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Abstract

Clustering is the task of grouping a set of objects so that

objects in the same cluster are more similar to each other

than to those in other clusters. The crucial step in most clus-

tering algorithms is to find an appropriate similarity met-

ric, which is both challenging and problem-dependent. Su-

pervised clustering approaches, which can exploit labeled

clustered training data that share a common metric with the

test set, have thus been proposed. Unfortunately, current

metric learning approaches for supervised clustering do not

scale to large or even medium-sized datasets. In this paper,

we propose a new structured Mahalanobis Distance Met-

ric Learning method for supervised clustering. We formu-

late our problem as an instance of large margin structured

prediction and prove that it can be solved very efficiently

in closed-form. The complexity of our method is (in most

cases) linear in the size of the training dataset. We fur-

ther reveal a striking similarity between our approach and

multivariate linear regression. Experiments on both syn-

thetic and real datasets confirm several orders of magnitude

speedup while still achieving state-of-the-art performance.

1. Introduction

Clustering, that is, grouping a set of objects so that “sim-

ilar” objects are in the same cluster while “dissimilar” ob-

jects are in different clusters is an important task in com-

puter vision, image processing, and machine learning. A

challenging key step in most clustering algorithms is to find

a similarity measure, or equivalently a distance metric, so

that “similar” and “dissimilar” objects can be easily identi-

fied. In some applications, experts with domain knowledge

can help determine an appropriate distance metric. How-

ever, in high dimensional problems with many noisy irrel-

evant features, it becomes increasingly difficult even for an

expert to determine an effective metric, and standard met-

rics such as the Euclidean distance can lead to very poor

results. See [20, Chapter 7] for an overview on clustering.

Approaches [1, 3, 11, 17, 36] that learn an appropri-
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Figure 1. Our approach learns a metric in a supervised way so that

elements in the same category (here with the same color/shape) are

organized into the same cluster.

ate distance metric from data to produce a desirable clus-

tering result have thus been proposed. These approaches

can be roughly divided into two groups: semi-supervised

and supervised. The semi-supervised approaches [3, 36]

take into account the side information provided by the user,

usually in the form of a few pairs of items that are ex-

pected to be in the same or different clusters. The super-

vised approaches [1, 11, 17] assume the availability of a

labeled training sample: {(Xi,Yi) : i = 1, . . . ,m}, where

Xi = {xi,1, . . . ,xi,ni
} is a set of objects to be clustered

and Yi is the desired clustering of Xi. One then learns a

distance metric so that one’s favorite clustering algorithm,

exploiting the learned distance metric, will produce a clus-

tering close to Yi on each Xi. Supervised clustering can

be seen as a “limit” of semi-supervised clustering when all

pairwise relations are given.

Supervised clustering and semi-supervised clustering

have proven successful in many applications such as fore-

ground/background image segmentation [17], video seg-

mentation [32], face recognition [3], natural language pro-

cessing [11], audio alignment [12], detection of important

regions in webpages [18], etc. Fig. 1 illustrates an example

where each category is represented by a color/shape, and a

metric is learned so that elements in the same category are

grouped into the same cluster. Supervised clustering tries to

group similar objects together (i.e. in the same cluster) and

separate dissimilar objects. In this paper, supervised clus-

tering can be seen as a classification problem where every

training object has to be closer to the centroid of its category

than to the centroids of other categories.
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We follow the large-margin supervised clustering frame-

work of [11, 17]. For simplicity, we assume that the number

of clusters is given. This is for example the case in fore-

ground/background image segmentation where the number

of clusters is two: one for foreground and one for back-

ground. We also assume that, when we are provided with

many labeled sets of observations Xi (i.e. m ≥ 2), we can

link similar objects from the different sets into common

clusters. This is for example the case in image cosegmen-

tation [14] where multiple images are assumed to contain

instances of the same object categories, and in dynamic tex-

ture segmentation [25] where multiple videos contain a lim-

ited set of common textures (e.g. fire, grass, sea, pond, river)

that are manually labeled.

The large-margin formulations in [11, 17], while excel-

lent in modeling power, cannot scale to large datasets: they

require iterative numerical gradient algorithms that con-

verge only at a sublinear rate. In this paper we use a dif-

ferent large-margin formulation than in [17] that allows us

to derive a closed-form solution when we can link the ob-

jects between the different sets of observations Xi (or sim-

ply when m = 1). Our closed-form solution minimizes

an upper bound of the empirical risk of our problem, and

the complexity to compute this closed-form solution is (in

most cases) linear in the size of the training dataset. Con-

sequently, we are able to learn to cluster millions of exam-

ples in seconds on a single machine. Our method is easy

to implement and scales up to several orders of magnitude

larger than previous approaches while obtaining compara-

ble, if not better, clustering and segmentation performance

on synthetic and real-world datasets.

