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Abstract

This paper argues that large-scale action recognition in

video can be greatly improved by providing an additional

modality in training data – namely, 3D human-skeleton se-

quences – aimed at complementing poorly represented or

missing features of human actions in the training videos.

For recognition, we use Long Short Term Memory (LSTM)

grounded via a deep Convolutional Neural Network (CNN)

onto the video. Training of LSTM is regularized using

the output of another encoder LSTM (eLSTM) grounded

on 3D human-skeleton training data. For such regular-

ized training of LSTM, we modify the standard backprop-

agation through time (BPTT) in order to address the well-

known issues with gradient descent in constraint optimiza-

tion. Our evaluation on three benchmark datasets – Sports-

1M, HMDB-51, and UCF101 – shows accuracy improve-

ments from 1.7% up to 14.8% relative to the state of the art.

1. Introduction

This paper is about classifying videos of human actions.

We focus on domains that present challenges along two

axes. First, we consider a large set of action classes (e.g., the

Sports-1M dataset with 487 action classes [15]) which may

have very subtle inter-class differences and large intra-class

variations (e.g., Sports-1M contains 6 different types of

bowling, 7 different types of American football and 23 types

of billiards). The actions may be performed by individuals

or groups of people (e.g., skateboarding vs. marathon), and

may be defined by a particular object of interaction (e.g.,

bull-riding vs. horseback riding). Second, our videos are

captured in uncontrolled environments, where the actions

are viewed from various camera viewpoints and distances,

and under partial occlusion.

Recent work uses Convolutional Neural Networks

(CNNs) to address the above challenges [2, 13, 31, 15,

41, 4, 35, 26]. However, despite the ongoing research ef-

forts to: (a) Increase the amount of training data [15],

(b) Fuse hand-designed and deep-convolutional features

[35, 26, 41], and (c) Combine CNNs with either graphical

models [31, 11, 39], or recurrent neural networks [4, 39]

for capturing complex dynamics of human actions, we ob-

serve that their classification accuracy is still markedly be-

low the counterpart performance on large-scale image clas-

sification. This motivates us to seek a novel deep architec-

ture, leveraging some of the promising directions in (a)–(c).

Our key idea is to augment the training set of videos

with additional data coming from another modality. This

has the potential to facilitate capturing important features

of human actions poorly represented in the training videos,

or even provide complementary information missing in the

videos. Specifically, in training, we use 3D human-skeleton

sequences of a few human actions to regularize learning of

our deep representation of all action classes. This regular-

ization rests on our hypothesis that since videos and skele-

ton sequences are about human motions their respective

feature representations should be similar. The skeleton se-

quences, being view-independent and devoid of background

clutter, are expected to facilitate capturing important motion

patterns of human-body joints in 3D space. This, in turn, is

expected to regularize, and thus improve our deep learning

from videos.

It is worth noting that the additional modality that we use

in training does not provide examples of most action classes

from our video domain. Rather, available 3D human-

skeleton sequences form a small-size training dataset that

is insufficient for robust deep learning. Nevertheless, in this

paper, we show that accounting for this additional modality

greatly improves our performance relative to the case when

only videos are used in training.

As illustrated in Fig. 1, for action recognition, we use

Long Short Term Memory (LSTM) grounded via a deep

Convolutional Neural Network (DCNN) onto the video.

LSTM is modified to have an additional representational

layer at the top, aimed at extracting deep-learned feature
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Figure 1: Our novel deep architecture: the LSTM on the

left is trained on videos under weak supervision, and the

encoder LSTM (eLSTM) on the right is trained in unsuper-

vised manner on 3D human-skeleton sequences. vt and st
denote the input video frame and skeleton data at time t. rv
and rs are the output features of LSTM and eLSTM. y and ŷ

are the ground-truth and predicted class labels. ht, h
1
t , and

h
2
t are the hidden layers in the two respective LSTMs. xt

is the output feature of DCNN’s FC7 layer. Euclidean dis-

tances between corresponding features rv and rs are jointly

used with the prediction loss between y and ŷ for a regular-

ized learning of the LSTM on videos.

rv from the entire video. In training, we regularize learn-

ing of LSTM such that its output rv is similar to features

rs produced by another encoder LSTM (eLSTM) grounded

onto 3D human-skeleton sequences. The sequences record

3D locations of 18 joints of a human body while the per-

son performs certain actions, such as those in the Carnegie-

Mellon Mocap dataset [1] and the HDM05 Mocap dataset

[22]. eLSTM is learned in an unsupervised manner by min-

imizing the data reconstruction error. Note that a hypotheti-

cal supervised learning of an LSTM on skeleton data would

not be possible in our setting, since we have access to a

small dataset representing only a small fraction (or none) of

action classes from the video domain. During test time, we

do not use any detections of human joints and their trajecto-

ries, but classify a new video only based on raw pixels taken

as input to the LSTM+DCNN.

