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Abstract

In this paper, we present a new hashing method to learn

compact binary codes for highly efficient image retrieval

on large-scale datasets. While the complex image appear-

ance variations still pose a great challenge to reliable re-

trieval, in light of the recent progress of Convolutional Neu-

ral Networks (CNNs) in learning robust image representa-

tion on various vision tasks, this paper proposes a novel

Deep Supervised Hashing (DSH) method to learn compact

similarity-preserving binary code for the huge body of im-

age data. Specifically, we devise a CNN architecture that

takes pairs of images (similar/dissimilar) as training input-

s and encourages the output of each image to approximate

discrete values (e.g. +1/-1). To this end, a loss function is

elaborately designed to maximize the discriminability of the

output space by encoding the supervised information from

the input image pairs, and simultaneously imposing reg-

ularization on the real-valued outputs to approximate the

desired discrete values. For image retrieval, new-coming

query images can be easily encoded by propagating through

the network and then quantizing the network outputs to bi-

nary codes representation. Extensive experiments on two

large scale datasets CIFAR-10 and NUS-WIDE show the

promising performance of our method compared with the

state-of-the-arts.

1. Introduction

In recent years, hundreds of thousands of images are u-

ploaded to the Internet every day, making it extremely d-

ifficult to find relevant images according to different user-

s’ request. For example, content based image retrieval re-

trieves images that are similar to a given query image, where

“similar” may refer to visually similar or semantically simi-

lar. Suppose that both the images in the database and the

query image are represented by real-valued features, the

simplest way of looking for relevant images is by ranking

the database images according to their distances to the query

image in the feature space, and returning the closest ones.

However, for a database with millions of images, which is

quite common nowadays, even a linear search through the

database would cost a great deal of time and memory.

To address the inefficiency of real-valued features, hash-

ing approaches are proposed to map images to compact

binary codes that approximately preserve the data struc-

ture in the original space, [27, 9, 17] for example. Since

the images are represented by binary codes instead of real-

valued features, the time and memory costs of searching can

be greatly reduced. However, the retrieval performance of

most existing hashing methods heavily depends on the fea-

tures they use, which are basically extracted in an unsuper-

vised manner, thus more suitable for dealing with the visual

similarity search rather than the semantic similarity search.

On the other hand, recent progress in image classification

[12, 25, 8], object detection [26], face recognition [24], and

many other vision tasks [18, 2] demonstrate the impressive

learning power of CNNs. In these different tasks, the CNNs

can be viewed as a feature extractor guided by the objec-

tive functions specifically designed for the individual tasks.

The successful applications of CNNs in various tasks imply

that the features learned by CNNs can well capture the un-

derlying semantic structure of images in spite of significant

appearance variations.

Inspired by the robustness of CNN features, we propose

a binary code learning framework by exploiting the CNN

structure, named Deep Supervised Hashing (DSH). In our

method, first we devise a CNN model which takes image

pairs along with labels indicating whether the two images

are similar as training inputs, and produces binary codes

as outputs, as shown in Figure 1. In practice, we gener-

ate image pairs online so that many more image pairs can

be utilized in the training stage. The loss function is de-

signed to pull the network outputs of similar images togeth-

er and push the outputs of dissimilar ones far away, so that

the learned Hamming space can well approximate the se-

mantic structure of images. To avoid optimizing the non-

differentiable loss function in Hamming space, the network
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Figure 1. The network structure used in our method. The network consists of 3 convolution-pooling layers and 2 fully connected layers.

The filters in convolution layers are of size 5 × 5 with stride 1 (32, 32, and 64 filters in the three convolution layers respectively), and

pooling over 3× 3 patches with stride 2. The first fully connected layer contains 500 nodes, and the second (output layer) has k (the code

length) nodes. The loss function is designed to learn similarity-preserving binary-like codes by exploiting discriminability terms and a

regularizer. Binary codes are obtained by quantizing the network outputs of images.

outputs are relaxed to real values, while simultaneously a

regularizer is imposed to encourage the real-valued outputs

to approach the desired discrete values. Under this frame-

work, images can be easily encoded by first propagating

through the network and then quantizing the network out-

puts to binary codes representation.