2. Preliminaries

In this section we provide some technical background for

the rest of the paper, and set up the notations throughout.

Supervised clustering: Let us first formally define the

supervised clustering problem. Suppose that we are given a

labeled training dataset {(Xi,Yi) : i = 1, . . . ,m}, where

Xi = {xi,1, . . . ,xi,ni
} is the i-th group of objects (e.g. Xi

is the i-th image, and ∀j,xi,j is a patch in Xi) and Yi is

the desired clustering of Xi (e.g. the foreground/background

partition). For simplicity we assume xi,j ∈ R
d for all i, j.

We will fix a clustering algorithm A such as kmeans that

uses a distance metric d to evaluate similarity/dissimilarity.

Then the goal of supervised clustering is to learn a common

distance function d such that for all i, we have A(Xi; d) ≈
Yi. Some restrictions on the distance function d are needed.

In this work we consider the Mahalanobis distance that is

parameterized by a symmetric positive semidefinite (PSD)

matrix M ∈ R
d×d:

dM (x, z) =
�

(x− z)�M(x− z). (1)

Thus, the goal is to learn the PSD matrix M so that we

can produce the desired clusterings Yi using the clustering

algorithm A and distance metric dM . Introducing the fac-

torization M = LL�, we see that learning dM is equivalent

to learning a linear transformation using L�.

The clustering algorithm A: We will need to fix a clus-

tering algorithm. For simplicity we consider the kmeans

algorithm [22]. In details, let X = [x1, . . . ,xn]
� ∈ R

n×d

be n objects in R
d, and we want to partition them into k

clusters. The popular kmeans algorithm aims to find:

• An assignment matrix Y ∈ {0, 1}n×k with Yic = 1 if

xi belongs to the c-th cluster, and 0 otherwise. Since each

object belongs to one and only one cluster, we have Y 1 = 1

where 1 is the vector of all ones with appropriate dimension

(or equivalently for all i,
�

c Yic = 1 ). In this paper, we

also add the constraint rank(Y ) = k (or equivalently for all

c,
�

i Yic ≥ 1) to avoid empty clusters.

• A set of centroids Z = [z1, . . . , zk]
� ∈ R

k×d.

kmeans does so by minimizing the energy function:

min
Y ∈{0,1}n×k,Y 1=1,rank(Y )=k

Z∈R
k×d

n
�

i=1

k
�

c=1

Yic · d
2(xi, zc), (2)

where d is a distance metric. Note that given the cen-

troid set Z, Yic = 1 iff for all p we have d(xi, zc) ≤
d(xi, zp) (ignoring ties), while given the assignment ma-

trix Y , for all Bregman divergence [2] function d, zc =
�

i Yicxi/
�

i Yic, i.e. the mean vector of the c-th cluster.

Mahalanobis metric learning: Specializing the

kmeans formulation (2) to the Mahalanobis distance (1)

and defining �X�2M = tr(XMX�), we can write the prob-

lem in the matrix form:

min
Y ∈{0,1}n×k,Y 1=1,rank(Y )=k

Z∈R
k×d

�X − Y Z�2M , (3)

which is equivalent to minimizing �(X − Y Z)L�2 where

M = LL� and � · � is the usual Frobenius norm. The cen-

troids Z can be found in closed-form (see e.g. [37, Example

2]): Z = Y †XLL†, where A† is the Moore-Penrose pseu-

doinverse of the matrix A. Thus, we can eliminate Z in (3):

min
Ĉ∈P

�X − ĈX�2M = �XMX�, I − Ĉ�, (4)

where I is the identity matrix, �A,B� = tr(A�B) is the

Frobenius inner product, and we define the set

P=Pn
k :={Y Y †: Y∈{0, 1}n×k,Y 1=1,rank(Y )=k}. (5)

It can be shown that each partition/clustering matrix Ĉ =
Y Y † ∈ Pn

k is of the following form:

Ĉij =

�

1
qc
, if both i-th and j-th data are in cluster c

0, otherwise
, (6)
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where qc =
�

i Yic is the number of instances in cluster c.
Note that each matrix in P is (symmetric) PSD and idem-

potent (i.e. , Ĉ2 = Ĉ). Additional restrictions on the assign-

ment matrix Y can be incorporated. For instance, Lajugie

et al. [17] considered the so-called hard prior case where

clusters appear consecutively, i.e. if xi and xj are in the k-

th cluster then xp is also in the k-th cluster for all i ≤ p ≤ j.

