the target do-

main B is then defined as −E(Mi).

3.3. Optimization

Since satellite images are loosely pre-aligned, the opti-

mal solution does not have large w. Therefore, we limit
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the search for a match for i ∈ B to a window of size

w × w around the initial match. In practice, we initial-

ize the system on the geographically nearest super-pixel in

A. Note that we can see the matching problem as a clas-

sification problem with w2 classes, corresponding to every

possible match for each super-pixel in B[15]. To find a set

of matches M that minimize Equation (3), we employ the

Iterated Conditional Modes (ICM) algorithm [4]. Thanks

to the grid structure of the graph we can use Fast Fourier

Transform (FFT) to compute the energy in the form of a

convolution, which significantly improves the efficiency of

the algorithm. The fact that the initialization is never very

far from the solution [37], the use of super-pixels and the

FFT means that, for image pairs used in this work, the pre-

sented method typically converges in less than 10 seconds

using ICM on a standard personal computer.

4. Experiments and Results

We apply our proposed representation to three differ-

ent problems within the context of multimodal registration.

In all the experiments the SDSN feature is compared to

a multi-scale SIFT feature over the average color channel

with patch sizes of 9, 17 and 33 pixels [40] and a feature

consisting of the common spectral bands, thereafter referred

to as “color”. In all the experiments using a set of two fea-

tures, the values of αf have been set to 0.5.

4.1. Ground Truth Transfer

We aim to transfer the available ground truth (GT) from

the source image to the target image, while simultaneously

avoiding the regions that have likely undergone some land

cover change. This transferred GT is then used to train a

kNN classifier in the target domain to generate an updated

land cover map. The choice of kNN classifier is due to its

simplicity and distribution independence. We use a hand la-

beled GT of the target domain to validate the map obtained.

4.1.1 Dataset and Setup

The source domain consists of five QuickBird [12] satellite

images of Zurich Switzerland taken in August 2002. They

have four channels: near infrared, red, green and blue (NIR-

R-G-B), and a resolution of about 0.62 cm/pixel. These im-

age are a subset of the Zurich Summer dataset presented

in [41]. The target domain is a corresponding set of five

NIR-R-G aerial images of the same area, with nearly the

same footprint, captured during the campaign of summer

2013 and provided by the Swiss Federal Office of Topogra-

phy [36]. We refer to this dataset as NIR-R-G Orthophoto

data. The resolution of the target images is 25 cm/pixel.

To test our approach in the case where source and target

only share the R and G bands, we discard the NIR band

of the QuickBird images and use exclusively the R-G-B

(a) (b)
Figure 3. One of the 5 image pairs from the Zurich dataset. (a):

Quickbird [12] image, the source domain, and the correspond-

ing GT. (b): False color Representation of the 3 band NIR-R-G

Orthophoto data [36] (2013) and its GT: Roads, buildings, trees,

grass, water and bare soil. Best viewed in color.

bands throughout the experiments. Figure 3 shows an ex-

ample image pair and the corresponding GT maps. In this

dataset, the geo-registration error of the image pairs ranges

from 5 m to 15 m. Each image in the source domain has a

quite dense GT land-cover map consisting of between four

and six classes among Roads, Buildings, Trees, Grass, Bare

Soil, Water, Railways and Swimming Pools.

We treat each of the five image pairs as an independent

GT transfer problem. For each image pair, we first re-scale

them to the size of the smaller image in the pair. Note that

this step is not required but it results in obtaining a similar

number of superpixels, which helps getting a good match-

ing. The images are then segmented with SLIC [1], with the

superpixel size of 10 pixels and the regularization parame-

ter values set to 10. The SDSN features are computed using

a downsampling factor d of 20 and a σ of 0.5. For the MRF

matching we used λsmooth = 0.05 and λsmall = 0.05.

After matching, 90% most confident matches are used

for transferring the GT to the target image. We then used

all the transferred GT to train a pixel-wise kNN classifier

with k = 5. The classified land cover map is compared to

the hand labeled target GT for validation. We report results

from QuickBird [12] to Orthophoto [36] and vice versa.

4.1.2 Results

The classification results are shown in in Table 1. Using

SIFT or color features alone produces results that are signif-

icantly worse than the results obtained using the proposed

SDSN features. Using SDSN in conjunction with SIFT pro-

duces the best results on average. This is because SDSN and

SIFT encode very different properties of the super-pixels,
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i.e. the former encodes spectral information in terms of

global interactions across the whole image, while the lat-

ter encodes the local geometry. These two forms of in-

formation complement each other in describing land-cover

changes, resulting in better GT transfer. We also compare

our results with those obtained using a multi-modal mutual

information-based registration method [25] (Table 2).

