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Abstract

Reliable patch-matching forms the basis for many algo-

rithms (super-resolution, denoising, inpainting, etc.) How-

ever, when the image quality deteriorates (by noise, blur

or geometric distortions), the reliability of patch-matching

deteriorates as well. Matched patches in the degraded im-

age, do not necessarily imply similarity of the underlying

patches in the (unknown) high-quality image. This restricts

the applicability of patch-based methods. In this paper we

present a patch representation called “Needle”, which con-

sists of small multi-scale versions of the patch and its imme-

diate surrounding region. While the patch at the finest im-

age scale is severely degraded, the degradation decreases

dramatically in coarser needle scales, revealing reliable

information for matching. We show that the Needle is ro-

bust to many types of image degradations, leads to matches

faithful to the underlying high-quality patches, and to im-

provement in existing patch-based methods.

1. Introduction

Finding similar patches is a fundamental component in

many computer vision algorithms. These include super

resolution [12, 14], texture synthesis [11], image comple-

tion [16], image retargetting [5, 26], and many more. How-

ever, when the image quality undergoes degradation (noise,

blur, geometric deformations, etc.), the reliability of patch-

matching decreases dramatically. Finding two “similar”

patches p̃ ≈ q̃ in the degraded image, may no longer im-

ply that their underlying (hidden) clean patches p and q are

similar. This however, is the very basic assumption in most

patch-based methods. For example, unconstrained match-

ing of noisy patches (globally in the noisy image, or in a

database of clean images), was shown to suffer from severe

overfit of the noise [25, 34]. Similarly, severe motion blur or

geometric distortions harm the ability to find good matches

(correspondences) across frames, hence optical flow esti-

mation algorithms tend to fail under such degradations.

Partial solutions have been proposed for this problem,

which offer only a limited remedy. For example, denois-

ing algorithms [4, 7] typically restrict the search space to a
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small image region around each patch, or use larger patches

which are less prone to noise-overfit. This, however, re-

stricts the ability to recover fine textures. Patch matching

under severe blur was addressed in [3], by pre-processing

the image patches to a normalized frequency range. It ad-

dresses only isotropic blur, and does not generalize to other

blur types (motion blur, non-parametric blur).

This paper presents a general framework for reliable

patch matching under severe image degradations. The

“Needle”, a new patch descriptor, comprises of small

patches obtained from multiple image scales, at the same

relative image coordinates (Fig. 1a). While the patch at

the finest image scale is severely degraded, hence cannot

be reliably matched, the degradation decreases dramatically

in coarser Needle scales, revealing reliable information for

matching (Fig. 1(c,d,e)). We show that if Needle(p̃) ≈
Needle(q̃) for two distorted patches p̃ and q̃, then with high

likelihood p ≈ q (the hidden high-quality patches).

Our paper has two main contributions: (i) A new patch

descriptor which is resilient to many types of image degra-

dations, (ii) Using NeedleMatch in patch-based algorithms

(e.g., denoising, correspondence-estimation) leads to a sub-

stantial improvement under severe image degradations.

The term “Needle” was coined in [35], but for a differ-

ent purpose. Each noisy patch was matched against coarser

patches inside its own needle, looking for its cleanest ver-

sion among its own needle patches. In contrast, we employ

the Needle as a ‘descriptor’, which is matched against other

needle-descriptors, to find good matches elsewhere in the

image (or in other images). Contrary to [35], we do not rely

on cross-scale recurrence of patches; our coarser-scale nee-

dle patches need not resemble the fine-scale patch (Fig. 1b).

Our Needle is different than other image descriptors

(e.g., SURF, SIFT, Geometric-Blur), as its aim is to repre-

sent well the unknown high-quality patch signal hidden un-

der severe degradation. A dense multiscale descriptor was

also developed by [15], based on SIFT computed at multiple

scales. Their aim was different – scale-invariant matching.

Being a gradient-based descriptor, their decriptor is likely

to fail in the presence of severe image degradation.

Incorporating information from multiple scales is com-

monly used in coarse-to-fine algorithms (optical flow [20],

stereo [24, 33], etc.) However, these methods use multiscale
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(a) Needle construction (b) High quality image I

Needle(p) Needle(q)

(c) Noisy image Ĩ

Needle(p̃) Needle(q̃)

(d) Blurry image Ĩ

Needle(p̃) Needle(q̃) Needle(p̃) Needle(q̃)

(e) Geometricly distorted image Ĩ

Figure 1: The Needle Descriptor. Needles of degraded patches (e.g., Needle(p̃), Needle(q̃)) reveal high-quality signal at

their coarser scales. These can be used to reliably guide the matching of degraded patches (p̃ and q̃) at the original scale.

information sequentially (coarse to fine). Such sequential

approaches fail under severe degradations (see Sec. 5.2.2),

since their final optimization stage is misguided by the

last-visited but most-degraded finest scales. In contrast,

The Needle employs information from all scales simultane-

ously. Some multiscale cost aggregation methods also em-

ploy simultaneous multiscale information (e.g., [19, 32]).

