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Abstract

We present recursive recurrent neural networks with at-

tention modeling (R2AM) for lexicon-free optical character

recognition in natural scene images. The primary advan-

tages of the proposed method are: (1) use of recursive con-

volutional neural networks (CNNs), which allow for para-

metrically efficient and effective image feature extraction;

(2) an implicitly learned character-level language model,

embodied in a recurrent neural network which avoids the

need to use N-grams; and (3) the use of a soft-attention

mechanism, allowing the model to selectively exploit image

features in a coordinated way, and allowing for end-to-end

training within a standard backpropagation framework.

We validate our method with state-of-the-art perfor-

mance on challenging benchmark datasets: Street View

Text, IIIT5k, ICDAR and Synth90k.

1. Introduction

Photo Optical Character Recognition (photo OCR),

which aims to read scene text in natural images, is an essen-

tial step for a wide variety of computer vision tasks, and has

enjoyed significant success in several commercial applica-

tions. These include street-sign reading for automatic navi-

gation systems, assistive technologies for the blind (such as

product-label reading), real-time text recognition and trans-

lation on mobile phones, and search/indexing the vast cor-

pus of image and video on the web.

The field of photo OCR has been primarily focused on

constrained scenarios with hand-engineered image features.

(Here, constrained means that there is a fixed lexicon or

dictionary and words have known length during inference.).

Specifically, examples of constrained text recognition meth-

ods include region-based binarization or grouping [5, 24,

33], pictorial structures with HOG features [47, 46], integer

programming with SIFT descriptor [41], Conditional Ran-

dom Fields (CRFs) with HOG features [32, 31, 39], Markov

models with binary and connected component features [49].

Some early attempts [26, 53, 10] try to learn local mid-level
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representation on top of the hand-crafted features, and some

methods in [48, 19, 16] incorporate deep convolutional neu-

ral networks (CNNs) [25, 13] for a better image feature ex-

traction. These methods work very well when candidate

ground-truth word strings are known at testing stage, but do

not generalize to words that are not present in the list of a

lexicon at all.

A recent advance in the state-of-the-art that moves be-

yond this constrained setting was presented by Jaderberg et

al. in [17]. The authors report results in the unconstrained

setting by constructing two sets of CNNs – one for model-

ing character sequences and one for N-gram language statis-

tics – followed by a CRF graphical model to combine their

activations. This method achieved great success and set a

new standard in photo OCR field. However, despite these

successes, the system in [17] does have some drawbacks.

For instance, the use of two different CNNs incurs a rel-

atively large memory and computation cost. Furthermore,

the manually defined N-gram CNN model has a large num-

ber of output nodes (10k output units for N = 4), which

increases the training complexity – requiring an incremen-

tal training procedure and heuristic gradient rescaling based

on N-gram frequencies.

Inspired by [17], we continue to focus our efforts on the

unconstrained scene text recognition task, and we develop a

recursive recurrent neural networks with attention modeling

(R2AM) system that directly performs image to sequence

(word strings) learning, delivering improvements over their

work. The three main contributions of the work presented

in this paper are:

(1) Recursive CNNs with weight-sharing, for more effective

image feature extraction than a “vanilla” CNN under the

same parametric capacity.

(2) Recurrent neural networks (RNNs) atop of extracted

image features from the aforementioned recursive CNNs,

to perform implicit learning of character-level language

model. RNNs can automatically learn the sequential dy-

namics of characters that are naturally present in word

strings from the training data without the need of manually

defining N-grams from a dictionary.

(3) A sequential attention-based modeling mechanism that
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performs “soft” deterministic image feature selection as the

character sequence is being read, and that can be trained

end-to-end within the standard backpropagation.

We pursue extensive experimental validation on chal-

lenging benchmark datasets: Street View Text, IIIT5k, IC-

DAR and Synth90k. We also provide a detailed ablation

study by examining the effectiveness of each of the pro-

posed components. Our proposed network architecture

achieves the new state-of-the-art results and significantly

outperforms the previous best reported results for uncon-

strained text recognition [17]; i.e. we observe an absolute

accuracy improvement of 9% on Street View Text and 8.2%

on ICDAR 2013.