The rest of the paper is organised as follows: Section 2

discusses the related works to our method. Section 3 de-

scribes DSH in detail. Section 4 extensively evaluates the

proposed method on two large scale datasets. Section 5

gives concluding remarks.

2. Related Works

Many hashing methods [4, 28, 13, 27, 6, 20, 17, 22, 16,

23, 15, 29, 31, 14] have been proposed to boost the per-

formance of approximate nearest neighbor search due to

their low time and space complexity. In the early years,

researchers mainly focused on data-independent hashing

methods, such as a family of methods known as Locality

Sensitive Hashing (LSH) [4]. LSH methods use random

projections to produce hashing bits. It has been proven the-

oretically that as the code length grows, the Hamming dis-

tance between two binary codes asymptotically approaches

their corresponding distance in the feature space. However,

LSH methods usually require long codes to achieve satis-

factory performance, which demands for large amount of

memory.

To produce more compact binary codes, data-dependent

hashing methods are proposed. Such methods attempt to

learn similarity-preserving hashing functions from a train-

ing set. These methods can be further divided into unsuper-

vised methods and supervised (semi-supervised) methods.

Unsupervised methods only make use of unlabelled training

data to learn hash functions. For example, Spectral Hash-

ing (SH) [28] minimizes the weighted Hamming distance of

image pairs, where the weights are defined to be the similar-

ity metrics of image pairs; Iterative Quantization (ITQ) [6]

tries to minimize the quantization error on projected image

descriptors so as to alleviate the information loss caused by

the discrepancy between the real-valued feature space and

the binary Hamming space.

To deal with more complicated semantic similarity, su-

pervised methods are proposed to take advantage of label

information, such as category labels. CCA-ITQ [6], which

is an extension of ITQ, uses label information to find bet-

ter projections for the image descriptors; Predictable Dis-

criminative Binary Code (DBC) [22] looks for hyperplanes

that separate categories with large margin as hash functions;

Minimal Loss Hashing (MLH) [20] optimizes upper bound

of a hinge-like loss to learn the hash functions. On the oth-

er hand, Semi-Supervised Hashing (SSH) [27] makes use

of the abundant unlabelled data to regularize the hashing

functions. While the above methods use linear projection-

s as hashing functions, they can hardly deal with linearly

inseparable data. To overcome this limitation, Supervised

Hashing with Kernels (KSH) [17] and Binary Reconstruc-

tive Embedding (BRE) [13] are proposed to learn similarity-

preserving hashing functions in kernel space; Deep Hashing

(DH) [3] exploits a non-linear deep network to produce bi-

nary codes. Most hashing methods relax the binary codes

to real-values in optimization and quantize the model out-

puts to produce binary codes. However, there is no guar-

antee that the optimal real-valued codes are still optimal

after quantization. Methods such as Discrete Graph Hash-

ing (DGH) [16] and Supervised Discrete Hashing (SDH)

[23] are proposed to directly optimize the binary codes to

overcome the shortcomings of relaxation, and achieves im-

proved retrieval performance.

While the aforementioned hashing methods have certain-

ly achieved success to some extent, they all use hand-crafted
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features, which cannot capture the semantic information be-

neath the drastic appearance variations in real-world data

and thus limit the retrieval accuracy of the learned binary

codes. To tackle this issue, most recently, several CNN-

based hashing methods [31, 14, 29, 15, 30] are proposed to

learn image representations together with binary codes us-

ing the promising CNNs. [31, 14, 30] enforce the network

to learn binary-like outputs that preserve the semantic rela-

tions of image-triplets; [29] trains a CNN to fit the binary

codes computed from the pairwise similarity matrix; [15]

trains the model with a binary-like hidden layer as features

for image classification tasks. By coupling image feature

extraction and binary code learning, these methods have

shown greatly improved retrieval accuracy. Nevertheless,

there still exist some shortcomings with the training ob-

jectives of these methods that limit their practical retrieval

performance, as will detailed in our experiments. In addi-

tion, the non-linear activations they employ to approximate

the quantization step operate at the cost of possibly slowing

down the network training [12].