Relaxations: Even optimizing a linear function such as

the one in (4) over the nonconvex set P can be hard, thus

we consider relaxations. In particular, we exploit the set of

rank-k orthogonal projection matrices, which includes P:

L = Ln
k := {Ĉ : Ĉ ∈ S

n
+, Ĉ

2 = Ĉ, tr(Ĉ) = k} (7)

where S
n
+ is the set of n × n symmetric PSD matrices. It

is well-known that (see e.g. [29]) P = L ∩ R
n×n
+ . We then

consider the following relaxation of kmeans (in Eq. (4)):

min
Ĉ∈L

�XMX�, I − Ĉ� ≡ max
Ĉ∈L

�Ĉ,XMX��. (8)

An optimal solution of Eq. (8) is the orthogonal projector

onto the k leading eigenvectors of XMX� [10, 28]. It also

optimizes minĈ∈L �X −XĈ�2M for a given and fixed M .

However, this relaxed solution does not return a hard assign-

ment since it is generally not in P . One heuristic to obtain a

hard assignment is to perform, as in [17, 26], kmeans over

the k leading eigenvectors of XMX�.

Structured loss: We have shown in (8) how to parti-

tion a dataset once a Mahalanobis distance matrix M has

already been learned. We now present how Lajugie et

al. [17] formulated their problem to learn a matrix M ∈
S
d
+ that produces a desirable clustering. For this purpose,

they assume that we are given m labeled datasets (Xi =
[xi,1, . . . ,xi,ni

], Ci)
m
i=1, where xi,j ∈ R

d and the ground

truth partition matrix Ci ∈ Pni

k , that all share a common

metric. Naturally, we want to satisfy the maximum number

of the following constraints:

∀Ĉi ∈ Lni

k \ {Ci}, �Ci − Ĉi, XiMX�
i � > 0, (9)

i.e. we want the groundtruth partition Ci ∈ Pni

k to be the

unique solution of the (relaxed) kmeans problem (see (8)).

Lajugie et al. [17] thus formulated the supervised clustering

problem as an instance of convex structured output predic-

tion:

min
M�0

�

λR(M)+

m
�

i=1

max
Ĉi∈L

ni

k

(∆(Ĉi, Ci)+�i(M ; Ĉi))
�

(10)

where the linear penalty loss is

�i(M ; Ĉi) = �Ĉi − Ci, XiMX�
i � (11)

and ∆(Ĉi, Ci) = �Ĉi − Ci�
2 measures the difference be-

tween the partitions Ĉi and Ci. Here λ ≥ 0 is a regulariza-

tion parameter and the regularizer R(M) is used to induce

desirable properties on the matrix M or on the numerical

algorithm (see e.g. [4, page 26]). Lajugie et al. [17] use the

squared Frobenius norm (i.e. R(M) = �M�2) to enjoy the

same convergence guarantees as PEGASOS [30].

Optimization: The structured SVM formulation (10)

of [17] can be optimized using the projected subgradient

method. Each iteration requires computing the 2k largest

eigenvalues (in absolute values) of an ni × ni matrix where

ni is the number of observations in each Xi. Since the sub-

gradient method converges only at a sublinear rate, the over-

all training complexity of [17] can be quite high and hence

not likely to scale to large datasets.

In the following we propose to directly minimize the

(nonconvex) worst-case empirical risk (see def in supp ma-

terial) of the problem in [17], and obtain an efficient closed-

form solution when m = 1 (i.e. , when there is one dataset).

3. Proposed Model and Optimization

In this section, we present our distance metric learning

approach for the supervised clustering problem. We call

our method Metric Learning for Cluster Analysis (MLCA).

A special case with two clusters is treated in a simplified

way in Section 4.