2. Methodology

In this paper, we focus on the scene text recognition task,

predicting all characters from a cropped image of single

word. We refer to the cropped word region as an input im-

age in the rest of the paper. The current section describes

related literatures and the proposed architecture: Recursive

Recurrent Nets with Attention Modeling (R2AM). Figure 1

shows our overall system architecture.

2.1. Character sequence model review

Many text recognition methods focus on capturing in-

dividual characters of a word as the first step in the sys-

tem pipeline, and then apply statistical language models

or visual structure prediction to refine/prune-out misclassi-

fied characters as in [46, 48, 32, 4, 39, 26, 53]. However,

there are significant challenges since each character is in-

timately positioned with respect to others within the same

word, and therefore classic character recognition compo-

nents need to deal with a large amount of inter-class and

intra-class confusion – this is well illustrated by Figure 3

from [32]. Even in sophisticated word recognition systems

incorporating higher-order language priors based on CRFs

or Markov models, the overall system performance is still

largely dominated by the capability of the first step of the

system pipeline: the character recognition component.

Goodfellow et al. [9] first used a CNN with multi-

ple position-sensitive character classifiers for street number

recognition. Recently, Jaderberg et al. in [18, 17] proposed

character sequence model that directly encodes the charac-

ter at each position in the word using deep CNNs and so

predicts the sequence of characters in an image region. This

approach largely overcomes the aforementioned issues by

directly modeling the natural spacing and overlapping pat-

terns in scene characters that can not readily be leveraged by

sliding window based character recognition methods. For

details of this character sequence model please refer to [17].

We refer to this baseline method as Base CNN (and labeled

in Figure 3 as Base CNN) in the rest of the paper. Our

proposed system is built upon this Base CNN model; we
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Figure 1: Recursive recurrent nets with attention model-

ing (R2AM) approach: the model first passes input images

through recursive convolutional layers to extract encoded

image features, and then decodes them to output charac-

ters by recurrent neural networks with implicitly learned

character-level language statistics. Attention-based mecha-

nism performs soft feature selection for better image feature

usage.

describe our extension of novel image encoding in Section

2.2, character-level language modeling in Section 2.3, and

attention-based mechanism in Section 2.4.

2.2. Recursive CNNs for image feature extraction

2.2.1 Recursive convolutional layers

One key to the great success of the aforementioned charac-

ter sequence model is the ability to capture contextual de-

pendencies during character prediction by employing mul-

tiple convolutional layers that operate on the whole input

image.

One possible way to improve upon this Base CNN model

to enable even longer range contextual dependencies for

character prediction would be to consider using a larger ker-

nel size for each convolutional layer or a deeper network,

increasing the corresponding receptive field size. However,

this approach induces more parameters and a higher model

complexity, thereby leading to potential training and gener-

2232



alization issues.

Another way to expand longer data dependencies while

controlling the model capacity is to make the Base CNN

network recursive or recurrent as suggested in [35, 7, 29].

By using recursive or recurrent convolutional layers, the

network architecture can be arbitrary deep without signifi-

cantly increasing the total number of parameters by reusing

the same convolutional weight matrix multiple times at each

layer.

We now describe the recursive CNNs used in our ap-

proach: the instance of the recursive convolutional layer at

time step t (where t ≥ 0) is fed with an input image/feature

response as:

hi,j,k(t) =

(

σ((whh
k )T xi,j + bk) at t = 0

σ((whh
k )T hi,j(t− 1) + bk) at t > 0

(1)

where hi,j(t − 1) and xi,j denote the vectorized feed-

forward and input patches centered at (i, j) of feature maps,

respectively. whh
k is the vectorized feed-forward weight for

output channel k. bk is the bias for output channel k. σ is a

deterministic non-linear transition function.