#
Transfer

Dir.
Color SIFT

Color

+SIFT
SDSN

SDSN

+SIFT

SDSN

+Color

1
A → B 0.652 0.551 0.579 0.694 0.716 0.678

B → A 0.281 0.438 0.371 0.548 0.572 0.414

2
A → B 0.665 0.629 0.678 0.684 0.690 0.681

B → A 0.396 0.510 0.475 0.536 0.541 0.466

3
A → B 0.711 0.714 0.705 0.731 0.749 0.733

B → A 0.538 0.582 0.561 0.561 0.584 0.563

4
A → B 0.585 0.644 0.551 0.730 0.694 0.597

B → A 0.453 0.548 0.484 0.498 0.557 0.480

5
A → B 0.559 0.766 0.756 0.782 0.790 0.786

B → A 0.599 0.690 0.705 0.723 0.711 0.720

Mean 0.544 0.607 0.586 0.649 0.660 0.612

Table 1. Average classification accuracy for ground truth transfer.

The first column correspond to image pairs. A and B correspond

to QuickBird [12] Orthophoto [36] domains.

Method SDSN+SIFT Affine[25] Non-rigid[25]

AA 66.0% 63.7% 64.0%

Table 2. Numerical comparison with [25], Average Accuracy.

4.1.3 Parameter Sensitivity and Circular Validation

We now focus on the sensitivity of our method to the choice

of parameter values used when transferring the GT from

source to target A → B. In the left column of Figure 4

we see the result of applying this concept to the values of

λsmall and λsmooth, the SDSN’s σ, and the down-scaling fac-

tor d. It can be observed that most image-pairs are not very

sensitive to variations in the tested parameters showing the

robustness of our framework to its various parameters.

We also study how a circular validation strategy [7] can

help with estimating a good set of parameters for our frame-

work. In the case of GT transfer, this can be done by trans-

ferring the GT from source to target A → B, and then from

target back to source A → B → A, where it is compared

to the original GT for evaluation. This setting corresponds

to the right column of Figure 4. It can be observed that the

optimal values obtained during validation A → B → A are

similar to the optimal values required for our original prob-

lem A → B. This result shows that we can employ this

circular validation strategy [7] in practice to select the opti-

mal parameter values required by our framework. Note that

λ
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(c)
Figure 4. Classification accuracy in the five Zurich image pairs for

different values of (a): λsmall and λsmooth (both take the same value

in this experiment), (b): σ value for the SDSN feature, (c): the

downscaling parameter d for the SDSN feature. On the left, we

transfer the GT from source to target. On the right is from source

to target and back to source.

the downsampling factor d determines the number of op-

erations required to compute the SDSN feature and affects

the computation time in a quadratic manner (see Table 3).

However, the results in Figure 4 suggest that this time can

be greatly reduced at a small cost in accuracy.

d 2 5 10 20 50 100

time (s) 4.71 0.75 0.255 0.073 0.04 0.04

Table 3. Time (images 700 × 1000 pixels on a single CPU) to

compute SDSN features wrt. downsampling, d.

4.1.4 Sensitivity to Perturbations in the Input

We use the image shown in Figure 3a in order to explore

how sensitive our method is to three types of perturbations:

1) amount of change, 2) displacement and 3) rotation be-

tween the images. To do so, we match the image in Fig-

ure 3a with a perturbed version of itself. The land-cover

changes were added by substituting vegetation superpixels

5095



(a) (b) (c)
Figure 5. (a): Layout of the used images in the area of Lausanne, Switzerland. (b): Representation of the 2 images used (left) and the

respective GTs (right). From top to bottom: Prilly 2011 (WorldView 2 [13]) and Renens 2012 (NIR-R-G Orthophoto). Color legend:

buildings, roads, grass, trees and shadows. (c): Hand labeled super-pixel pairs (in yellow). Figure best viewed in color.

with bare soil ones. Performance was measured as the per-

centage of changed superpixels recalled, assuming that the

amount of change had been correctly estimated. When con-

sidering displacement and rotation, the amount of change is

fixed at 20%. Results in Table 4 show high robustness even

for the most extreme amounts of change and displacement,

which are the main sources of perturbation to be expected

in remotely sensed images.