However, these are special purpose algorithms designed to

solve a specific application. In contrast, NeedleMatch can

be plugged into a wide variety of existing patch-based al-

gorithms, simply by replacing their patch-based similarity

with Needle-based similarity, thus making them robust to a

wide variety of image degradations (Fig 2).

The rest of the paper is organized as follows. Sec. 2

presents the Needle construction. Sec. 3 analyzes the source

of its resilience to severe degradations. Sec. 4 analyzes why

the Needle is able to accurately lock onto fine details despite

using large contextual information at coarser scales. Sec. 5

shows the superiority of the Needle matching over regular

patch matching in various patch-based applications.

2. “Needle” - A Multiscale Patch Descriptor

Let I be a high-quality image, and Ĩ be its degraded ver-

sion. p̃ ∈ Ĩ is a degraded version of the patch p ∈ I . When

seeking a “similar” patch q̃ ∈ Ĩ , we wish to find a patch

which is similar in its underlying (unknown) high-quality

signal, i.e., q ≈ p. The difficulty in finding reliable matches

stems from the fact that the “distortion component” in a

degraded patch is often larger than its“signal component”

p (i.e, ||p̃− p||>||p||). This leads to an overfit of the distor-

tion component instead of the signal, resulting in bad patch

matches. In other words, a good fit of q̃ to p̃ in image Ĩ does

not necessarily imply a good fit of q to p in image I .

We compute a Needle-descriptor for each image patch,

such that if Needle(p̃) ≈ Needle(q̃), then with high likeli-

hood p ≈ q. To build the descriptor, the image Ĩ is down-

scaled to generate multiscale images {Ĩs} (we used a bicu-

bic downscaling kernel). Needle(p̃) = {p̃s} is obtained by

stacking all the patches p̃s ∈ Ĩs which reside at the same

relative image coordinates as p̃; i.e., if (x, y) are the center

coordinates of p̃ in Ĩ , then (sx, sy) are the center coordi-

nates of the patch p̃s in Ĩs, at sub-pixel accuracy (Fig. 1a).

In order to match image patches, a Nearest-Neighbor

(NN) search is conducted in the needle space. For two

corrupted patches p̃ and q̃ to match, their corresponding

needles {p̃sℓ}Lℓ=0 and {q̃sℓ}Lℓ=0 must match (have low ℓ2
distance). We refer to this process as NeedleMatch. Note

that p̃ need not necessarily be of same size as its needle

patches {p̃sℓ}. For example, a 5 × 5 patch p̃ at the origi-

nal scale may be represented using a multi-scale needle of

3 × 3 patches. In our experiments we typically used nee-

dles of 3 × 3 multi-scale patches, obtained from 8 scales

sℓ = 0.75ℓ (ℓ = 0, 1, . . . , 7).

Three Needle properties lead to reliable patch matching:

(a) High-quality signal is revealed at coarse Needle scales:

While the patch at the finest scale of a degraded image is

severely distorted, the degradation decreases dramatically

in coarser scales. Additive Gaussian noise, general image

blur and general geometric distortions – all decrease lin-

early with scale, revealing high-quality patches at coarser

needle scales (Fig. 1.c,d,e). These claims are derived ana-

lytically in Sec. 3. Note that the different types of degrada-

tions in Fig. 1 reveal similar signals in their coarser scales.

This is a strong property of the Needle, as NeedleMatch

need not assume a specific degradation model for its search.

In fact, NeedleMatch can be used to match across images

with different types of degradation (e.g., matching patches

in a noisy image to patches in a blurry image).

(b) Context without penalty: NeedleMatch benefits from

local context information, without suffering from the inher-

ent limitation of matching large rigid regions. Wider and

wider image regions around the patch are represented by

increasingly coarser scales of its needle. This provides reli-

able context information for matching. However, one would
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expect that this should harm the ability of the Needle to find

accurate well-localized matches in textured regions (e.g.,

tree leaves, bushes, hair, etc.) Surprisingly, this is not the

case. NeedleMatch provides very good matches in such

regions (e.g., see the tree leaves in Fig. 6h). Sec. 4 ex-

plains and analyzes this surprising phenomenon. We show

that NeedleMatch gives rise to patch matches which only

roughly share the same local context. It permits non-rigid

deformations of the surrounding region, while enforcing

high match accuracy of the center patch. Such deform-

ing contexts cannot be exploited by matching large rigid

patches, as these are known to lack good matches [18].