Our main contribution represents a novel regularization

of LSTM learning. Unlike the standard regularization tech-

niques, such as drop out or weight decay [12, 4, 40], we

define a set of constraints aimed at reducing the Euclidean

distances between top-layer features of LSTM trained on

videos and corresponding output features of eLSTM. We

use these constraints to regularize and thus extend the stan-

dard backpropagation through time (BPTT) algorithm [4].

BPTT back-propagates a class-prediction loss for updating

LSTM parameters via stochastic gradient descent. We addi-

tionally back-propagate the above constraints between cor-

responding features. This requires modifying the standard

(unconstrained) gradient descent to an algorithm that ac-

counts for constraints. To this end, we use the hybrid steep-

est descent [9].

In this paper, we consider several formulations of reg-

ularizing LSTM learning corresponding to the cases when

ground-truth class labels are available for the skeleton se-

quences, and when this ground truth is not available.

We present experimental evaluation on three benchmark

datasets, including Sports-1M [15], HMDB-51 [19], and

UCF101 [28]. We report the performance improvement

ranging from 1.7% to 14.8% relative to the state of the art.

In the following, Sec. 2 reviews related work, Sec. 3

specifies LSTM, Sec. 4 formulates our novel deep archi-

tecture, and Sec. 5 presents our results.

2. Closely Related Work

This section reviews related work on: combining CNN

and LSTM, encoder LSTM, using skeleton data for action

classification, and multimodal deep learning in vision.

LSTM+DCNN. Frame-level DCNN features have been

used as input to LSTM for action classification [4]. This

architecture has been extended with additional layers for

convolutional temporal pooling [39]. The main advantages

include that these architectures are deeply compositional in

both space and time, and that they are capable of directly

handling variable-length inputs (e.g., video frames) and

capturing long-range, complex temporal dynamics. They

are learned with backpropagation through time (BPTT).

Our key difference is in the definition of LSTM output layer.

Our output layer includes the standard softmax layer for

classification and the additional representational layer for

mapping input video sequences to a feature space. It is the

construction of this new feature space that allows us to regu-

larize LSTM learning. Another difference is that we replace

the standard stochastic gradient descent in BPTT, with an

algorithm that accounts for constraints in optimization.

Encoder LSTM. LSTM has been used to encode an in-

put data sequence to a fixed length vector, which, in turn,

is decoded to predict the next unobserved data [29]. How-

ever, this recurrent autoencoder-decoder paradigm has not

yet demonstrated competitive performance on action classi-

fication in videos. Our main difference is that we use the

encoder LSTM to generate a feature manifold for regulariz-

ing a supervised learning of another LSTM.

Action classification using skeleton data has a long-

track record [10, 20, 33, 34, 37, 38, 5]. However, at test

time, these approaches require either 3D locations of human
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joints, or detection of human joints in videos. In contrast,

at test time, we just use pixels as input, and neither detect

human joints nor need their 3D locations.

Multimodal learning. Recent work uses text data

as an additional modality to improve image classification

[23, 8, 7, 27, 18, 21]. For example, a combination of DCNN

and LSTM has been used for multimodal mapping of finer

object-level concepts in images to phrases [18]. Closely re-

lated work introduces a semi-supervised embedding in deep

architectures [36]. Due to the fundamental differences in

our problem statements, we cannot use these approaches.

More importantly, instead of a heuristic combination of

classification loss and the embedding loss, we use a well-

defined set of constraints to explicitly exploit the informa-

tion contained in the embedding space.