Recursive CNNs increase the depth of traditional CNNs

under the same parametric capacity, and also produce much

more compact feature response than CNNs. In a slightly

different interpretation of this architecture, the recursive in-

teractions can also be seen as implementing a form of “lat-

eral connectivity” within a feature map, allowing the repre-

sentation at a given layer to better capture higher order de-

pendencies. For a longer discussion on recursive/recurrent

convolutional layers, see [29] for details.

2.2.2 Untying in recursive convolutional layers

We have seen the definition and potential gain of recursive

convolutional layers in the previous section. However, the

formulation in Eqn. 1 restricts all weights whh
k to share

the same internal values – they are “tied” together. One

consequence of this tying is that the number of channels

will be identical across all of the layers due to the fact that

the shared weights whh
k always project the incoming fea-

ture maps to the same dimension (width⇥height⇥number

of channels) of output feature maps. This strongly con-

trasts with the common practice in CNNs of varying the

number of channels to control the amount of computation

performed and the spectrum of different feature types. (For

example the popular and successful VGGNet [40], in which

the number of channels increases like {64, 128, 256, 512}
as the spatial extent of the convolutional layers decreases

according to {224, 112, 56, 28}.)

In this work we propose to use an “untied” variant of re-

cursive convolutional layers that distinguishes between ini-

tial inter-layer feed-forward weight whh
untied,k and the follow-

ing intra-layer recursive weights whh
tied,k. This allows the
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Figure 2: Illustration of the proposed untied recursive and

recurrent convolutional layers. We untie the first feed-

forward weight at time step t = 0 and the rest feed-forward

weights at t ≥ 1. The layers inside the blue box have tied

(shared) weights.

network to have different numbers of channels at different

layers, and also allows the recursive weights to specialize

more freely.

By untying the feed-forward weights at time step t = 0,

Eqn. 1 becomes:

hi,j,k(t) =

(

σ((whh
untied,k)

T xi,j + bk) at t = 0

σ((whh
tied,k)

T hi,j(t− 1) + bk) at t > 0
(2)

In doing so, the number of channels for any recursive convo-

lutional layer can be adjusted by the untied weight whh
untied,k,

controlling the overall computational cost. We can use the

same logic here to untie recurrent convolutional layer [29].

Please see Figure 2 for an illustration.

In the experiment section we observed that both recur-

sive and recurrent versions of Base CNN model signifi-

cantly improve the performance on many recent standard

benchmarks such as Synth90k, SVT, and ICDAR13. Please

refer the details in Section 3.3. We further found that recur-

sive version consistently outperforms recurrent version in

all the tasks that we explored, which is in line with findings

in other recent literature [42, 15] that recursive structures

can learn compositional features and part interactions effec-

tively so injecting input xi,j multiple times at each time step

is not necessary for obtaining high performance. It is also

possible that recursive models are forced to more effectively

use their tied weights relative to the recurrent model, since

there is no option for information to “short-cut” as there is

in the recurrent architecture. For this reason, we choose the

recursive version of Base CNN model for our overall sys-

tem pipeline as shown in the bottom part of Figure 1.

2.3. RNNs for character-level language modeling

The proposed untied recursive character sequence model

in Section 2.2 can already serve as an end-to-end trainable
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Figure 3: Five variations of the recurrent in time architecture that we experimentally evaluate for photo OCR task. We

explore the image captioning style RNNs, the effect of depth in the RNN stack, the effect of factorization of the modalities

(also explored in [23, 6]), and the effect of attention modeling.

photo OCR system that significantly outperforms sophisti-

cated structured learning method in [17] by a large margin

(7.2% on SVT and 6.7% on ICDAR13 absolute improve-

ment as shown in the experiment section). Nonetheless, we

observed that the Base CNN model (either plain CNNs, re-

cursive CNNs, or recurrent CNNs) trains each character po-

sition independently by using multiple loss functions. We

are then motivated to ask whether we can allow some sort

of interaction between each character position and exploit

the underlying character-level language statistics.