(c) Simultaneous use of all scales: The needle does not

commit to any specific scale, but rather uses all scales si-

multaneously. This has several benefits: (i) Different image

regions may benefit from using different scales, depend-

ing on the amount of details they contain. (ii) We do not

know a-priori the degree of blur/noise/distortion, hence do

not know ahead of time which scale is most informative.

(iii) Coarse needle levels provide high-quality signal infor-

mation and rough context information, thus guaranteeing

high match reliability. Fine needle levels, on the other hand,

allow to match the fine details of the signal (e.g., texture,

edges), thus guaranteeing high localization accuracy.

These theoretical benefits of the needle are derived an-

alytically in Sec. 3 and 4, and are supported by the quan-

titative and qualitative experiments in Sec. 5. We further

show the superiority of NeedleMatch over: (i) Patch match-

ing at the original scale alone (of either small or large

patches), and (ii) superiority over sequential coarse-to-fine

patch matching. In particular, under severe degradation,

NeedleMatch provides more reliable correspondences than

advanced coarse-to-fine optical-flow methods [28] (Sec. 5).

3. Reliable Signal is Revealed at Coarse Scales

We next show that signal uncertainty, which is high in

fine scales of the degraded image, reduces dramatically in

coarser scales, revealing high quality signal. This is what

provides NeedleMatch with its robustness.

(a) Noise Uncertainty Reduces with Scale: Let p̃ = p+n
be a noisy patch. Let q̃ = q + n̂ be a ‘Nearest-Neighbor’

(NN) of p̃. When the noise n in the patch is larger than its

signal p (e.g., in uniform patches p), the patchwise Signal-

to-Noise Ratio [25]: “PatchSNR”=
√

var(p)
var(n) is low. This

leads to overfit of the noise instead of the signal (See [25]).

While the noise severely corrupts the original image

scale, the noise level drops significantly at coarser image

scales. For additive Gaussian noise: Ĩ=I + N(0, σ2),
the noise in an α-times coarser image will be distributed

like [35]: n(α) ∼ N(0,
(

σ
α

)2
), i.e., α-times smaller. Thus,

PatchSNR(α) (p̃) ≥
√

var(p)
var(n(α))

= α · PatchSNR (p̃),

revealing more reliable signal for matching (Fig. 1c). The

average PatchSNR of the needle is thus much higher. This

significantly lowers the chance to overfit noise, leading to

reliable patch matching (see Figs. 1c, 2c).

(b) Blur Uncertainty Reduces with Scale: Let Ĩ = I∗b be

a blurry image obtained by convolving a sharp image I with

a severe blur b. The difficulty in finding reliable matches

stems from the fact that the blur b eliminates much of the

high frequency information of I , leaving patches in Ĩ with

very few details for reliable matching.

When the blurry image Ĩ is scaled down by a factor

of α>1, its blur also decreases by a factor of α. For ex-

ample, an edge smeared over 10 pixels in Ĩ would ap-

pear smeared over only 5 pixels in its half-scaled version

(Ĩ↓2)(x, y)=Ĩ(2x, 2y). More formally [23], for any scal-

ing factor α: Ĩ ↓α (x, y) = I ↓α (x, y) ∗ (α2 · b ↓α (x, y)).
Note that α2 · b ↓α (x, y) = α2 · b (αx, αy) is α-times

narrower in x and in y, and α2-times taller than the orig-

inal blur b(x, y), thus maintaining an integral of 1. Since

limα→∞(α2 · b ↓α (x, y)) = δ(x, y), significant down-

scaling of a blurry image will result in a sharp image with

no blur (an observation also used in Blind-Deblurring [23,

29]). Thus, blur uncertainty reduces with needle scales

(Fig. 1d), resolving match ambiguities.

(c) Geometric Distortion Reduces with Scale: While

noise and blur introduce uncertainty in pixel intensities, we

next analyze uncertainty in pixel locations, namely geomet-

ric uncertainty. Such uncertainty can be caused, e.g., by at-

mospheric turbulence, imaging through smoke, underwater

photography, etc. These distortions presents a challenging

task for patch matching.

However, a pixel dislocated by ∆ in the original scale, is

dislocated by only 1
α∆ in an α-times coarser image. Thus,

the geometric uncertainty reduces with needle scales, lead-

ing to reliable signal-fit (Fig. 1e). For our empirical eval-

uations (Sec. 5.1), we used a simplistic model to geomet-

rically distort images, by randomly displacing each pixel

using a 2D-Gaussian distribution. A pixel p ∈ I , located

at (x, y), is randomly displaced to (x+∆x, y+∆y) where

∆x,∆y∼N(0, σ). This process results in severely degraded

images (e.g., Figs. 1e,6i, for σ=4.5).