3. Approach

Our goal is to learn compact binary codes for images

such that: (a) similar images should be encoded to similar

binary codes in Hamming space, and vice versa; (b) the bi-

nary codes could be computed efficiently.

Although many hashing methods have been proposed to

learn similarity-preserving binary codes, they suffer from

the limitations of either hand-crafted features or linear pro-

jections. The powerful non-linear models known as C-

NNs have facilitated the recent successes in computer vi-

sion community on various tasks. To this end, we propose

to use the CNN illustrated in Figure 1 to learn discrimina-

tive image representations and compact binary codes simul-

taneously, which can break out the limitations of both hand-

crafted features and linear models. Our method first trains

the CNN using image pairs and the corresponding similar-

ity labels. Here the loss function is elaborately designed

to learn similarity-preserving binary-like image represen-

tations. Then the CNN outputs are quantized to generate

binary codes for new-coming images.

3.1. Loss Function

Let Ω be the RGB space, our goal is to learn a mapping

from Ω to k-bit binary code: F : Ω → {+1,−1}k, such

that similar (either in terms of visually similar or semanti-

cally similar) images are encoded to similar binary codes.

For this purpose, the codes of similar images should be as

close as possible, while the codes of dissimilar images be-

ing far away. Based on this objective, the loss function is

naturally designed to pull the codes of similar images to-

gether, and push the codes of dissimilar images away from

each other.

Specifically, for a pair of images I1, I2 ∈ Ω and the cor-

responding binary network outputs b1,b2 ∈ {+1,−1}k,

we define y = 0 if they are similar, and y = 1 otherwise.

The loss with respect to the pair of images is defined as:

L(b1,b2, y) =
1

2
(1− y)Dh(b1,b2)

+
1

2
y max(m−Dh(b1,b2), 0)

s.t. bj ∈ {+1,−1}k, j ∈ {1, 2}

(1)

where Dh(· , ·) denotes the Hamming distance between t-

wo binary vectors, and m > 0 is a margin threshold param-

eter. The first term punishes similar images mapped to dif-

ferent binary codes, and the second term punishes dissimi-

lar images mapped to close binary codes when their Ham-

ming distance falls below the margin threshold m. Here it is

worth noting that to avoid collapsed solution, our loss func-

tion takes a contrastive loss form as [7] where only those

dissimilar pairs having their distance within a radius are el-

igible to contribute to the loss function.

Suppose that there are N training pairs randomly select-

ed from the training images {(Ii,1, Ii,2, yi)|i = 1, ..., N},

our goal is to minimize the overall loss function:

L =

N
∑

i=1

L(bi,1,bi,2, yi)

s.t. bi,j ∈ {+ 1,−1}k, i ∈ {1, ..., N}, j ∈ {1, 2}

(2)

3.2. Relaxation

It would be preferable if one can directly optimize E-

qn.(2), however it is infeasible because the binary con-

straints on bi,j requires thresholding the network outputs

(e.g. with signum function), and will make it intractable to

train the network with back propagation algorithm. Some

recent works [23, 16] propose to directly optimize the bi-

nary codes, however, due to the memory limitation, CNN

models can only be trained with mini-batches, and the op-

timality of the produced binary codes is questionable when

the batch size is very small compared to the whole training

set.

On the other hand, if one totally ignores the binary con-

straints, it would result in suboptimal binary codes due to

the discrepancy between the Euclidean space and the Ham-

ming space. A commonly used relaxation scheme is to uti-

lize sigmoid or tanh function to approximate the threshold-

ing procedure. Nevertheless, working with such non-linear

functions would inevitably slow down or even restrain the

convergence of the network [12]. To overcome such limita-

tion, in this work we propose to impose a regularizer on the

real-valued network outputs to approach the desired discrete

values (+1/-1). To be specific, we replace the Hamming dis-

tance in Eqn.(1) by Euclidean distance, and impose an ad-

ditional regularizer to replace the binary constraints, then
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Eqn.(1) is rewritten as:

Lr(b1,b2, y) =
1

2
(1− y)||b1 − b2||

2
2

+
1

2
y max(m− ||b1 − b2||

2
2, 0)

+α(|| |b1| − 1||1 + || |b2| − 1||1)

(3)

where the subscript r denotes the relaxed loss function, 1 is

a vector of all ones, || · ||1 is the L1-norm of vector, | · | is the

element-wise absolute value operation, and α is a weighting

parameter that controls the strength of the regularizer.