The most common approach is to add some kind of

graphical models (e.g. CRFs) on top of the output prediction

of each character position as in [31, 32, 34]. However, these

methods need to compute unary and higher-order terms for

all candidate characters, and can require expensive compu-

tation during inference stage. Another way to access such

character-level language information is to directly model all

possibilities using a CNN – as in the bag-of-N-grams com-

ponent of [17]. Such a CNN model requires pre-defined N-

grams from a dictionary and uses a huge number of output

nodes in which each node represents an element in N-gram

combinations (e.g. 10k output nodes for N = 4 in [17]). In

order to jointly train a whole range of N-grams in this CNN

model using backpropagation, the method in [17] rescales

the gradients for each N-gram class by the inverse frequency

of its appearance in the training word corpus because some

of the N-gram classes barely occur in the training dataset,

even with the recently released Synth90k [16] dataset that

has more than 7 million training samples.

In contrast to the above methods, we propose to use re-

current neural networks (RNNs) [50, 38, 37] to model the

character-level statistics of text. Recurrent neural networks

and its variant Long Short-Term Memory (LSTM) [14] have

recently experienced a renaissance and are extremely ef-

fective models when dealing with sequential data, such

as handwriting recognition, machine translation, speech

recognition, and image captioning. Recognizing characters

in images can be essentially considered as a task of solv-

ing sequential dynamics and learning mappings from pixel

intensities to natural character-level vectors. Specifically,

our model takes a single image and generate a sequence of

1-of-K encoded characters.

Y = {y1,y2, ...,yN}, yt 2 R
K

(3)

where K is the size of the possible characters and N is the

length of the word.

We propose the use of an RNN that produces a word

string by generating one character at every time step condi-

tioned on image feature I , the previous hidden state ht−1

and the input xt using the recurrence equations:

ht = σ(Wxhxt +Whhht−1 + bh)

yt = σ(Whyht + by)
(4)

where σ is an element-wise non-linear transition function,

ht 2 R
M is the hidden state with M units, and the input

xt can be encoded image feature I or previously generated
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character yt−1, depending on the RNN structure used. The

encoded image feature I is extracted from the last fully-

connected layer of the a CNN model. This CNN models

can be either plain CNN, recurrent CNN, or recursive CNN.

We will show how different CNN models perform in the

experiment section.

There are potentially many ways to feed an image fea-

ture I to a RNN, and the RNN itself can also have many

different structures. In this paper, we empirically explore

a range of settings. Figure 3 demonstrates the base CNN

model and five RNN variants that we explored. We detail

four variants in this section and will explain the last variant

(including attention modeling) in the next section:

Base CNN: Baseline character sequence CNN trained with

multiple loss functions where each loss function focuses on

one character position as described in Section 2.1.

Base CNN + RNN1c: A single-layer RNN inspired from

image-captioning work [45]. The extracted image feature

I is sent to RNN only at the first time step. The predicted

character yt−1 of RNN at time t−1 is fed to the RNN at time

t until we obtain an end-of-word (EOW) label. This variant

serves as an good sanity check and helps us validate the

capability of our RNN to perform character-level language

modeling given an initial CNN representation.

Base CNN + RNN1u: An unfactored single-layer RNN re-

ceiving image feature I at every time step – therefore the

character predictions are conditioned on both image feature

and previous hidden state at all time.

Base CNN + RNN2u: An unfactored two-layer RNN using

two stacks of RNNs. This model has a deeper structure at

each time step. This variant also has access to image feature

at every time step.

Base CNN + RNN2f: A factored two-layer RNN that uses

two stacks of RNNs. This variant only has access to the im-

age features at the second layer RNN. In this way we force

the first stack of RNN to focus on character-level language

modeling and force the second stack of RNN to focus on

combining language statistics and image feature.

As noted previously, all the RNN variants that we ex-

plored implicitly perform character-level language model-

ing and benefit from not being constrained to pre-defined N-

gram sequences. For instance, Karpathy et al. [22] demon-

strate that RNN-based methods consistently outperforms N-

gram models at character-level text prediction where N is as

large as 20. In the experiment section we will show the error

analysis with and without the proposed RNNs.