4. Context without Penalty

We saw that cleaner/sharper signals emerge in coarser

needle-scales, resulting in Needles with much higher SNR

than their degraded source patches. But why should the Nee-

dle, which captures information from a large image region

(substantially larger than the patch), be able to find good

and well-localized patch matches of fine structures? Af-

ter all, even if two patches p and q are good matches, their

surrounding contexts P and Q may be quite different (see

Fig. 3a). This section shows that NeedleMatch can match

patches well, despite some context variations. In fact, con-

texts usually help improve the matches.

Context information has been shown to significantly im-
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Noisy Input (σ=20)

Interpolation

Patch-based SR Needle-based SR

(a) Super-Resolution [14] applied to noisy low resolution images

Input Patch-based Needle-based

(b) Turbulence Removal (please zoom in)

Clean image Noisy Image (σ=35)

BM3D-patches (31.54dB) BM3D-Needle (32.21dB)

(c) BM3D Image Denoising (please zoom in)

Figure 2: Replacing ‘patch-based similarity’ with ‘Needle-based similarity’ improves a variety of patch-based appli-

cations. (a) SR; (b) Turbulence removal (See Sec. 5.2 for details); (c) BM3D denoising. Please zoom in to see details.

prove the performance of detection and recognition [8, 9,

10, 31], super-resolution [30], and is the guiding principle

behind the fast PatchMatch method of [1]. NeedleMatch

benefits from this property. When certainty is low (e.g., un-

der degradation), the context information guides the search

for NNs to more likely image regions. For example, when

searching for a leave patch (e.g., the small red patch in

Fig. 3a), we are more likely to find reliable matches for it

among other leave patches, than among building patches.

However, two similar leave patches may have quite differ-

ent contexts, despite sharing similar appearance properties

(see two larger orange regions in Fig. 3a). This prohibits the

ability to match the two small leave patches via matching

their larger context regions. We next show that larger con-

text regions, which share similar appearance properties, but

differ at finer image scales, are very similar in coarser Nee-

dle scales. Thus, coarse needle scales guide the search to

reliable matches in similar, but not identical contexts. This

phenomenon is explained and analyzed next.

Let p and q be two corresponding patches of size m×m,

whose surrounding M × M regions P and Q (their “con-

texts”) deform with respect to each other (Fig. 3a). Since

P and Q share similar appearance properties (similar col-

ors/intensities), we can describe one of them as a non-rigid

deformation of the other. The arrows (u, v) in Fig. 3b

illustrate a deformation between the contexts P and Q
(namely, how far a pixel from P has to move in order

to find a pixel in Q with similar color). Let’s assume

that Needle(p) = {psℓ}Lℓ=1 and Needle(q) = {qsℓ}Lℓ=1

are composed of patches of size m×m (where m≪M , e.g.,

m=3 and M=30). Let’s further assume that the coarsest

needle-patches psL and qsL captures information from their

entire surrounding contexts P and Q, respectively. Namely,

P↓α = psL and Q↓α = qsL , where α=1/sL.

We analyze the case where p and q are clean image

patches that match well (i.e., if placed on top of each other,

the two patches will be well aligned, with very similar col-

ors). However, their surrounding context regions P and Q
are not well aligned. We assume that the contexts do not

change drastically, but rather deform gradually with respect

to each other (an assumption which holds for the vast ma-

jority of the patches that do not lie near occlusion bound-

aries). In other words, we allow for increasing deformation

(larger “relative misalignments” (u, v) between P and Q)

as a function of the distance from their centers (Fig. 3b).

We make the simplifying assumption that the magnitudes

of these “relative misalignments” are proportional to their

distance from the region center (0, 0):

||(u(x, y), v(x, y))|| = t · ||(x, y)|| (1)

for some scalar t. Note that this assumption holds not only

for gradual non-rigid deformations, but also for contexts de-

forming by global linear parametric transformations (e.g.,

zoom, rotation, affine deformation). We next show that al-

though the average misalignment is large for the contexts P
and Q (Claim 1), it is small for the corresponding Needles

of p and q (Claim 2), leading to good matches.
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(a) (b)

Figure 3: Similar patches with different contexts. (a) The

patches p and q are similar but their surrounding contexts

P and Q are not. (b) “Relative misalignments” between the

two contexts increase with distance from their centers.