Here we use L2-norm to measure the distance between

network outputs because the subgradients produced by

lower-order norms treat the image pairs with different dis-

tances equally and thus make no use of the information in-

volved in different distance magnitudes. While higher-order

norms are also feasible, more computations will be incurred

accordingly at the same time. As for the regularizer, L1-

norm is chosen rather than higher-order norms for its much

less computational cost, which can favorably accelerate the

training process.

By substituting Eqn.(3) into Eqn.(2), we rewrite the re-

laxed overall loss function as follows:

Lr =

N
∑

i=1

{
1

2
(1− yi)||bi,1 − bi,2||

2
2

+
1

2
yi max(m− ||bi,1 − bi,2||

2
2, 0)

+ α(|| |bi,1| − 1||1 + || |bi,2| − 1||1)}

(4)

With this objective function, the network is trained us-

ing back-propagation algorithm with mini-batch gradient

descent method. To do so, the gradients of Eqn.(4) w.r.t.

bi,j , ∀i, j need to be computed. Since the max operation

and the absolute value operation in the objective function

is non-differentiable at some certain points, we use subgra-

dients instead, and define the subgradients to be 1 at such

points. The subgradients of the first two terms of Eqn.(4)

and that of the third term (i.e. the regularizer) are respec-

tively written as:

∂Term 1

∂bi,j

= (−1)j+1(1− yi)(bi,1 − bi,2)

∂Term 2

∂bi,j

=

{

(−1)jyi(bi,1 − bi,2), ||bi,1 − bi,2||
2
2 < m

0 , otherwise

∂Regularizer

∂bi,j

= αδ(bi,j)

(5)

where

δ(x) =

{

1, − 1 ≤ x ≤ 0 or x ≥ 1

−1, otherwise
(6)

is applied element-wisely. With the computed subgradients

over mini-batches, the rest of the back-propagation can be

done in standard manner.

Discussion: With such a framework, the binary codes of

images are easily obtained with sign(b). Note that unlike

existing CNN-based hashing methods [29, 15, 14, 31, 30],

our method does not use saturating non-linearities, e.g. tan-

h or sigmoid, to approximate the quantization step because

these nonlinearities are likely to slow down the training pro-

cess [12]. Experiments in Section 4.2 will validate the ad-

vantage of the regularizer over saturating nonlinearities.

3.3. Implementation details

Network parameters: Our DSH method is implement-

ed with Caffe1 [10]. The network structure is illustrated in

Figure 1, which consists of three convolution-pooling layer-

s followed by two fully connected layers. The convolution

layers use 32, 32, and 64 5 × 5 filters with stride 1 respec-

tively, and the pooling is performed over 3×3 windows with

stride 2. The first fully connected layer contains 500 nodes,

and the second contains k nodes, where k is the length of

binary code. All the convolution layers and the first fully

connected layer are equipped with the ReLU [19].

The weight layers are initialized with ”Xavier” initial-

ization [5]. During training, the batch size is set to 200,

momentum to 0.9, and weight decay to 0.004. The initial

learning rate is set to 10−3 and decreases by 40% after every

20,000 iterations (150,000 iterations in total). The margin

m in Eqn.(4) is heuristically set to m = 2k to encourage the

codes of dissimilar images to differ in no less than k
2

bits.

Training methodology: An intuitive way to train the

network is to use the Siamese structure [7] and generate im-

age pairs offline. However, with such a scheme, processing

n images could only produce n
2

valid image pairs, and stor-

ing the image pairs would be very space intensive. To make

better use of computational resources and storage space, we

propose to generate image pairs online by exploiting all the

unique pairs in each mini-batch. To cover those image pairs

across batches, in each iteration the training images are ran-

domly selected from the whole training set. By doing so,

our method alleviates the need to store the whole pair-wise

similarity matrix, thus being scalable to large-scale datasets.