2.4. Attention modeling

Attention-based mechanisms can allow the model to

focus on the most important segments of incoming fea-

tures, as well as potentially adding a degree of inter-

pretability [3, 51]. There are generally two categories of

attention-based image understanding: hard-attention and

soft-attention. Hard-attention models learn to choose a se-

ries of discrete glimpse locations, and can be challenging

to train since the loss gradients are typically intractable. In

this work we choose a soft-attention model, which can be

trained end-to-end with standard backpropagation.

We now describe our attention modeling function illus-

trated in Figure 3 as Base CNN + RNNAtten. At every out-

put step t, the attention function (denoted as a letter A in

the figure) computes an energy vector τ t conditioned on

the image feature I and the output of the first stack RNN

st:
τ t = fattention(I, st) = tanh(ϕ(I) + ψ(st)) (5)

where ϕ and ψ can be multilayer perceptrons or simple

weight matrices that project both I and st to the same

space. Then the context vector ct is computed as weighted

image feature based on the energy coefficients αt at time

step t:

αtd =
exp(τtd)

PD

d=1
exp(τtd)

ct = αt ◦ I

(6)

where ◦ is the Hadamard product. This mechanism gener-

ates a set of positive weights αtd which can be understood

as the relative importance to give to location d in fusing the

image feature I , and the computed context vector ct is then

sent to the second stack of RNN for final output prediction.

3. Experiments

3.1. Datasets

We evaluate the proposed Recursive Recurrent Nets with

Attention Modeling (R2AM) framework on five standard

benchmark datasets: ICDAR 2003, ICDAR 2013, Street

View Text, IIIT5k and Synth90k.

ICDAR 2003 [30] contains 251 full scene images and 860

cropped images of the words. Even though the focus of

this paper is unconstrained text recognition, we nonetheless

provide constrained text recognition results for the ease of

comparison. The per-image 50 word lexicons defined by

Wang et al. [46] are referred to as IC03-50 and the lexicon

of all test words (563 words) is referred as IC03-Full.

ICDAR 2013 [21] contains 1015 cropped word images

from natural scene images and is referred as IC13.

Street View Text [46] contains 647 cropped word images

from Google Street View. The per-image 50 word lexicons

defined by Wang et al. [46] are referred to as SVT-50 and

the lexicon of all test words (4282 words) is referred as

SVT-Full.

IIIT5k [31] contains 3000 cropped word images down-

loaded from Google image search engine. Each image has

a lexicon of 50 word (IIIT5k-50) and a lexicon of 1k word

(IIIT5k-1k).

Synth90k [16] contains synthetically generated word im-

ages. The dataset contains around 7 million training images,
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900k validation images, and 900k test images.

We follow the setting in Jaderberg et al. [17] to prepare

training and test sets that our method is trained purely on

the Synth90k training set and all parameters are selected via

validation set. We do not use the validation data to retrain

our model. We also follow the evaluation protocol in Wang

et al. [46] that performs recognition on the words contain-

ing only alphanumeric characters (0-9 and A-Z) and at least

three characters.

3.2. Implementation details

The network architecture for our Base CNN model is

shown in Table A1. It has 8 convolutional layer with 64, 64,

128, 128, 256, 256, 512 and 512 channels, and each convo-

lutional layer uses kernel with a 3 ⇥ 3 spatial extent. Convo-

lutions are performed with stride 1, zero padding, and ReLU

activation function. 2 ⇥ 2 max pooling follows the second,

fourth, and sixth convolutional layers. The two fully con-

nected layers have 4096 units. The input is a resized 32 ⇥
100 gray scale image.

We now provide details for the network structures of

the proposed untied recursive CNNs in Table A1. Notice

that each of the even number convolutional layer (conv2,

conv4, conv6 or conv8) use its own shared weight matrix

that has exactly the same input and output dimensional-

ity, and so projects feature maps to the same space multi-

ple times within one recursive convolutional layer under the

same parametric capacity as Base CNN model.