Another difference is that object classes of text data are

in one-to-one correspondence with object classes appearing

in images (or it is assumed that the image and text domains

have a large overlap of object classes). In contrast, our 3D

skeleton sequences represent only a few action classes from

the video domain. Similar to [8, 27], we do not use the

other modality at test time. For multimodal training, these

approaches use, for example, the Euclidean distance [27],

modified hinge loss [8], parameter transfer and regression

loss [7], or pairwise ranking loss [18]. Instead, we minimize

the cross entropy loss associated with the softmax layer of

LSTM, subject to the feature similarity constraints in our

regularization. Importantly, in Sec. 4.3, we provide conver-

gence guarantees for our regularized learning of LSTM.

3. A Brief Review of LSTM

A major building block of our novel architecture is

LSTM [12, 29], depicted in Fig. 2. LSTM is a recurrent

neural network as briefly reviewed below.

The LSTM’s recurrent unit memorizes previous input in-

formation in a memory cell, ct, indexed by time t. The out-

put is hidden variable ht. Three gates control the updates of

ct and ht: ‘input’ it, ‘output’ ot, and ‘forget’ ft. In (1), we

summarize their update equations, where symbol ⊙ denotes

the element-wise product, and W are LSTM parameters.

it =σ(Wxixt +Whiht−1 +Wcict−1 + bi),
ot=σ(Wxoxt +Whoht−1 +Wcoct−1 + bo),
ft=σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ),
ct=ft ⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1 + bc),
ht=ot ⊙ tanh(ct).

(1)

From (1), the input gate, it, regulates the updates of

ct, based on inputs xt and previous values of h and

c. The ‘output gate’, ot, controls if ht should be up-

dated given ct. The forget gate, ft, resets the memory

to its initial value. The LSTM parameters WLSTM =
{Wxi,Wxo,Wxf ,Wci,Wco,Wcf ,Whi,Who,Whf} are

jointly learned using BPTT.

Figure 2: LSTM unit [12, 29].

The LSTM unit preserves error derivatives of the deep

unfolded network. This has been shown to avoid the well-

known vanishing gradient problem, and allows LSTM to

capture long-range dependencies in the input data sequence.

4. Regularizing LSTM for Action Recognition

As mentioned in Sec. 1, our novel architecture con-

sists of eLSTM for learning a feature representation of 3D

human-skeleton sequences, and a stacked DCNN+LSTM

for classifying videos. Below, we describe these two com-

ponents.

eLSTM. Fig. 3 shows the time-unfolded encoder and de-

coder parts of eLSTM. The goal of eLSTM is to encode the

input skeleton sequence, s = {st : t = 1, 2, . . . }, consist-

ing of 3D locations of human joints. The sequences may

have variable lengths in time. eLSTM observes the entire

skeleton sequence s, and encodes it to a feature vector rs.

The set of encoded representations {rs} are assumed to

form a manifold Ms of skeleton sequences. To learn the

encoder, a decoder LSTM tries to reconstruct the normal-

ized input 3D data in the reverse order. The reconstruction

error is then estimated in terms of the mean-squared error

in the normalized 3D coordinates, and used to jointly learn

both the encoder and decoder LSTMs. The reversed output

reconstruction benefits from low range correlations which

makes the optimization problem easier. The input to the en-

coder at each time step t, is the output of the decoder at time

step t−1, i.e. st−1. An alternative architecture is to learn an

encoder LSTM to predict the next skeleton frame. To avoid

over-fitting, we use the standard drop-out regularization for

eLSTM [40].

DCNN+LSTM. As shown in Fig. 1, for classifying hu-

man actions in videos we use a stacked architecture of a

frame-level DCNN and a two-layer LSTM. DCNNs have

been demonstrated as capable of learning to extract good

image descriptors for classification [32, 41, 16]. For DCNN,
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Figure 3: The time-unfolded visualization of the encoder

LSTM (left) and decoder LSTM (right) for learning a

feature representation from input 3D human-skeleton se-

quences. The encoder LSTM observes the entire skeleton

sequence and encodes it to a fixed-length representation.

The decoder LSTM tries to reconstruct 3D locations of hu-

man joints in the reverse order of the input sequence. The

reconstruction error is then used to jointly learn both the

encoder and decoder LSTMs.

we use the same network architecture initially trained on

the ImageNet dataset as in [30]. The only difference is

in the number of output units of the softmax layer at the

top of DCNN, since we address different numbers of ac-

tion classes. Note that we later fine-tune DCNN parameters

together with LSTM ones in our regularized learning.