3.1. A general formulation

Let us define our prediction rule, i.e. the solution of (8),

under the metric matrix M and the relaxed set L in (7):

fM,L(X) := argmax
Ĉ∈L

�Ĉ,XMX��. (12)

We first remark that our prediction rule is invariant to the

scale of the metric matrix M , i.e. for all ε > 0, M and εM
predict the same set of clustering matrices: fM,L(X) =
fεM,L(X). To avoid the degenerate case M = 0, we can

then fix the scale of M by optimizing over all PSD matrices

with unit trace. Furthermore, our prediction rule fM,L(X)
is not a singleton iff the k-th largest eigenvalue of XMX�

equals the (k + 1)-th largest eigenvalue of XMX�, pro-

vided that k < n [28]. To deal with this non-uniqueness,

we directly optimize the following (nonconvex) worst-case

empirical risk (see definition in supplementary material):

min
M�0,tr(M)=1

m
�

i=1

max
Ĉi∈L

ni

k

(∆(Ĉi, Ci) + ιi(M ; Ĉi)), (13)

where ιi is an indicator function defined as:

ιi(M ; Ĉi) =

�

0, if Ĉi ∈ fM,L
ni

k

(Xi)

−∞, otherwise
. (14)

Compared with the structural loss formulation (11), we have

replaced the linear penalty �Ĉi−Ci, XMX�� with a more
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severe penalty ιi(M ; Ĉi). As in [17], we choose the dis-

crepancy measure ∆(Ĉi, Ci) = �Ĉi − Ci�
2. Interestingly,

we can verify that the convex surrogate loss (10) of Lajugie

et al. [17] is an upper bound of (13) (see supplementary ma-

terial).

3.2. A closed-form solution

Unlike the convex surrogate in structural SVM (see

e.g. (10)), (13) is essentially a bi-level optimization prob-

lem, since evaluating the indicator function ιi(M ; Ĉi) re-

quires solving an inner problem which also depends on the

unknown matrix M . As a consequence, solving (13) in the

general case as we formulated above is difficult. However,

in the special case where m = 1, a closed-form solution is

readily available. This is our main technical result.

In the following theorem we denote A(r) as a best rank-r
approximation of A, i.e. setting all but the r largest singu-

lar values of A to 0. The approximation A(r) is not unique

if the r-th and (r + 1)-th largest singular values of A are

nonzero and equal. The proportional notation M ∝ A
means that there exists a positive real number ε > 0 such

that εM = A.

Theorem 3.1. Let m = 1 in (13) (hence we drop the

subscript i) and assume C ∈ S
n
+ ⊇ Pn

k . Let PX =
XX† be the orthogonal projector onto the column space

of X and r = min{k, rank(PXCPX)}. Then, M ∝
X†(PXCPX)(r)(X

†)� is optimal for problem (13), pro-

vided that PXCPX �= 0.

Theorem 3.2. In Theorem 3.1, if rank(C) ≤ k, then

M ∝ X†C(X†)� is optimal for problem (13), provided

that X†C(X†)� �= 0.

The proofs can be found in the supplementary material.

In our experiments, these conditions always hold (thanks

to our choice of C ∈ P), so that we can simply choose

M ∝ X†C(X†)�.

For the degenerate case PXCPX = 0, any feasible M
such that rank(XMX�) = rank(X) is optimal (e.g. M
can be the scaled identity matrix). If we denote C = Y Y † ∈
P and use the fact that rank(PXCPX) = rank(Y �X),
then PXCPX = 0 iff Y �X = 0, i.e. the centroids of the de-

sired clusters of the training data are all 0 in the original in-

put space (i.e. ∀c ∈ {1, · · · , k}, zc =
�

i Yicxi/
�

i Yic =
0), which is unlikely to occur in real world datasets.

3.3. The training algorithm for arbitrary classes

When we are given many datasets Xi (i.e. m > 1),

we reduce the general formulation (13) to the special case

m = 1 to use Theorem 3.2 by exploiting a key property of

supervised clustering: all observation matrices Xi are sim-

ilar to the test dataset (that we want to partition), and share

the same metric. As already mentioned, we also make the

assumption that when many labeled sets of observations Xi

are provided, we can link similar objects from the different

sets into common clusters (e.g. in cosegmentation). In other

words, we concatenate all the ground truth assignment ma-

trices into a single assignment matrix, from which we then

create the training partition matrix.

In details, we denote X = [X�
1 , . . . , X�

m]� ∈ R
n×d

the concatenation of all training observation matrices Xi ∈
R

ni×d, where n =
�m

i=1 ni is the total number of train-

ing data. Similarly, we denote Y = [Y �
1 , . . . , Y �

m ]� ∈
{0, 1}n×k the appropriate concatenation of all training as-

signment matrices, where, as before, k ≥ 1 is the num-

ber of clusters. For instance, when we partition objects in

Xi into k categories, objects from the j-th category are

assigned 1 in the j-th column of Yi. The ground truth

partition matrix for the whole dataset X is formulated as

C = Y Y † = Y (Y �Y )−1Y � ∈ Pn
k with rank(C) = k.