For the character-level language modeling, we use RNNs

with 1024 hidden units equipped with hyperbolic tangent

activation function. Our overall system pipeline is shown in

Figure 1.

We apply backpropagation through time (BPTT) algo-

rithm to train the models with 256 batch size SGD and 0.5

dropout rate. Initial learning rate is 0.002 and decreased

by a factor of 5 as validation errors stop decreasing for 2

epochs. All variants use the same scheme with 30 total

epochs determined based on the validation set. We apply

gradient clipping at the magnitude of 10, and find it with

in place weight decay did not add extra performance gains.

All initial weights are sampled from Gaussian distribution

with 0.01 standard deviation. We implemented the system

in the open source deep learning framework Caffe [20]. The

average inference time per image is 2.2 ms on single Nvidia

Titan X GPU for the overall system framework.

3.3. Ablation study

In this section we empirically investigate the contri-

butions made by three key components in the proposed

method, namely: recursive CNNs for image encoding,

RNNs for character-level language modeling, and attention-

based mechanism for better image feature usage.

In an effort to decouple the performance improvement

Method Synth90k SVT ICDAR13

CHAR [17] 87.3 68.0 79.5

Base CNN 91.9 75.1 85.7

Recurrent CNN (2 iter) 92.6 75.8 86.1

Recurrent CNN (3 iter) 93.5 76.9 87.4

Recursive CNN (2 iter) 93.3 77.1 87.3

Recursive CNN (3 iter) 94.2 78.9 88.5

Table 1: Unconstrained (lexicon-free) text recognition ac-

curacies on recent benchmarks. See Figure 2 for diagrams

of these architectures. The results indicate that “iteration” is

important to both recurrent and recursive CNNs. Recursive

CNNs outperform recurrent CNNs on all three datasets.

Method Synth90k SVT ICDAR13

CHAR [17] 87.3 68.0 79.5

Base CNN 91.9 75.1 85.7

Base CNN + RNN1c 93.4 76.2 86.4

Base CNN + RNN1u 93.5 76.9 87.2

Base CNN + RNN2u 93.7 77.9 87.6

Base CNN + RNN2f 94.0 78.8 88.0

Base CNN + RNNAtten 94.3 79.1 88.9

Table 2: Unconstrained (lexicon-free) text recognition ac-

curacies on recent benchmarks. See Figure 3 for diagrams

of these architectures. The results indicate that the sim-

ply uses image captioning style method can already boost

performance, while factored RNNs with attention modeling

overall achieves the best results.

Method Synth90k SVT ICDAR13

CHAR [17] 87.3 68.0 79.5

JOINT [17] 91.0 71.7 81.8

R2AM (ours) 95.3 80.7 90.0

Table 3: Unconstrained (lexicon-free) text recognition ac-

curacies on recent benchmarks. Our combined model

R2AM (Recursive CNN + RNNAtten) significantly outper-

forms previous state-of-the-art methods in [17].

that is due to architectural variations from that which might

simply come from having more parameters, we first gradu-

ally increase the depth of the baseline CHAR model in [17]

from 5 conv layers until we reach the performance plateau

at 8 conv layers shown as Base CNN in Table A1. Having

observed this plateau, we did not explore even deeper net-

works such as (16 or 19 conv layer) VGGNet [40]. The bar

chart in Table A1 shows the corresponding performance for

networks with different depths on Synth90k dataset.