Our LSTM differs from the model used in [4] in the

top output layer. The output layer of our LSTM extends

the standard fully connected softmax layer for classifica-

tion with an additional representation layer. This repre-

sentation layer is aimed at mapping input video sequences,

v = {vt : t = 1, 2, . . . }, with variable lengths in time,

to fixed-length vectors rv. The size of this representation

layer is set to be equal to that of the output layer of eLSTM.

Thus, the vectors rv and rs have the same size.

Our goal of learning DCNN+LSTM parameters, Θ, is

to minimize the classification loss, L(Θ), subject to con-

straints g between vectors rv and corresponding vectors rs
in manifold Ms. Thus, for all training videos v ∈ Dv , we

formulate the regularized learning of DCNN+LSTM as

min
Θ

L(Θ)

s.t. ∀v ∈ Dv , g(rv,Ms) ≤ 0,
(2)

where L(Θ) =
∑

v∈Dv

l(v,Θ) is the cross entropy loss as-

sociated with the softmax layer of LSTM, and g is a con-

straint based on the distance between rv and Ms. g can

be defined in different ways. We only require that the con-

straints are differentiable functions. In the following, we

define two distinct constraints that give the best results in

our experiments.

4.1. Class Independent Regularization

For class independent regularization of learning

DCNN+LSTM parameters, the constraint g = g1 in (2)

is specified to ensure that, for every video v ∈ Dv , rv is

sufficiently similar to the mapped vectors rs ∈ Ms. This

is achieved by defining an upper-bound for the average

distance between rv and all rs ∈ Ms as in (3)

g1(rv,Ms) =
1

n

∑

rs∈Ms

‖rv − rs‖
2
2 − α, (3)

where α > 0 is an input parameter, and n is the number

of training skeleton sequences. This type of regularization

is suitable for cases when training skeleton sequences do

not represent the same action classes as training videos or

represent a very small subset of action classes.

4.2. Class Specific Regularization

For class specific regularization of learning

DCNN+LSTM parameters, the constraint g = g2 in

(2) is specified to take into account action class labels of

training skeleton sequences, when available. This type of

learning regularization is suitable for cases when some

action classes represented by training skeleton sequences

do “overlap” with certain action classes in training videos.

The definition of class equivalence between the two

modalities can be easily provided along with ground-truth

annotations.

We expect that rv and rs should be more similar if video

v and skeleton sequence s share the same class label, lv =
ls, than rv and rs′ of skeleton sequences s′ with different

class labels, lv 6= ls′ . This is defined in (4)

g2(rv,Ms) =
1

n=

∑

rs∈Ms

lv=ls

‖rv−rs‖
2
2−

1

n6=

∑

r
s
′∈Ms

lv 6=l
s
′

‖rv−rs′‖
2
2.

(4)

where n= and n6= are the numbers of training skeleton se-

quences that have lv = ls and lv 6= ls. The constraint g2
defined in (4) ensures that the average Euclidean distance

between rv and rs ∈ Ms for skeleton sequences s of the

same action label is less than the average Euclidean distance

between rv and rs′ for skeleton sequences s′ of different

action labels.

4.3. Hybrid Steepest Descent

We jointly learn parameters, Θ=WLSTM∪WDCNN, by

modifying the standard backpropagation and applying a
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Figure 4: Simulation of the hybrid steepest descent al-

gorithm for a simple optimization problem presented in

[9]. In this example Θ = x1, x2, L(Θ) = −x1, g1 =
(x1−10)2

36 + (x2−10)2

81 − 1, and g2 = 10
8 x1 + x2 − 28. The

dark hashed lines show the boundary of the feasible set.

stochastic gradient descent algorithm which accounts for

the aforementioned constraints. One standard approach to

solve a constrained convex optimization problem is to use

Lagrange multipliers and fuse the constraints with the orig-

inal objective into a new unconstrained optimization prob-

lem. Unfortunately, as demonstrated in [24], gradient de-

scent poorly works with Lagrange multipliers, mainly be-

cause they introduce saddle points in the new objective.

Therefore, we resort to an alternative approach called hy-

brid steepest descent [9] for solving our constrained convex

optimization, as described below.