Now we can apply Theorem 3.2 to conclude that an op-

timal metric matrix M for problem (13) is given as

M ∝ X†C(X†)�, (15)

We recall that the scale of M does not affect the final clus-

tering result fM,L(X) (see Section 3.1), so we can choose

M = X†C(X†)�. The complexity of the above training

algorithm is dominated by the computation of X† ∈ R
d×n

which is O(ndmin{d, n}) (see supp. material). For large

problems, we can use random subsampling to compute X†

even in sublinear time (at the expense of obtaining only an

approximate solution). Moreover, sparsity or low-rankness

of X can be exploited to largely reduce the complexity.

We remark that our method requires full supervision

(i.e. knowing the similarity relations for all possible training

pairs), which is the price to pay for a comprehensible and

efficient closed-form solution.

Regression problem: We now reveal a connection be-

tween our closed-form solution for the Mahalanobis ma-

trix M in (15) and multivariate linear regression [5, Chapter

3.1.5]. If we treat Y ∈ {0, 1}n×k as the encoded “labels”

for k categories and denote J = Y (Y �Y )−1/2 ∈ R
n×k,

then the multivariate linear regression problem

min
W∈Rd×k

�XW − J�2 (16)

has closed-form solution W = X†J ∈ R
d×k. We can also

think of W from the viewpoint of linear dimensionality re-

duction: from the original (usually high-dimensional) space

R
d to the (usually lower-dimensional) space R

k. It is now

clear that our choice of M in (15) is precisely WW�:

WW� = X†JJ�(X†)� = X†C(X†)� = M. (17)

See supplementary material for more details.

Differences with [17]: We point out three major dif-

ferences with [17]: 1). [17] used a regularizer to induce
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good convergence properties. Since we are able to derive

a closed-form solution, we do not need such a regularizer

for computational purposes. Moreover, our learned matrix

M is low-rank (i.e. rank(M) ≤ rank(C) ≤ k), completely

eliminating the need of low-rank regularizers [19]. 2). We

directly optimize the (nonconvex) worst-case empirical risk

while [17] optimized a convex upper bound (see supple-

mentary material). 3). [17] developed an iterative solver

that does not necessarily reach the optimum within a rea-

sonable timeframe while we are able to derive an efficient

closed-form solution.

3.4. Partitioning a test dataset

To partition a test matrix Xt ∈ R
nt×d, we solve

fM,L
nt

k

(Xt) = argmax
Ĉ∈L

nt

k

�Ĉ,XtMX�
t �, (18)

with the Mahalanobis matrix M that we learned from the

training data (see Section 3.3). The solution is (the orthog-

onal projector onto) the k leading eigenvectors of the matrix

XtMX�
t = (XtW )(XtW )�, where W = X†J and J =

Y (Y �Y )−1/2. Equivalently, since (XtW ) ∈ R
nt×k con-

tains k columns, the k leading eigenvectors of XtMX�
t are

the k leading left-singular vectors of XtW and can be com-

puted with the (economy size) SVD of XtW = XtX
†J .

Note that the calculation of J = Y (Y �Y )−1/2 ∈ R
n×k

can be done efficiently from a labeled assignment matrix

Y ∈ {0, 1}n×k with Y 1 = 1 and rank(Y ) = k. By noting

yc ∈ {0, 1}n the c-th column of Y , the c-th column of J
can be written as jc = yc/�yc� = yc/

�

y�c 1.

The resulting partition matrix Ct ∈ fM,L
nt

k

(Xt) is in the

relaxed set Lnt

k (c.f . (7)) but may not be in the set Pnt

k (c.f .

(5)). One heuristic to obtain a hard assignment [17, 26] is

to run kmeans over the k leading left-singular vectors of

XtW . Overall, our testing time is similar to the one in [17].

4. The Special Two Classes Case

In this section we specialize our algorithm to the case

where there are only two classes, e.g. the foreground and

background segmentation problem. We change the partition

matrix set L to obtain a more efficient and direct algorithm.

4.1. Slightly different partition matrices

When there are only k = 2 classes we can as before

concatenate the data into X ∈ R
n×d that contains n suc-

cessive d-dimensional observations xi ∈ R
d, i = 1, . . . , n.