3.3.1 Recursive and recurrent convolutional layers

Table 1 shows the effectiveness of the proposed untied re-

cursive and recurrent CNNs over Base CNN model on un-

constrained text recognition tasks. We observed that more

iterations in both proposed methods led to higher accuracies

on all datatsets evaluated, and the improvement essentially

came from the same parametric capacity since the weights
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Method SVT-50 SVT IIIT5k-50 IIIT5k-1k IIIT5k IC03-50 IC03-Full IC03 IC13

Baseline ABBYY [46] 35.0 - 24.3 - - 56.0 55.0 - -

Wang et al. [46] 57.0 - - - - 76.0 62.0 - -

Mishra et al. [31] 73.2 - - - - 81.8 67.8 - -

Novikova et al. [34] 72.9 - 64.1 57.5 - 82.8 - - -

Wang et al. [48] 70.0 - - - - 90.0 84.0 - -

Bissacco et al. [4] 90.4 78.0 - - - - - - 87.6

Goel et al. [8] 77.3 - - - - 89.7 - - -

Alsharif and Pineau [2] 74.3 - - - - 93.1 88.6 - -

Almazán et al. [1] 89.2 - 91.2 82.1 - - - - -

Lee et al. [26] 80.0 - - - - 88.0 76.0 - -

Yao et al. [53] 75.9 - 80.2 69.3 - 88.5 80.3 - -

Rodriguez-Serrano et al. [36] 70.0 - 76.1 57.4 - - - - -

Jaderberg et al. [19] 86.1 - - - - 96.2 91.5 - -

Su and Lu et al. [43] 83.0 - - - - 92.0 82.0 - -

Gordo [10] 90.7 - 93.3 86.6 - - - - -

*DICT Jaderberg et al. [18] 95.4 80.7 97.1 92.7 - 98.7 98.6 93.1 90.8

Jaderberg et al. [17] 93.2 71.7 95.5 89.6 - 97.8 97.0 89.6 81.8

R2AM (ours) 96.3 80.7 96.8 94.4 78.4 97.9 97.0 88.7 90.0

Table 4: Scene text recognition accuracies (%). “50”, “1k” and “Full” denote the lexicon size used for constrained text

recognition defined in [46]. The last two rows list methods that are capable of performing unconstrained text recognition

(lexicon-free). Our proposed R2AM method significantly outperforms previous best unconstrained text recognition method

[17] in most of the cases (bold numbers), especially on the recent released datasets such as SVT, IIIT5k, IC13. *DICT [18]

is not lexicon-free due to incorporating ground-truth labels during training.

of convolutional layer are shared as shown in Figure 2 and

Table A1. The lateral interactions between these shared

weights allow for broader receptive fields and competition

between representational units in the same “layer”. In ad-

dition, we consistently found that recursive version outper-

forms recurrent version. It might because the recursive con-

volutional layer can prevent error signals directly backprop-

agate back via recurrent connections in the recurrent con-

volutional layer, which is especially true for convolutional

operation since the input signal remains unchanged. There-

fore, we choose the recursive CNNs for our final system ar-

chitecture. The architectural variants we study differ from

Residual Networks (ResN) [12] in that our recurrent model

receives the same bottom-up input at each stage of recur-

rency, whereas in ResN’s the identity connections skip lay-

ers.

3.3.2 Character-level language modeling

In Table 2, we report unconstrained text recognition results

for each of the architectural variants of RNNs in Figure 3.

We observed an immediate performance boost by using any

kind of the proposed RNN variants atop the Base CNN net-

work which has already hit its performance plateau. RNN1c

serves as a good sanity check module because the image

features from the Base CNN are only fed to the RNN at the

first time step, and then RNN1c is able to predict the first

and the following character correctly based on the previ-

ously predicted character and the hidden state information.

The comparison of RNN1u and RNN1c results indicates

that feeding image feature from Base CNN to a RNN at

every time step can further improve the performance, as

RNN1u has access not only to the previously predicted char-

acter and hidden state information, but also the raw image

feature during inference. (This architecture presumably also

allows the RNN to expend more capacity on sequence mod-

eling, since it no longer needs to retain the image feature

information in its hidden state.) In addition, based on the

observation that RNN2f outperforms RNN2u, we note that

factorization seems to be a more effective architecture than

the unfactored models. This might because that the encoded

image features can only be accessed by the second stack

RNN, and this therefore allows/forces the first stack RNN

to focus on modeling character-level statistics (and/or at-

tentional processes).