Fig. 4 shows a simulation of hybrid steepest descent for a

simple convex optimization problem. At each iteration, the

algorithm checks if the current solution – i.e., the current

Θ parameters in our case – satisfies all constraints. If so,

Θ is updated according to the gradient of the original ob-

jective function – i.e., in our case, the cross entropy loss

L(Θ) – without considering the constraints. If any con-

straint is violated by the current solution – i.e in our case,

g(rv,Ms) ≤ 0 constraint is not satisfied for rv computed

by DCNN+LSTM with the current Θ parameters –, we up-

date Θ according to the gradient of the violated constraints.

The proof of correctness, asymptotic stability, and conver-

gence of this algorithm is presented in [9]. Note that there

is no guarantee that the final value of the parameters Θ sat-

isfies all constraints. In our implementation we keep track

of the top 5 best solutions based which have the minimum

number of violated constraints.

We use hybrid steepest descent to modify BPTT for reg-

ularized learning of DCNN+LSTM. Note that the updates

of the recurrent units only depend on the particular value

of the the back-propagated gradient. Once this gradient is

computed, we use it in the same way as in the standard

BPTT. Thus, as summarized in Alg. 1, our modification of

BPTT amounts to alternating the specification of the error

gradient at the output layer according to the above rules of

hybrid steepest descent. In Alg. 1, we use g > 0 to denote

a constraint violation, and ηt is the time dependent learning

rate.

Algorithm 1: Regularized Learning of LSTM

Input: Training videos Dv andMs

Output: LSTM parameters Θ
1 % note that during training we assume sequences in Dv are

of the same length

2 repeat

3 for every v ∈ Dv do

4 forward-pass v through unfolded LSTM

5 if all constraints satisfied then

6 Θt
BPTT
←−−−− Θt−1 − ηt▽L(Θ);

7 % This updates Θ by back-propagating the

gradient of the cross entropy loss.

8 end

9 else

10 Θt
BPTT
←−−−− Θt−1 − ηt

∑

g>0

▽g(Θ);

11 % This updates Θ by back-propagating the sum

of gradients of the violated constraints.

12 end

13 end

14 until until convergence;

5. Results

For evaluation, we use the Sports-1M [15], HMDB-51

[19], and UCF-101 [28] datasets. Sports-1M consists of

more than 1 million videos from Youtube, annotated with

487 action classes. There are on average 3000 videos for

each action class, where the average video length is 5 min-

utes 36 seconds. Considering the large number of action

classes, long duration of the videos, and large variety of

camera motions, Sports-1M is currently acknowledged as

one of the most challenging benchmarks for action recog-

nition in the wild. HMDB-51 consists of 6849 videos with

51 action labels. Each action class has at least 100 videos

with an average video length of 3.1 seconds. UCF-101 con-

sists of 13,320 videos of 101 action classes with average

video length of 7.2 seconds. We follow [39], and report our

average accuracy on the given three dataset splits.

We use human skeleton sequences of the Carnegie-

Mellon Mocap [1] and HDM05 [22] datasets to train

eLSTM. HDM05 consists of 2337 sequences with 130 ac-

tion classes performed by 5 subjects. These sequences

record the 3D locations of 31 human joints at each frame.

Carnegie-Mellon Mocap consists of 2605 sequences with

23 action classes. These sequences record the 3D locations

of 41 human joints at each frame. For consistency, we use
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only 18 human-body joints (head, lower back, upper back,

upper neck, right/left clavicle, hand, humerus, radius, fe-

mur, tibia, foot) of the skeleton sequences, and resolve name

conflicts and duplicates in these two datasets.

eLSTM: An LSTM with two hidden layers is used for

the encoder and decoder. Input and output of the encoder

and decoder LSTMs are 54 = 18 × 3 dimensional vectors

of 3D human body joint positions. We normalize input data

in the range of [0, 1]. We empirically verified that eLSTM

with 512 and 1024 hidden units in the first and second re-

current layer of the encoder LSTM, and the same number of

hidden units in a reverse order for the decoder LSTM results

in the smallest reconstruction error. The model is trained

on 16 frame sequences. Since the training is unsupervised,

both Carnegie-Mellon Mocap and HDM05 datasets are used

in training phase. It takes 16-19 hours to converge for about

3160 minutes of skeleton sequences. For defining g2 con-

straints, we use the class labels defined in HDM05.

DCNN: We use GoogLeNet [30] trained on ImageNet

[25] as DCNN in our approach. This DCNN is fine-tuned

on a set of randomly sampled video frames. The output

layer is modified for the fine-tuning based on the number

of action classes. On average (150-200) frames are sam-

pled from each video. The second to the last fully con-

nected layer (FC7) is used as the frame descriptor input to

LSTM. Note that, later, DCNN parameters are fine-tuned

again jointly with LSTM training.

