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Although the hierarchical structure of our ST-AOG is

similar to those spatial-only models used in [37, 46] for car

detection, we introduce the semantic part Or-nodes (to be

used to define fluent) for detailed part status modelling in

both spatial and temporal domains.

A parse tree, pt, is an instantiation of the ST-AOG be-

ing placed at a location in the spatial-temporal feature pyra-

mid. It is computed by following the breadth-first-search

order of the nodes in G, selecting the best child node at each

encountered Or-node (based on the scoring function to be

defined later on). The bold black edges in Fig. 3 show the

parse trees of ST-AOG on three neighbouring video frames.

For a video with N frames, we can get its parse graph as

pg = {pti,i+1}N−1

i=1
.

Based on the pg, we extract frame-level part bound-

ing boxes and statues, and utilize them to design spatial-

temporal features for fluent recognition. To capture long-

term spatial-temporal info, our model can also integrate iDT

[59] and C3D features [55] (see Section 6.2).

3.2. The Scoring Function

The scoring function of ST-AOG is recursively defined

w.r.t. its structure. For simplicity, we will use v and ṽ

(v ∈ V ) to represent the temporally neighbouring nodes

(on frames Ii and Ii+1) below.

Let O ∈ VOr denotes the Or-node in the ST-AOG, A ∈
VAnd be the parent node of a terminal-node t ∈ VT . We

model t by a 4-tuple (θappt , θ
def

t|A , σt, at|A) where σt is the

scale factor for placing t w.r.t. A in the feature pyramid

(σt ∈ {0, 1}), and at|A is the anchor position of t relative to

A.
i) Given A, t̃ and their locations lA, lt̃, the scoring func-

tion of placing t at the position lt is then defined by,

S(t|lt̃, A, lA) = max
lt

[< θ
app
t ,Φapp(lt) > −

< θ
def

t|A ,Φdef (lt, lA) > +θ
T
M‖lt − lt̃ + F(lt)‖

2
2] (2)

where Φapp(lt) is the appearance features (HOG or CNN)

and Φdef (lt, lA) is the deformation features. θTM is the mo-

tion flow weight of t. F(l) is the motion flow between

frames Ii and Ii+1 computed at position l.

ii) Given Ã and its location l
Ã

at frame Ii+1, the scoring
function of A is defined by,

S(A, lA|Ã, lÃ) =
∑

v∈ch(A)

[S(v|A, lA) + bA

+ θ
A
M‖lv|A − lv|Ã + F(lv|A)‖

2
2] (3)

where ch(A) is the set of child nodes of A, bA is the bias

parameter. θAM is the motion flow weight of A.

iii) Given Õ and its location l
Õ

at frame Ii+1, the scoring
function of O is defined by,

S(O, lO|Õ, lÕ) = max
v∈ch(O)

[S(v|O, lO)+

θ
O
M‖lv|O − lv|Õ + F(lv|O)‖

2
2] (4)

where ch(O) is the set of child nodes of O, lO is the position

of O. θOM is the optical flow weight of O.

For temporal term ‖lv − lṽ +F(lv)‖
2
2, v ∈ V , since the

scoring function of v is conditioned on ṽ in time, while ṽ is

conditioned on its child nodes or parent node in space, there

are loops in this structure, and we couldn’t use DP to com-

pute above scoring functions directly. As similar to [11], we

resort to LBP [62] to get an approximate solution. For com-

putational efficiency, the motion flows are computed only

at nodes corresponds to the car and its semantic parts. For

other nodes, their motion flow are implicitly embedded, as

their score maps are related to nodes with temporal links,

and their scoring functions are computed as above but with-

out the temporal terms.

Given a fluent video clip with N frames, the overall score
of ST-AOG will be:

S(I1:N |pg,G) =
1

N − 1

N−1∑

i=1

S
i,i+1(O, lO|Õ, lÕ) (5)

where O is the root Or-node in ST-AOG. In probabilistic

model, Eqn. (5) can be interpreted as a log-posterior prob-

ability up to a constant. Our objective is to maximize Eqn.

(5), given all appearance, deformation, and motion features

from training videos.

4. Inference by LBP and DP

To cope with the loop introduced by motion transi-

tion, we extend the traditional inference procedure in AOG

[37, 69] with LBP. Given an input video, Our inference pro-

cedure includes 4 steps:

i) For each frame Ii, we omit the temporal links between

it and its neighbour frames, and compute the appearance

feature pyramid, optical flow pyramid, and score maps for

all nodes in Layer 3− 6 in the ST-AOG by the Depth-First-

Search (DFS) order; This step is similar to the inference

algorithm in [37].

ii) After we get the score maps of the semantic part Or-

nodes and the single car And-nodes, we further integrate the

score maps with optical flow maps, as can be seen on the left

of Fig. 4. For each semantic part p with its parent root node

r, we focus on four nodes, i.e., p, r, p̃, r̃, and omit other

spatial links connected to them. At the beginning, we send

message from p to r, then from r to the rest to update the

message. When the difference of the propagated message

in two consecutive iterations doesn’t change, we compute

the last “belief” that transmitted to r as r′s score map. This

procedure can be efficiently implemented by distance trans-

form [17].