The proposed RNNAtten uses an attention-based mecha-

nism that learns a set of weight matrices to rescale image

features and perform soft attention modeling before feeding

the image feature to the top-level RNN. This architecture

was observed to give the best performance across all five of

the RNN variants explored.

Thus, our final network architecture contains the afore-

mentioned recursive CNNs for image feature extraction and

the RNNAtten for character-level language modeling with at-

tention as shown in Figure 1.

At this point it is also worth mentioning that we have

explored backward RNNs and bidirectional RNNs for

character-level language modeling as well, however neither

of these extensions delivered further improvements. This is

in contrast to the observations in Graves et al. [11]. Per-

haps this is because our work focuses on predicting char-

acters in scene images that contain around 8 characters on

average, while method in [11] focuses on longer sequences
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Figure 4: Lexicon-free scene text recognition results by the proposed Recursive Recurrent Nets with Attention Modeling

(R2AM) framework on examples from SVT, ICDAR and IIIT5k datasets. R2AM is able to recognize words with low contrast,

significant transform and clutter background. It is also able to recover missing/occluded characters (e.g. PARK, BURBANK,

SAN and STAR) by the implicitly learned language model.

of handwritten scripts. For this reason, we did not explore

LSTM memory cells, which are often used to help improve

the ability of RNN’s to retain information over longer time-

scales (usually at a cost in terms of model complexity and

computational run-time).

3.3.3 Constrained and unconstrained text recognition

Recognizing text in the wild without a lexicon or dictionary

is a challenging task. Bissacco first reported lexicon-free

(but heavily dictionary weighted) results in [4], and Jader-

berg et al. [17] recently presented a notable advancement

in lexicon/dictionary-unconstrained scene text recognition.

Table 3 compares the accuracy of our proposed method to

the previous best results in [17] on fully unconstrained text

recognition task. As can be seen, our method significantly

outperforms the JOINT model in [17] by margin of 9% on

SVT and 8.2% on ICDAR 2013.

Even though our proposed method aims at the uncon-

strained scenario, we also compare our results to the con-

strained setting in which the output is selected with the

smallest edit distance between the predicted character se-

quence and words in the pre-defined lexicon. Table 4

shows these comparisons. Our method obtained the new

best results for unconstrained recognition on several bench-

marks, especially the recent released ICDAR 2013 (IC13)

dataset. We also report unconstrained text recognition result

on IIIT5k that has not been recorded in previous literature.

We are also competitive with the very best results in the

constrained setting as well. (Notice that the DICT model of

[18] is trained on a specific dictionary that contains ground-

truth words for the test set; it is not able to handle previously

unseen word strings.)

Figure 4 demonstrates the lexicon-free scene text recog-

nition results by the proposed R2AM framework on exam-

ples from SVT, ICDAR, and IIIT5k datasets. The R2AM

method is able to recognize words with low contrast, sig-

nificant transform and clutter background. It is also able

to recover missing/occluded characters by the implicitly

learned language model. We further demonstrate our lan-

guage model by performing text prediction on non-text im-

ages as shown in Figure A1, seeing that our method can

exploit the underlying character-level statistics and produce

word-like strings even though the images have no alphanu-

meric characters.

4. Conclusion and future directions

We have presented a new lexicon-free photo OCR frame-

work that incorporates recursive CNNs for image encoding,

RNNs for language modeling, and attention-based mech-

anism for better image feature usage. Extensive analysis

shows the effectiveness of each of the proposed component,

generalizability to both constrained and unconstrained sce-

narios with the same methodology, and the practical ability

of the proposed method to recognize real-world scene text

with state-of-the-art results.

In the future we will explore recursive fully convolu-

tional networks for better connecting extracted image fea-

tures and corresponding location on input image, and to vi-

sualize attention coefficients on the input domain. Also, we

will adopt gated units to allow incoming signal to alter the

state of attention-based mechanism [27] and inject deep su-

pervision [28].

A further future direction is to extend this work into text-

detection [52, 44] in addition to reading, leading to an end-

to-end full-image-to-text reading pipeline.
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