Claim 1 [Context Misalignment:] Under the assump-

tion of Eq. (1), the average misalignment per-pixel between

two context regions of size M ×M is:

AvgMisalignment(P,Q) =
Mt√
6

(2)

Proof: For simplicity, we perform the derivation in the con-

tinuum. The average misalignment per pixel between P and

Q is: AvgSquareMisalignment(P,Q) =

=
1

M2

M/2
∫

−M/2

M/2
∫

−M/2

(u(x, y)2 + v(x, y)2) dx dy

=
1

M2

M/2
∫

−M/2

M/2
∫

−M/2

t2(x2 + y2) dx dy =
M2t2

6

Therefore, AvgMisalignment(P,Q) =
Mt√
6

�

Large contexts P and Q have large misalignment. E.g.,

for M=25 (25×25 regions) and t=0.2 (e.g., zoom by 0.8),

the average pixel misalignment between P and Q is ≈2 pix-

els. This results in a large grayscale difference, especially

in textured regions, hence a bad match between P and Q.

In contrast, when the needles of two matching

patches p and q are compared, Needle(p)={psℓ}Lℓ=1

and Needle(q)={qsℓ}Lℓ=1, their average misalignment

will be significantly smaller. The misalignment be-

tween corresponding needle-patches at coarser scales will

still grow linearly with distance from the patch cen-

ters, with the same scalar t. When two image re-

gions are scaled-down by a factor of α, their relative

misalignments become α-times smaller. In our case:

||(u↓α(x, y), v↓α(x, y))||= 1
α ||(u(αx, αy), v(αx, αy))|| =

1
α t||(αx, αy)||=t||(x, y)||. Hence, the scalar t remains the

same in all scales. Nevertheless, the resulting average mis-

alignment per needle-pixel will be much smaller, since all

its patches are small (m×m). This is shown next:

Claim 2 [Needle Misalignment:] Under the assump-

tion of Eq. (1), the average misalignment per needle-pixel

between the two Needles of patch-size m×m is:

AvgMisalignment(Needle(p),Needle(q)) =
mt√
6

(3)

(a) ‘Reference’ image (b) Needle-NNs (c) Large-Patch NNs

Figure 4: Matching Needles vs. Matching Large Patches.

A sharp ‘reference’ image (a) was zoomed by 0.75 to obtain

a ‘target’ image. Reference patches searched for their 1st

NN in the target image. Reconstructed images (b and c)

were generated using the grayscale of the center pixel of

each NN. Needle-NNs find good matches even in textured

regions, whereas 25× 25 patches do not (Please zoom).

Proof: AvgSquareMisalign(Needle(p), Needle(q)) =

=
1

L
ΣL

ℓ=1 AvgSquareMisalignment(psℓ , qsℓ)

=
1

L
ΣL

ℓ=1







1

m2

m/2
∫

−m/2

m/2
∫

−m/2

(t2(x2 + y2) dx dy







=
1

L
ΣL

ℓ=1

(

m2t2

6

)

=
m2t2

6

⇒ AvgMisalign(Needle(p),Needle(q)) =
mt√
6

�

The expression for the average misalignment per needle-

pixel is very similar to that per context-pixel (mt√
6

vs. Mt√
6

),

with the important distinction that m ≪ M . It is interesting

to note that the average misalignment per needle-pixel does

not depend on the number L of levels (patches) along the

needle, nor on the size M of the spatial context P covered

by the needle (as long as Eq. (1) holds for the entire con-

text P ). It only depends on the size m of the needle patches

(which is typically small), and on the rate t of non-rigid dis-

tortion. For example, if the needle patches are of size 3× 3
(m=3), and t=0.2 (same as above), the average misalign-

ment error per pixel between Needle(p) and Needle(q)
will be ≈0.25 pixel – an order of magnitude smaller than

the average misalignment between their contexts P and Q !

The small misalignment leads to high similarity between

the two needles. E.g., for textured regions with gradi-

ent magnitude of ∼10 grayscales per pixel, a rough cal-

culation (assuming linearized brightness constancy) yields

RMSE(Needle(p), Needle(q)) ≈ ||grad|| · ||(u, v)|| =
10 · 0.25 = 2.5 grayscales per pixel. The small er-

ror indicates a good match between the patches p and q.

In contrast, the RMSE between their contexts is large:

RMSE(P,Q) ≈ ||grad|| · ||(u, v)|| = 10 · 2 = 20.

Note that two random needles of non-matching patches

will not have small misalignments. This is because the basic

assumptions (that the central patches are well aligned, and

that the misalignments between their surrounding contexts

grow slowly with distance from the centers), do not hold.
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In summary, NeedleMatch benefits from local context in-

formation, without suffering from the inherent limitation of

large region matching (with the exception of patches near

occlusion boundaries). This is what allows patches on tree-

leave in Figs. 4 and 6h to find other matching tree-leave

patches. Similar tree leaves share roughly the same local

context, up to mild non-rigid deformations.