Our Regularized LSTM (RLSTM): Our RLSTM for

action recognition contains two hidden layers of 2048 and

1024 hidden units, respectively. The number of output units

for classification is 487 for Sports-1M, 51 for HMDB-51,

and 101 for UCF101. The number of output units for rep-

resentation is 512, which is equal to the number of hidden

units in the second recurrent layer of eLSTM. Similar spec-

ifications are used in [4, 29]. Fixed length sequences of 16

frames are used in training. We find that a random initializa-

tion of RLSTM converges to a poor local optimum. To over-

come this, we train a non regularized LSTM using one-tenth

of the training instances in Sports-1M. We use weights of

this learned model to initialize weights of RLSTM. Weights

of the representation layer are initialized randomly between

[-0.1, 0.1]. Similar to [4, 29], we estimate an average pre-

diction of 16 block frames with a stride of 8 in inference.

The linear weighting presented in [39] is used to combine

predictions from each block for the entire video.

Implementation: We use Caffe [14] and a modified ver-

sion of the RNN library in Torch [3] in our experiments. All

experiments are performed on an Intel quad core-i7 CPU

and 16GB RAM PC with two Tesla-K80 Nvidia cards.

Baselines: We conduct a comparison with several base-

lines in order to evaluate effectiveness of different con-

straints in our regularized learning of RLSTM. These base-

lines include the following: 1) DCNN: This is a ‘single-

Method UCF101 HMDB-51

Single-Frame [15] 64.9 41.2

LSTM 75.2 43.1

RLSTM-g1 78.3 49.3

RLSTM-g2 81.5 51.4

RLSTM-g3 86.9 55.3

Table 1: Average classification accuracy of regularized

LSTM models and baselines on UCF101 and HMDB-51.

Our approach outperform the LSTM baseline by 11.7% −
12.2%

frame’ based action recognition evaluated in [15] – a video

is represented by a single frame and classification is per-

form only based on the content in that frame, 2) LSTM:

This is a (DCNN+LSTM) learned without any regulariza-

tion and constraints, similar to the approach of [4] with only

difference in the number of hidden units (due to a different

number of classes considered).

Variations of our approach: Based on the constraints,

defined in Sec. 4.1 and 4.2, for regularizing learning of

RLSTM, we define the following three variations of our ap-

proach: 1) RLSTM-g1: uses class independent constraints

g1 to regularize the learning, 2) RLSTM-g2: uses class spe-

cific constraints g2 to regularize the learning , 3) RLSTM-

g3: uses g1 ∪ g2 to regularize the learning.

Table 1 shows our average classification accuracy on

HMDB-51 and UCF101. All variations of our method

improved the accuracy of the baseline LSTM (3.1% to

12.2%). RLSTM-g2 achieves a better accuracy compared

to RLSTM-g1. This strongly supports the hypothesis

that deep-learned features of vides and skeleton sequences

should be similar, and that our regularization should im-

prove action recognition. Because the 3D human skeleton

datasets and UCF101/HMDB-51 share a few common ac-

tion classes, RLSTM-g3 which combines the class indepen-

dent and class specific constraints outperforms RLSTM-g2.

Comparison of our method with the state of the art deep

learning based approches is presented in Tab. 2. We can see

that RLSTM-g3 outperforms variations of [15, 29, 4, 32, 26]

which only use raw frames by 1.7%−22%. Higher accuracy

is reported in [41, 39, 26, 35] on UCF101 for (raw pixels +

optical flow) input. In comparison with their accuracy of

88.6% − 90.3%, we achieve a comparable performance of

86.9% accuracy on UCF101 by using only pixels of video

frames.