Moreover, to learn models corresponding to differen-

t code lengths, if one chooses to train each model from

scratch, it would be severely wasteful since the preceding

layers can be shared by these models. Besides, as the code

length grows, the model would contain more parameters in

the output layer, and thus gets prone to overfitting. To over-

come such limitations, we propose to first train a network

with a few nodes in the output layer, and then finetune it to

obtain the target model with the desired code length.

1The source code of our DSH with running samples are available at

http://vipl.ict.ac.cn/resources/codes.
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Models CIFAR-10 NUS-WIDE

Regularizer-α-0 0.5497 0.5076

Regularizer-α-0.001 0.6100 0.5341

Regularizer-α-0.01 0.6157 0.5483

Regularizer-α-0.1 0.4337 0.4493

Sigmoid-m-6 0.1451 0.4876

Sigmoid-m-3 0.2812 0.5067

Sigmoid-m-2 0.4788 0.4838

Sigmoid-m-1 0.2196 0.4638

Table 1. Retrieval performance (mAP) of models under different

settings of α, relaxation, and m. The results are obtained with

12-bit binary codes.

4. Experiments

4.1. Datasets and Evaluation Metrics

We verify the effectiveness of our proposed method and

compare with other state-of-the-art methods on two widely

used datasets: (1) CIFAR-10 [11]. This dataset consists of

60,000 32× 32 images belonging to 10 mutually exclusive

categories (6,000 images per category). The images are di-

rectly used as input for those competing CNN-based meth-

ods as well as our DSH. For conventional hashing methods,

the images are represented by 512-D GIST descriptors [21]

following [17, 29]. (2) NUS-WIDE [1]. This dataset con-

tains 269,648 images collected from Flickr. The associa-

tions between images and 81 concepts are manually anno-

tated. Following [17, 29], we use the images associated with

the 21 most frequent concepts, where each of these concept-

s associates with at least 5,000 images, resulting in a total

of 195,834 images. The images are warped to 64 × 64 be-

fore inputting to the CNN-based methods. For conventional

hashing methods, images are represented by the provided

225-D normalized block-wise color moments features.

In our experiments, similarity labels are defined by

semantic-level labels. For CIFAR-10, images from the same

category are considered semantically similar, and vice ver-

sa. The officially provided train/test split was used for ex-

periments, namely, 50,000 images for training the models

and 10,000 images for evaluating. For NUS-WIDE, if two

images share at least one positive label, they are considered

similar, and dissimilar otherwise. We randomly sampled

10,000 images to form the test query set, and used the rest

as training set.

Following previous works, the evaluation metrics used

are: the mean Average Precision (mAP) for different code

lengths, precision-recall curves (48-bit), and mean precision

within Hamming radius 2 for different code lengths.

4.2. Evaluation of the Regularizer

In this part, we validate the effectiveness of the pro-

posed regularizer, and compare it with the standard relax-

ation scheme used in existing CNN-based hashing methods

[29, 3, 14]. Without loss of generality, we only test the case

when k = 12, and set m = 24 in our DSH according to

Section 3.3. The sigmoid relaxed models were trained al-

most the same as ours except for using sigmoid function as

the activation of the output layer and setting α = 0. We test

these models with m = {1, 2, 3, 6} (note that the maximum

distance between network outputs of these models is k).

The retrieval mAP of different models are listed in Ta-

ble 1. Figure 2 shows the distribution of network outputs

on the test set of CIFAR-10 under different settings (more

results are provided in supplementary materials). We make

three observations from the comparison results: First, with-

out regularization (α = 0), the network outputs concentrate

on the quantization threshold 0 (Fig.2a), thus it is likely

that neighboring points in the output space are quantized

to very different binary codes; Second, imposing the reg-

ularizer (α = {0.001, 0.01, 0.1}, Fig.2b,c,d) can reduce

the discrepancy between the real-valued output space and

the Hamming space, and the retrieval performances can be

improved significantly when setting α under a reasonable

range (e.g. [0.001, 0.01]); Third, with proper settings of

m, the sigmoid relaxed model can learn binary-like output-

s (Fig.2e,f,g). Nonetheless, the retrieval performances of

such codes are much inferior to our best-performing ones

and are sensitive to m. Increasing the number of training

iterations and carefully tuning m might improve the perfor-

mance of the sigmoid relaxed models, however, it would

take much more time to obtain a satisfactory model. Based

on the above observations, we empirically set α = 0.01 in

the following experiments.