iii) After we get the score maps from ii), we further com-

pute the score maps for nodes in the upper layers of ST-

AOG. By this procedure, the score map of the root Or-node

for neighbouring frames Ii and Ii+1 can be computed by

maximizing Eqn. (4) on each spatial-temporal point.
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SSDPM [2] AOG-Car [36] DP-DPM [22] ST-AOG-HOG ST-AOG-HOG-CSC ST-AOG-CNN

Body 96.4 99.1 93.4 99.0 90.8 94.7

Left-front door 36.3 36.6 14.4 49.9 48.0 36.6

Left-back door 42.2 44.4 7.1 60.3 55.1 32.3

Right-front door 31.6 40.7 13.0 58.4 55.9 26.8

Right-back door 33.0 19.4 14.2 61.4 55.3 32.8

Hood 35.9 20.1 7.1 73.7 67.5 38.4

Trunk 25.4 16.8 10.1 54.0 49.7 33.7

Left-head Light 10.4 22.1 19.6 33.1 27.8 29.3

Right-head Light 13.3 24.3 15.7 41.3 36.5 23.3

Left-tail Light 6.8 25.7 18.3 27.8 27.3 22.7

Right-tail Light 6.2 31.1 14.0 23.2 22.9 14.0

Mean 24.1 28.1 13.4 48.3 44.6 29.0

Table 2. Semantic Car Part Localization results of baseline methods and ST-AOG on Car-Fluent dataset.

as either the code is not available, or the design of parts is

inappropriate in our case (details are in the supplementary).

For our ST-AOG, we use several variants for comparison.

1)“ST-AOG-HOG” is the instance of our ST-AOG based on

HOG features. 2) “ST-AOG-HOG-CSC” is the cascade ver-

sion of our model. To improve the speed, we use the re-

cently developed Faster-RCNN [48] for cascade detection

of cars. Then based on these car detections, we further run

the ST-AOG for part localization. 3) “ST-AOG-CNN” is the

instance of our ST-AOG based on the pyramid of CNN fea-

tures, here, we use the max5 layer of the CNN architecture

for comparison as [22]. To cope with small cars, we double

the size of source images for CNN.

For evaluation, we compute the detection rate of the se-

mantic parts (e.g., “left-front door”, “hood”). Here, we as-

sume the whole car bounding boxes are given, and each

method only outputs 1 prediction with the highest confi-

dence for each groundtruth car. Table 2 shows the quan-

titative results. We can see on almost all semantic parts, our

model outperforms baseline models by a large margin. We

believe this is because ST-AOG jointly model the view, part

occlusion, geometry and appearance variation, and tempo-

ral shifts. For “ST-AOG-HOG-CSC”, we just use it as a

reference to improve the speed of ST-AOG, since it has the

nearly real-time speed, and can be plugged in our model

as an outlier-rejection module. Surprisingly, CNN fea-

tures perform worse than HOG features on the Car-Fluents

dataset. In experiments, we find the extracted CNN fea-

ture on deep pyramid [22] is too coarse (the cell size is 16),

even we resize original images by 2 times, it still miss many

small parts. Based on recent study of using CNN for key-

points prediction [56], we believe a more effective method

is required to integrate CNN feature with graphical models.

6.3.2 Part Status Estimation

To the best of our knowledge, no model tried to output car

part status in our case in the literature. To evaluate the part

status, we compare different versions of our model and anal-

yse the effects of different components. Specifically, we

compute the part status detection rates, that is, a part status

is correct if and only if its position and status (e.g., open,

close) are both correct.

On the right of Fig. 6, we show the quantitative results of

4 versions of our ST-AOG. Here, we use HOG features for

simplicity. “ST-AOG-ver1” refers to the ST-AOG without

both view and part status penalty in Eqn. (8), “ST-AOG-

ver2” refers to the ST-AOG without view penalty in Eqn.

(8), and “ST-AOG” is the full model with all penalty in Eqn.

(8). To investigate the effect of motion flow, we also com-

pare the ST-AOG without motion flow, i.e., the “S-AOG”.

As can be seen, the view penalty is the most important fac-

tor, then is the part status and motion flow, and part sta-

tus seems to have more importance. Interestingly, for some

parts (e.g., “RB-Door”), adding more penalty or temporal

info will decrease the performance.

Fig. 7 shows some qualitative running examples of ST-

AOG. The first two rows show the successful results, the last

row shows the failure examples. For better visualization, we

cropped the image to just contain the interested car. We can

see our model can localize parts and recognize their statuses

fairly good with different viewpoints and car types, but may

report wrong results when people occlude the car, the view-

points are mis-detected, or there are background clutters.

7. Conclusion

This paper proposed a ST-AOG to recognize car flu-

ents at semantic part-level from video. The ST-AOG inte-

grates the motion features in temporal, and a LBP-based DP

method can be used in inference. The model parameters are

learned under the latent structural SVM (LSSVM) frame-

work. To promote the research of fluents, we have collected

a new Car-Fluent dataset with detailed annotations of view-

points, car types, part bounding boxes, and part statuses.

This dataset presents new challenges to computer vision,

and complements existing benchmarks. Our experiments

verified the ability of proposed ST-AOG on fluent recogni-

tion, part localization, and part status estimation.

In future work, we will integrate human and car jointly,

and study human-car interactions to help understand human

actions/intents based on car fluent recognition.
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