Note that the assumption of Eq. (1), holds not only for

gradual non-rigid deformations, but also for linear paramet-

ric transformations (e.g., rotation, zoom, affine deforma-

tions). The ability of NeedleMatch to find good matches

under such transformations is illustrated in Fig. 4, and is fur-

ther contrasted with matching large rigid patches. A ‘refer-

ence’ image (Fig. 4a) was zoomed by 0.75 (t=0.25=1-0.75,

for all image patches1), to generate a ‘target’ image. Each

patch in the reference image searched for its best match

(1st NN) in the target image, once using NeedleMatch and

once using large 25×25 rigid patches (the spatial support

covered by the needles). New images were reconstructed

(Fig. 4b,c), by replacing each pixel in the ‘reference’ image

with its corresponding pixel in the ‘target’ image, accord-

ing to the computed NNs. Needle-NNs find good matches,

even in highly textured regions (e.g., tree leaves), whereas

large patches do not, resulting in a blurry unwarped image

(please zoom in). This experiment was repeated for a rota-

tion by 15◦ (t≈0.26 for all patches), yielding similar results.

5. Experiments

A wide variety of algorithms rely on patch similarity to

solve computer vision tasks. These include image denois-

ing [4, 7], image deblurring [23], super resolution [14], op-

tical flow estimation [20], inpainting [6] and more. The

success of these algorithms relies on the assumption that

when we search for “similar patches” (in the same image,

or in other images), we find other patches with the same sig-

nal. This assumption, however, is not true when the image

(signal) undergoes degradations. In such cases, patch-based

similarity often leads to patches with similar degradations,

instead of similar signal, resulting in high reconstruction

errors in the above algorithms. NeedleMatch, on the other

hand, provides more accurate “signal-fit” in the presence

of degradations. Thus, replacing the patch-based similarity

with needle-based similarity leads to improved results2.

We first compare the ability of regular patch matching vs.

NeedleMatch to find good NNs (patches with similar under-

lying signal). Sec. 5.1 presents such quantitative evaluation

on hundreds of images, undergoing different degradation

types. We then show that replacing patch-based similar-

1 Note that zoom around the origin (0, 0) by a scale factor α, can be

rewritten as zoom by α around any other point in the image (e.g., any patch

center), plus a global image shift. The same holds also for image rotation.
2Average runtimes per 321×481 image (on a single CPU): When using

KDtree-based search – 5.2s for matching patches, and 16s for the needles.

When using an efficient PatchMatch-like implementation [1] for finding

NNs, runtimes decrease to 0.8s for patches, and 1.5s for Needles.

Figure 5: Reliability of “signal fit” in degraded images.

Matches are searched for corrupted patches (q̃ = NN(p̃)),
but errors ||p− q|| are measured between the true underly-

ing signals. (Red for Patch-NNs; Blue for Needle-NNs).

Already for small levels of degradation, NeedleMatch shows

a dramatic improvement over regular patch-matching.

(a) Gaussian Noise (c) Gaussian blur kernels

(b) Geometric Distortion (d) Non-parametric blur kernels

ity with Needle-based similarity in a variety of patch-based

applications, leads to improved results (Sec. 5.2).

5.1. Empirical Evaluation: “Signal Fit” Accuracy

We compare the match-quality of patch matching vs.

NeedleMatch under 3 types of degradation (noise, blur, geo-

metric distortion). Given a degraded 5×5 patch p̃, we search

for a similar patch q̃=NN(p̃, Ĩ) among all other patches in

the degraded image Ĩ (omitting self matches). The “signal-

fit” between the degraded patches p̃ and q̃ is assessed by:

SignalMatchError(p̃, q̃) = ||p− q|| ,
where p and q denote the ground-truth high quality patches

underlying p̃ and q̃ in the ground-truth clean image I .

The graphs in Fig. 5 report SignalMatchError, averaged

over all 5×5 patches from hundreds of degraded images

(degradations applied to the DB of [21] and [29]). Statis-

tics were collected at varying degradation levels: (i) Noisy

images were generated with varying Gaussian noise levels

(σN =0,..,75). (ii) Blurry images were generated via convo-

lution with Gaussian blurs of varying width (σB =0,..,15),

as well as with the 8 non-parametric blur kernels of [29].

(iii) Geometrically deformed images were generated by

randomly displacing pixels with 2D-Gaussian perturbations

(σG =0,..,9). The NN search used KDtree [13], applied once

in the space of 5 × 5 degraded patches (q̃ =NN(p̃, Ĩ)), and

once in the space of 3 × 3 × 8 needles emerging from de-

graded patches (q̃ =NNneedle(p̃, Ĩ)). The graph indicates

that for patches with no degradation (σN=σB=σG=0), reg-

ular patch matching is better than NeedleMatch (due to bet-

ter matches near occluding boundaries). However, already
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“Signal-Fit” under Noise

(a) Noisy Image Ĩ (b) Clean Image I

(c) Reconstruction

from the clean

patches underlying

the Patch-NNs

(RMSE 22.529)