4.3. Online vs. Offline Image Pair Generation

This part compares the convergence behavior of our on-

line image pair generating scheme against the alternative

Siamese scheme, as described in Section 3.3. Both schemes

employed the same network structure and hyperparameters

as detailed in Section 3.3 (k = 12, m = 24). Due to lim-

ited storage space, 10 million image pairs were generated

offline for the Siamese scheme, and the learning rate policy

was tuned accordingly. For fair comparison, we input the

same number of images to both schemes in each iteration

(200 images for our online scheme and 100 image pairs for

the alternative Siamese scheme). Since the computation-

s mainly take place in the convolution-pooling layers, the

computation costs of the two schemes are approximately

the same.

Figure 3 shows the training loss against the number of

iterations on both datasets. As can be seen, our online train-

ing scheme converges much faster than the Siamese alter-

native, since our online scheme has the capacity to utilize

much more image pairs in each iteration, which offers more

information about the semantic relations between different

images. Besides, by sampling from the whole training set
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different settings of α, (e)-(h) the sigmoid relaxed models under different settings of m.

0 5 10 15 20
0

2

4

6

CIFAR−10

Iterations/10
4

T
r
a
i
n
 
L
o
s
s

 

 

Online
Siamese

0 10 20 30 40
0

2

4

6

NUS−WIDE

Iterations/10
4

T
r
a
i
n
 
L
o
s
s

 

 

Online
Siamese

(a) (b)
Figure 3. Comparison of training loss between our online image

pair generating scheme and the Siamese alternative. The results on

CIFAR-10 and NUS-WIDE are shown in (a) & (b) respectively.

Code

Length
CIFAR-10 NUS-WIDE

Trained

From

Scratch

12

24

36

48

0.6157

0.6524

0.6433

0.6213

0.5483

0.5543

0.5229

0.4896

Finetuned

24

36

48

0.6512

0.6607

0.6755

0.5513

0.5582

0.5621

Table 2. Comparison of retrieval performance (mAP) of the mod-

els trained from scratch and the finetuned models.

in each iteration, our scheme can make use of more image

pairs than the offline generated 10 million pairs for Siamese,

and thus satisfactorily converges to a lower loss.

4.4. Finetuning vs. Training From Scratch

As mentioned in Section 3.3, if the last fully connected

layer contains a large number of nodes, training the model

from scratch may lead to overfitting. To get a clear under-

standing of the situation, in this part, we compare the mod-
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Figure 4. Comparison of (a) the model trained from scratch and (b)

the finetuned model in terms of training/test loss, on the CIFAR-10

dataset.

els finetuned from a pretrained network against the model-

s trained from scratch. Specifically, We first trained four

models that produces {12, 24, 36, 48}-bit binary codes re-

spectively (the first four rows in Table 2). Then we replaced

the last fully connected layer of the 12-bit model with a larg-

er one, and finetuned it to get another group of {24, 36, 48}-

bit models (the last three rows in Table 2).

For finetuning, the learning rate was set to 10−3 for the

last fully connected layer and 10−4 for the preceding layers,

and decreased by a factor of 0.6 after every 4,000 iterations.

The model was trained with 30,000 iterations in total.

The retrieval mAPs on both datasets are listed in Ta-

ble 2. It can be found that as the code length grows,

the retrieval performance of finetuned models consistent-

ly improves, while the performance of models trained from

scratch falls, especially on the NUS-WIDE dataset with a

large drop. To take a closer look at the situation, we ana-

lyze the training/test loss on two example models, namely,

the 48-bit model trained from scratch, and the finetuned 48-

bit model. Figure 4 shows the loss against the number of

iterations for the two models on CIFAR-10. It is clear that

on the first model (trained from scratch), the training loss
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keeps decreasing, while the test loss decreases as expected

at first but increases after about 30,000 iterations, indicating

overfitting on the training set. As comparison, on the second

model (finetuned), the test loss decreases at first and then fa-

vorably stablizes after only a few thousand iterations. Such

observations suggest that the different models with various

code length can share those preceding layers to reduce train-

ing cost as well as to alleviate overfitting. For more results

please refer to supplementary materials.