Change amount (%) 6 12 30 42

Recall (%) 96 97 96 84

Displacement (m) 10 20 30 50

Recall (%) 92 86 85 82

Angle (◦) 1 3 6 10

Recall (%) 89 78 62 57

Table 4. Sensitivity to changes, displacements and rotations in the

target (B). Domains A and B consist of the RBG and NIR-R-G

bands of Figure 3a respectively.

4.2. Unsupervised Manifold Alignment

We now explore the problem where the source and tar-

get images have a partial overlap, but there is no GT avail-

able in the overlap area. To perform domain adaptation,

we cannot simply register the labeled super-pixels directly.

However, we can project both domains in a common latent

space where both domains are similarly distributed. We use

the same settings presented in [29], where a hand-labeled

set of super-pixel pairs in the overlapping area are used to

perform manifold alignment between the two domains. In-

stead of manual selection, we use the proposed method to

automatically find a set of these super-pixel pairs.

We use the manifold alignment algorithm in [43], where

the local geometrical structure of the domain is preserved

while enforcing weak class consistency using the matched

super-pixel pairs. Once the domains are aligned, one can

then directly train and test in the aligned domain.

To find a set of confident super-pixel matches that are

also representative of the different land covers in the im-

age, we partition the super-pixel spectra in the target do-

main using k-means clustering and select the most confident

matches in each cluster.

(a) (b)
Figure 6. Automatically generated super-pixel pair map using the

proposed SDSN features. (a): Grayscale version of the World-

View 2 [13] image used as source. (b): Grayscale version of the

NIR-R-G Orthophoto [36] image used as target. Matched segment

pairs are within the neighborhood of each other and are marked

with same color in order to imply correspondence. Best viewed in

color.

4.2.1 Dataset and Setup

For these experiments, we use the dataset presented in [29].

The images cover an area of Lausanne, Switzerland. The

source domain is a WorldView 2 [13] image, with 8 spec-

tral bands in the visible and infrared region, taken in 2011
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and the target domain is a 25 cm/pixel resolution NIR-R-G

Orthophoto [36]. Figure 5b shows the areas of interest, with

their corresponding GT, and Figure 5c the area common

to both domains. The land-cover classification includes 5
classes, as shown in Figure 5b.

The parameters for SLIC were set to segment size of

20 pixels and regularization parameter of 10. The σ value

for the SDSN was set to 0.5 and the downsampling factor

for the low resolution image was set to 100. For the MRF

matching, we used λsmooth = 10−2 and λsmall = 10−2. We

then partitioned the superpixels in the target domain into 26

clusters and randomly took 10 confident matches from each

of the 20 most populated clusters.

For manifold alignment, we used the same settings as

in [29]. After projecting the data onto the latent feature

space, we tested the performance of the alignment by clas-

sifying in the test image using only the labeled pixels from

the source image. We report results using kNN with k = 5
training with 400 labeled pixels per class. We also tried

other classifiers, such as Random Forest and SVM (not

shown in this paper), obtaining comparable trends. For each

type of feature (color, SIFT, SDSN and SDSN+SIFT) we

generated 5 instances of the super-pixel pair set. For each

instance, as well as for the hand labeled super-pixel pairs,

we computed 10 realizations of the manifold alignment and

classification training set.
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Figure 7. Classification results (as overall accuracy) on the mani-

fold alignment experiment using kNN.

4.2.2 Results

An example of an automatically generated super-pixel pair

set with SDNS feature matching is shown in Figure 6.

Notice how the high-confidence super-pixels pairs are dis-

tributed across the whole image evenly.

In Figure 7 we see the average classification results. We

see how the automatically generated super-pixel pair sets

using SDSN, SIFT or SDSN+SIFT perform substantially

better than the hand labeled map in the vast majority of

cases. Moreover, in this experiment, using SDSN+SIFT

does not seem to have an advantage over SDSN alone. This

is possibly due to the presence of higher rise buildings, com-

pared to the Zurich dataset, and the acquisition angle differ-

ence between domains. This has a big impact on the local

geometry, to which SIFT is highly sensitive.

4.3. Change Detection

The main assumption underlying the SDSN feature is

that spectral neighborhood relations are domain invariant

and can be used to match with high confidence the areas

that remain unchanged between domains. Considering the

other end of the confidence spectrum, we can build a map of

low confidence areas that can be used for change detection.