(d) Reconstruction

from the clean

patches underlying

the Needle-NNs

(RMSE 13.89)

“Signal-Fit” under Blur

(e) Blurry Image Ĩ (f) Sharp Image I

(g) Reconstruction

from the sharp

patches underlying

the Patch-NNs

(RMSE 27.484)

(h) Reconstruction

from the sharp

patches underlying

the Needle-NNs

(RMSE 12.266)

“Signal-Fit” under Geometric Distortions

(i) Perturbed Image Ĩ (j) High quality Image I

(k) Reconstruction

from the high quality

patches underlying

the Patch-NNs

(RMSE 33.472)

(l) Reconstruction

from the high quality

patches underlying

the Needle-NNs

(RMSE 24.219)

Figure 6: Visual example of “signal-fit” errors in degraded images (Patch-NNs vs. Needle-NNs). NNs are searched in

the corrupted image (upper-left), but the reconstructed image is built from the underlying high-quality patches in the ground-

truth image (upper-right). Patch-NNs lead to bad “signal-fit”, hence to poor reconstruction (bottom-left), even though built

from high quality patches. Needle-NNs provide much better “signal-fit”, hence much better reconstruction (bottom-right)

(Please zoom-in). Please note that this is NOT an application; only a visualization of the error shown in the graphs of Fig. 5.

at small levels of degradations, there is a dramatic im-

provement in “signal-fit” for NeedleMatch over regular

patch matching (in all 3 degradation types).

Fig. 6 is a visualization of the signal-fit errors of Fig. 5. It

shows image reconstructions based on the NNs found. The

NNs were searched in the corrupted images (e.g., Fig. 6a

for noise), but the reconstructed images were built from

the underlying clean patches (Fig. 6b). When the “signal-

fit” is good, the reconstructed images should resemble the

ground-truth images (as in Fig. 6d); but when the “signal-

fit” is poor, the reconstructed images are of low quality

(Fig. 6c), even though they were constructed from clean

patches. NeedleMatch provides much higher signal-fit reli-

ability than regular patch-matching, even in highly textured

regions (e.g., the hat in Fig. 6d, the tree leaves in Fig. 6h).

We next show a few example applications of NeedleMatch.

5.2. Example Applications

We examined a variety of patch-based reconstruction

methods, once using their regular patch-based similarity,

and once using our Needle-based similarity. The latter sig-

nificantly improves the results in the presence of degrada-

tion. Figs. 2 and 7 show visual results for a variety of such

applications, whereas Secs. 5.2.1 and 5.2.2 provide a more

extensive empirical evaluation for two of these applications.

Fig. 2a shows results of applying the Single-Image

Super-Resolution (SR) method of [14] to a low resolution

image with mild Gaussian noise (σ=20). The goal in SR

is to reconstruct new high frequency details which are in-

visible in the low-res image (beyond the Nyquist limit).

However, SR with regular patch-matching tries to increase

not only the details of the signal, but also the noise [27].

NN-search for noisy uniform patches tries to fit their noise

(as best possible) with signal-details elsewhere in the im-

age [25, 34]. Replacing the patch-matching in [14] with

NeedleMatch, results in a super-resolved image with recon-

structed high-frequency signal details, while discarding the

noise (please zoom in on Fig. 2a). This is due to the ability

of NeedleMatch to fit the signal but not the noise.

Even in image denoising, where the images are inher-

ently assumed to be corrupted, employing NeedleMatch im-

proves the results (Fig. 2c). We replaced the patch-based

similarity of BM3D [7] with Needle-based similarity. The

improvement is mostly visible in the fine textures (please

zoom-in on Fig.2c). More details and an extensive quanti-

tative comparison are provided in Sec. 5.2.1 and Table. 1.

Fig. 2b shows “removal” of geometric distortion caused

by heat turbulence. Every patch in the turbulent frame was

replaced by the median of its k-NNs, searched in other tur-

bulent frames in the same video. Patch-NNs preserve the

geometric distortion, while Needle-NNs match the signal,

allowing recovery of straight lines (e.g., see line above li-

cense plate, or at the bottom of the car – please zoom in).

Even in correspondence estimation, NeedleMatch out-

performs advanced coarse-to-fine optical flow methods in

the presence severe degradations (Fig. 7 and Sec. 5.2.2).
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(a) Real video (rotating fan) NeedleMatch B&A optical flow L&K optical flow (b) Evaluation on hundreds of images
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Figure 7: Needle-correspondences vs. Coarse-to-fine Optical-Flow. (a) A fast rotating fan induces severe motion blur.

NeedleMatch provides better frame-to-frame correspondences on the blurry fan. (b) Errors averaged on hundreds of image

pairs with varying blurs (see text). Optical flow is better for small blurs, while NeedleMatch is superior under severe blurs.