Moreover, we investigate network ensembles, which are

widely used in classification tasks [12, 25, 8], for retrieval

problem. Specifically, we trained four 12-bit models with

different random initializations, and concatenated the quan-

tized network outputs as binary codes. Under the same code

length, the ensemble codes further improve the retrieval per-

formance of the finetuned codes by up to 0.04 in mAP, ver-

ifying the effectiveness of network ensembles in retrieval

task (the details are provided in supplementary material-

s). One possible explanation is that the multiple network-

s can capture complementary image characteristics due to

random initialization. Nevertheless, since exploiting net-

work ensembles leads to multiple times of training cost, we

adopt the finetuned models in the following experiments for

efficiency consideration.

4.5. Comparison with the State­of­the­art

Comparative methods: We compare our method with

LSH [4], SH [28], ITQ [6], CCA-ITQ [6], MLH [20], BRE

[13], KSH [17], CNNH [29], DLBHC [15], and DNNH

[14]. These methods were all implemented using source

codes provided by the authors except for DNNH2. For fair

comparison, all the CNN-based methods, including CNNH,

DLBHC, DNNH, and DSH, used the same network struc-

ture, as described in Section 3.3. Note that while more com-

plicated network structures can be also feasible, we chose to

work with a relatively simple one for fast evaluation.

Training set: We aim to use the whole training data

to train models for all methods if possible. However, due

to the huge amount of memory demanded by MLH, KSH

and CNNH (O(N2), where N is the number of training im-

ages), in our experiments, we randomly selected a 20K sub-

set from each dataset to train models for these three meth-

ods, which costs more than 10GB of memory.

Parameter settings: The parameters of those compara-

tive methods were all set based on the authors’ suggestion-

s in the original publications. In particular, we found the

divide-and-encode structure devised in DNNH [14] large-

ly degraded the retrieval mAP on CIFAR-10 (about 0.07)

and brought marginal improvement on NUS-WIDE (0.01

∼ 0.03) in our experiments, thus we report the performance

of the fully connected version for simplicity.

2Since the source code of DNNH is not publicly available, we used our

own implementation of this method for experiments.

Results: The comparisons of our method against the

others are shown in Table 3 and Figure 5. In gener-

al, those CNN-based methods outperform the conventional

hash learning methods on both datasets by a large margin,

validating the advantage of learning image representation-

s over using hand-crafted features. Moreover, we investi-

gate some conventional hashing methods trained with CNN

features, although the performances were significantly im-

proved, they were still inferior to our DSH, suggesting that

our end-to-end learning scheme is advantageous (the details

are provided in the supplementary materials).

Among the CNN-based methods, it is observed that our

DSH yields the highest accuracy in most cases. The per-

formance gaps between these methods mainly come from

the differences in their training objectives: CNNH train-

s the model to fit the pre-computed discriminative binary

codes. However, as the binary code generation and the net-

work learning are isolated, a mismatch exists between the

two stages; DLBHC trains the model with a binary-like hid-

den layer as features for classification tasks , thus encoding

dissimilar images to similar binary codes would not be pun-

ished as long as the classification accuracy is unaffected;

While DNNH uses triplet-based constraints (rather than the

pairwise constraints we adopt) to describe more complex

semantic relations, training its network becomes more diffi-

cult, due to the sigmoid non-linearity and the parameterized

piece-wise threshold function used in the output layer. As

a result, DNNH performs inferior to our DSH method, e-

specially on CIFAR-10, where the triplet-based constraints

cannot provide more information than the pairwise ones s-

ince the images only have category labels (some real re-

trieval cases are provided in the supplementary materials).