4.3.1 Datasets and Setup

To test our framework on change detection, we use an

image-pair from the dataset in § 4.1.1, shown in Figure 8a

and 8b, with change GT in green. We also apply our method

to an RGB image-pair from Google Earth of an agricul-

tural area near Melbourne, Australia taken on 10/17/2014

and 01/03/2015, Figure 10a-b. We chose this location as it

represents a case where the three similarity measures, using

SDSN, SIFT and color, provide different notions of change.

Our pre-processing for this experiment is the same as in

§ 4.1. The MRF parameters λsmooth and λsmall are set to 0.2.

We set them higher in this case compared to the GT trans-

fer setting because here we want to penalize non-smooth

high-confidence matches more. The matching is done in

both directions, i.e., A → B and B → A. The two result-

ing confidence maps are then combined by taking, for each

location, the minimum value among the two maps.

4.3.2 Results

Figures 8c-f show as heat-maps the low confidence

matches, in yellow. We calculated the confidence using 4

different invariant features within our MRF framework: the

common bands (color), SIFT, SDSN and SDSN+SIFT. In

the case of SIFT, Figure 8e, the algorithm detects the il-

lumination changes in the forest (lower right corner of the

image) as the dominant changes. Using the common bands

R and B, Figure 8c, highlights mostly illumination changes

on the roads and rooftops, with only changes #3, 6, 12 and

14 being clearly detected. SDSN, Figure 8d, shows a better

correlation with the labeled changes, while detecting also

changes in building’s shadows. This undesired effect is re-

duced by using SDSN+SIFT. SDSN clearly detects changes

#2, 3, 4, 5, 6, 8, 9, 10, 11, 12 and 14 while maintaining a

false positive ratio comparable to or even lower than the

color feature. We present the ROC curves for change de-

tection in Figure 9. It can be observed that results incorpo-

rating the SDSN feature are significantly better than those

5097



(a) (b)

(c) (d)

(e) (f)
Figure 8. (a) Image in domain A and (b) B. Change GT marked

in green. (c-f) The low confidence areas, those contributing the

most to the MRF energy, are shown in yellow. The matching has

been performed with the same parameters using the following fea-

tures: (a) common spectral bands, (b) SIFT , (c) SDSN and (d)

SDSN+SIFT. Best viwed in color.
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Figure 9. Correctly detected change pixels versus false positives

for all different values of the detection threshold.

obtained using either color or SIFT features. Once more,

using SDSN+SIFT results in a slightly better performance

than SDSN alone.

Figure 10c-e show the non confident areas on the Google

Earth image pair using the common bands, SIFT and SDSN

features respectively. We can clearly see how each map cor-

responds to a different notion of change. Using the com-

mon bands, in this case all R, G and B, highlights the ar-

(a) (b)

(c) (d) (e)
Figure 10. (a, b): Google Earth images taken in 10/2014 and

01/2015 respectively. (c-e): Low matching confidence areas are

shown in yellow, (c) using color, (d) SIFT, (e) SDSN.

eas in which the color change is stronger, such as the dark

green vegetation turning into bright bare soil. SIFT is cor-

related with geometrical changes in the image, such as the

cloud shadow in the center top of Figure 10a. On the other

hand, SDSN highlights the the areas that undergo an un-

common transformation compared to the predominant set of

transformations. Given that most areas have either changed

from vegetation to bare-soil or vice versa, these uncommon

transformations include vegetation that continues to be veg-

etation (e.g. the field near top left corner) and bare soil that

stays bare soil (e.g. roads). While the former transformation

is an anomaly we would like to detect, the latter is an artifact

due to the spectral similarity between roads and bare-soil

classes.

5. Conclusions

We proposed the spatial distributions of spectral neigh-

bors (SDSN) as a cross-domain feature for multi-sensor,

multi-temporal image pairs of sub-meter resolution. We

showed that SDSN can help to match the super-pixels be-

tween two images from overlapping areas while distin-

guishing between the spectral changes that are the artifacts

of different acquisition conditions from those due to real

land-cover changes. We showed the usefulness of SDSN

for land-cover map update and for change detection.

We incorporate the SDSN representation into a Markov

Random Field to account for nonlinear misregistrations and

to enforce a locality prior in order to find matches be-

tween multi-sensor, multi-temporal images. Furthermore,

we compare SDSN with other features commonly used in

remote sensing image registration. Our results demonstrate

that SDSN performs significantly better than the alterna-

tives considered, maximizing domain invariance and result-

ing in better classification and change detection.
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