5.2.1 BM3D Denoising – Patches vs. Needles

As observed in [34] and in Sec. 5.1, unrestricted patch

matching suffers from severe overfit of noise. Patch-based

denoising methods (e.g., [4, 7]) avoid this problem by re-

stricting their search region to a local area around each

patch (e.g., 30×30). A small surrounding region contains

many other patches with a similar (hidden) signal, while

limiting the risk to overfit the noise [34]. However, this re-

stricted search region also restricts their ability to find good

matches for textured patches, resulting in blurry details.

We ran BM3D on hundreds of natural images from the

dataset of [21], contaminated by Gaussian noise at varying

levels (σ=15, ..., 75). We applied the BM3D code of [17],

once with patch-based similarity, and once with Needle-

based similarity (We used 3×3×8-needles and 8×8-patches

for σ = 15, 35, and 5×5×8-needles and 12×12-patches for

σ = 55, 75). As expected, applying BM3D to the entire im-

age using its regular patch-based similarity, leads to worse

results (see Table. 1 - BM3D local vs. global). This deterio-

ration is due to the noise-fitting problem of patch matching

in unrestricted domains. Global NeedleMatch, on the other

hand, avoids noise fitting, leading to an overall improve-

ment, especially at high noise-levels (0.42-0.81dB - see Ta-

ble. 1). Using a larger search space without being prone to

noise-fitting, offers better reconstruction in textured regions

(see Fig. 2c). We further ran the experiment also on the

20 images of BM3D benchmark for σ=15, 35, 55, obtain-

ing an average improvement of 0.25, 0.36, 0.66dB on color

images, and 0.18, 0.3, 0.51dB on the BW images.

5.2.2 Correspondence Estimation under Severe Blur

Coarse-to-fine optical flow (such as Lucas&Kanade) can be

regarded as a sophisticated coarse-to-fine patch matching

between two images. We therefore compared the robust-

ness of NeedleMatch vs. coarse-to-fine optical flow, under

severe blur. We compared to 2 optical flow methods – Lu-

cas&Kanade (L&K) [20] and Black&Anandan (B&A) [2]

(using the advanced implementations of [22, 28], respec-

tively). We generated a database of hundreds of pairs of

degraded images, by applying large transformations (rela-

tive zoom of 0.75 and relative rotation of 15◦) to the images

of [29], and then severely blurring them (one image from

each pair was blurred vertically, while its transformed ver-

σ BM3D local

(regular)

BM3D

global

BM3D

needle

Improvement

(over BM3D-regular)

15 31.04 26.91 31.19 +0.15

35 27.34 26.17 27.57 +0.24

55 24.96 24.83 25.38 +0.42

75 24.13 23.67 24.94 +0.81

Table 1: BM3D Denoising results. Average PSNR re-

sults for hundreds of contaminated images from [21].

NeedleMatch leads to an overall PSNR improvement, espe-

cially at high noise-levels. (see Sec. 5.2.1 for more details)

sion was blurred horizontally). The width of the horizontal

and vertical blur kernels varied from zero-width (no blur) to

14 pixels wide (severe blur). The graphs in Fig. 7b show the

resulting errors (RMSE) between the computed displace-

ments, and the ground-truth displacements. Optical flow es-

timation is superior to NeedleMatch under small blur. How-

ever, under severe blur, NeedleMatch provides more accu-

rate correspondences, even though it uses no smoothness

constraint (each patch independently seeks its 1st Needle-

NN). Deep 3×3×12 Needles were used for correspondence

estimation, since the goal is to find a single best accurate

correspondence (not mupltiple NNs). Fig. 7a shows results

on a real-video. NeedleMatch produces much better cor-

respondences on the blurry fan. Incorporating smoothness

into NeedleMatch is likely to improve its results.

Although using multiple scales, optical-flow methods do

so sequentially. Their accuracy deteriorates at finer scales,

as fine-scale patches are very blurry, misguiding the final

search. In contrast, NeedleMatch uses information from all

scales simultaneously, not committing to any specific scale.

Note that matching patches at a fixed predetermined

coarse scale will not achieve Needle performance. Different

image regions benefit from different scales, depending on

their patchwise Signal-to-Degradation Ratio (Patch-SDR).

E.g., texture patches have higher Patch-SDR than uniform

patches, thus benefit from finer scales in denoising and SR

(Fig. 2). The degradation may also vary across the image:

patches on the blurry fan (Fig. 7a) benefit from correspon-

dences at coarse scales, whereas patches on the sharp static

background benefit from finer scales. NeedleMatch inher-

ently handles this ambiguity: coarse needle levels guaran-

tee high match reliability, while fine needle levels guarantee

high localization accuracy, when such details are available.
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