4.6. Comparison of Encoding Time

In real-world applications, generating binary codes for

new-coming images should be fast. In this part, we com-

pare the encoding time of our DSH method and 7 other su-

pervised hashing methods: CCA-ITQ [6], MLH [20], BRE

[13], KSH [17], CNNH [29], DLBHC [15], and DNNH

[14], including the linear and non-linear conventional hash-

ing methods along with the state-of-the-art CNN-based

methods. For thorough comparison, we report the encoding

time of CNN-based methods both on CPU and GPU, and the

feature extraction time for conventional hashing methods

(using the publicly available code of GIST feature extrac-

tion [21]). Since we used the authors’ provided features for

NUS-WIDE and only extracted features for CIFAR-10, all

comparisons were conducted on CIFAR-10. Without loss of

generality, we only report the timings of 24-bit and 48-bit

codes. The binary codes of all CNN-based methods were

generated with the same version of Caffe. The experiments

were carried out on a PC with Intel i7-4770, 32GB RAM,

and NVIDIA Titan Black with CUDA-7.0 and cuDnn v3.0.
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Method
CIFAR-10

12-bit 24-bit 36-bit 48-bit

NUS-WIDE

12-bit 24-bit 36-bit 48-bit

LSH [4] 0.1277 0.1367 0.1407 0.1492 0.3329 0.3392 0.3450 0.3474

SH [28] 0.1319 0.1278 0.1364 0.1320 0.3401 0.3374 0.3343 0.3332

ITQ [6] 0.1080 0.1088 0.1117 0.1184 0.3425 0.3464 0.3522 0.3576

CCA-ITQ [6] 0.1653 0.1960 0.2085 0.2176 0.3874 0.3977 0.4146 0.4188

MLH [20] 0.1844 0.1994 0.2053 0.2094 0.3829 0.3930 0.3959 0.3990

BRE [13] 0.1589 0.1632 0.1697 0.1717 0.3556 0.3581 0.3549 0.3592

KSH [17] 0.2948 0.3723 0.4019 0.4167 0.4331 0.4592 0.4659 0.4692

CNNH [29] 0.5425 0.5604 0.5640 0.5574 0.4315 0.4358 0.4451 0.4332

DLBHC [15] 0.5503 0.5803 0.5778 0.5885 0.4663 0.4728 0.4921 0.4916

DNNH [14] 0.5708 0.5875 0.5899 0.5904 0.5471 0.5367 0.5258 0.5248

DSH 0.6157 0.6512 0.6607 0.6755 0.5483 0.5513 0.5582 0.5621

Table 3. Comparison of retrieval mAP of our DSH method and the other hashing methods on CIFAR-10 and NUS-WIDE.
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Figure 5. Comparison of retrieval performance of our DSH method and the other hashing methods on CIFAR-10 (results on NUS-WIDE

are provided in supplementary materials). (a) PR curves (48-bit). (b) Mean precision within Hamming radius 2.
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Figure 6. Time cost to encode one new-coming image (microsec-

onds) on CIFAR-10.

The logarithmic encoding time (in microseconds, base

10) of such hashing methods is shown in Figure 6, where

results were obtained by averaging over the whole test set.

CNN-based methods take almost the same time to encode

a single image with varying code lengths, since the compu-

tations mainly take place in the common preceding layers.

In general, when only considering generating binary codes

from model inputs, even the GPU accelerated version of

CNN-based methods are slower than the conventional meth-

ods by at least an order of magnitude. However, taking the

feature extraction time into consideration, the CNN-based

methods are 10x faster than the conventional hashing meth-

ods. Moreover, the conventional hashing methods usually

require several types of features to achieve comparable re-

trieval performance to CNN-based methods, which further

slows down the whole encoding procedure.

5. Conclusion

We attribute the promising retrieval performance of DSH

to three aspects: First, the coupling of non-linear feature

learning and hash coding for extracting task-specific im-

age representations; Second, the proposed regularizer for

reducing the discrepancy between the real-valued network

output space and the desired Hamming space; Third, the

online generated dense pairwise supervision for well de-

scribing the desired Hamming space. In terms of efficiency,

experiments have shown that the proposed method encodes

new-coming images even faster than conventional hashing

methods. Since our current framework is relatively general,

more complex network structure can also be easily exploit-

ed. In addition, preliminary study of “network ensembles”

in this work has proven it a promising way that is worth our

future investigation to further boost retrieval performance.
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