Hit@k values are a standard evaluation for large-scale

datasets. A test instance is considered correctly labeled if

the ground truth label is among the top k predictions. Sim-

ilar to [39, 16] we use Hit@1 and Hit@5 values to report

accuracy on Sports-1M. Table 3 shows the classification ac-
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Method UCF101 HMDB-51

[15] 65.4 -

[29] 75.8 44.1

[4] 71.12 -

[26] 72.8 40.5

[41] 79.34 -

[32] 85.2 -

RLSTM-g3 86.9 55.3

Table 2: Average classification accuracy of RLSTM-g3 and

the state of the art on UCF101 and HMDB-51. Our ap-

proach outperform the best result in state of the art by

1.7− 11.2%

Method Hit@1 Hit@5

Single-Frame [15] 59.3 77.7

LSTM 71.3 89.9

[15] 60.9 80.2

[39] 72.1 90.6

[32] 61.1 85.2

RLSTM-g1 73.4 91.3

RLSTM-g2 62.2 85.3

RLSTM-g3 75.9 91.7

Table 3: Average classification accuracy of regularized

LSTM models, baselines, and the state of the art on Sports-

1M. Our approach outperform the best result in state of the

art by 2.5% and the LSTM baseline by 4.6%.

curacy of the baselines, different RLSTM models, and the

state of the art on Sports-1M. One interesting result is that

RLSTM-g1 outperforms RLSTM-g2. We believe that this

is because of a poor overlap of the large number of ac-

tion classes in Sports-1M with the set of action classes in

the skeleton data obtained from HDM05 and CMU Mocap.

Our best approach improves the classification accuracy on

Hit@1 by 2.5%−16.6%. Also the baseline non-regularized

LSTM yields better accuracy than the temporal pooling ap-

proaches of [15, 32]. We believe that this is mainly because

the baseline LSTM has access to the longer video frames.

To verify the effectiveness of hybrid-gradient descent

used in our regularized learning, we also train our

DCNN+LSTM using AdaGrad [6] and Adam [17]. These

two alternative algorithms are aimed at minimizing the stan-

dard weighted sum of the classification and representation

loss. The comparison is shown in Table 4, where RLSTM

denotes our approach to regularized training with hybrid-

gradient descent, and LSTM(·) denotes our approach to reg-

ularized training with AdaGrad or Adam.

Method UCF101 HMDB-51

LSTM(adm)-g1 75.7 44.6

LSTM(adm)-g2 79.20 49.8

LSTM(adm)-g3 81.8 51.3

LSTM(adg)-g1 74.9 44.3

LSTM(adg)-g2 81.6 49.5

LSTM(adg)-g3 80.7 48.6

RLSTM-g1 78.3 49.3

RLSTM-g2 81.5 51.4

RLSTM-g3 86.9 55.3

Table 4: Average classification accuracy of our approach

on UCF101 and HMDB-51, when the regularized training

is conducted with AdaGrad [6] or Adam [17] – denoted as

LSTM(adg) and LSTM(adm) – or hybrid-gradient descent

– denoted as RLSTM.

Figure 5: Average classification accuracy of RLSTM-g1
and RLSTM-g3 on HMDB-51 for different α values, where

α is the input parameter that controls the regularized learn-

ing of RLSTM-g1 and RLSTM-g3. Small values of α

enforce stronger regularization that the feature outputs of

RLSTM and eLSTM are highly similar.

The regularized learning of RLSTM-g1 and RLSTM-g3
is controlled by the α parameter, specified in (3). Fig. 5

shows how our accuracy changes for different values of α

on HMDB-51. We can see that for small values of α the

accuracy is very low. We observe that for these values the

learning algorithm does not converge. The algorithm al-

ternates gradient updates with respect to classification error

and violated constraints. This is because the optimization

problem becomes almost infeasible for small values of α.

The accuracy gradually increases for larger values of α, but

again decreases when α becomes sufficiently large. The ac-

curacy of RLSTM-g1 reaches that of the standard LSTM for

large values of α, and remains nearly the same. This is be-

cause sufficiently large values of α yield an unconstrained

optimization, i.e., non-regularized learning of LSTM.
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6. Conclusion

We have proposed a novel deep architecture for large-

scale action recognition. The main contribution of our

work is to use 3D human-skeleton sequences to regular-

ize the learning of LSTM, which is grounded via DCNN

onto the video for action recognition. We have modi-

fied the backpropagation through time algorithm in order

to account for constraints in our regularized joint learning

of LSTM+DCNN. Our experimental results demonstrate

that the skeleton sequences could successfully constrain the

learning of LSTM+DCNN leading to an improved perfor-

mance relative to the case when LSTM is trained only on

videos. Specifically, on Sports-1M, UCF101, and HMDB-

51 our accuracy improves by 2.5%− 16.6%, 1.7− 21.5%,

and 11.2− 14.8%, respectively.
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