For each observation xi in X , a score si ∈ {−1,+1} is

assigned where si < 0 iff xi belongs to a cluster called

negative and si > 0 iff xi belongs to a cluster called

positive. Collectively we denote the score vector Y =
[s1, . . . , sn]

� ∈ {−1,+1}n. For such a matrix X , we

associate the ground truth clustering matrix C = Y Y † =

Y Y �/�Y �2, where clearly Cij > 0 iff xi and xj belong to

the same cluster and Cij < 0 otherwise. This representa-

tion of the assignment matrix is more succinct than setting

k = 2 in Section 3 (which would require Y ∈ R
n×2 instead

of Y ∈ R
n). The slight price to pay here is a constraint

on the kmeans problem (3), i.e. we are now solving the

following problem:

min
Y=[s1,...,sn]�∈{−1,+1}n,Z∈Rd

n
�

i=1

�xi − siZ�2M . (19)

That is, if Z ∈ R
d is the centroid of the positive cluster, then

−Z is the centroid of the negative cluster, whereas in (3)

(for k = 2), there is no constraint on the cluster centroids.

We then consider the set of predicted partition matrices:

C = Cn := {uu� : u ∈ R
n, �u� = 1} = Ln

1 . (20)

The interesting observation here is that the new set C, de-

rived here for k = 2, coincides with Ln
1 , which originally

is a relaxation for k = 1. With this partition set C, we can

consider a slight variation of the general formulation (13):

min
M�0,tr(M)=1

max
Ĉ∈C

�

∆(Ĉ, C) + ι(M ; Ĉ)
�

, (21)

where the indicator function ι is defined similarly as in (14)

(with L replaced by C). A closed-form solution for problem

(21) follows immediately from Theorem 3.2:

Theorem 4.1. An optimal solution of the problem (21) is

M ∝ mm
� where m = X†

u ∈ R
d, provided that C =

uu
� (e.g. u = Y/�Y �) and X†

u �= 0.

Note that the ground truth partition matrix C is rank-one,

hence can always be decomposed as uu� for a unique u (up

to sign). In our case, u ∈ R
n can be written u = Y/�Y �.

The condition X†
u �= 0 simply excludes the degenerate

case, which rarely happens in practice.

4.2. Partitioning a test dataset

We now discuss how to compute efficiently and exactly

the partition of a test set of observations Xt ∈ R
nt×d once

we have learned the optimal distance matrix M = mm
�,

for the special case of k = 2 classes.

Like in Section 3.4, partitioning Xt is done by first

solving fM,Cnt (Xt) which corresponds to finding a rank-

one orthogonal projector onto the leading eigenvector of

XtMX�
t . Since M = mm

� is rank-one, Xtm ∈ R
nt

is an (unnormalized) leading eigenvector of XtMX�
t =

(Xtm)(Xtm)�. In order to partition Xt, it is thus suffi-

cient to study the signs of Xtm: elements with same sign

are in the same cluster. Unlike Section 3.4, there is no

need to run kmeans as a post-processing step, therefore

we obtain a more efficient procedure for the special case of

k = 2 classes. The complexity of our training algorithm

is again dominated by the computation of X†, which costs

O(ndmin{n, d}) in a naive implementation.
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Test partition with learned metric
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Projected 3-class test data
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Figure 2. (a) Original training dataset, one color for each desired cluster, (b) Clustering obtained by kmeans with the Euclidean distance

(all the examples with same color are predicted to be in the same cluster) on the test dataset in the original input space, (c) Clustering

obtained by kmeans with our learned metric, (d) Projection of the test set in the space induced by our metric.

Method Proposed method Euclidean distance Xing et al. [36] Lajugie et al. [17] KISSME [16] ITML [9] PCCA [24] LMNN [35]

Test ∆ loss 0.07 3.0 0.7 0.11 0.07 0.08 0.08 3.0

Training time 0.004 seconds No training 4378 seconds 336 seconds 0.5 seconds 370 seconds 400 seconds 4 seconds

Table 1. Performance on test synthetic data when the metric is learned on a training dataset with categories of same size. Lower is better

Method Proposed method Euclidean distance Xing et al. [36] Lajugie et al. [17] KISSME ITML PCCA LMNN

Test ∆ loss 0.09 3.0 3.0 0.09 2.02 3.0 0.29 3.0

Training time 0.005 seconds No training 21552 seconds 2462 seconds 2 seconds 1260 seconds 2176 seconds 11 seconds

Table 2. Performance on test dataset when the metric is learned on a training dataset with categories with different sizes (with noise).

Method Proposed method Euclidean distance Xing et al. [36] Lajugie et al. [17] KISSME ITML PCCA LMNN

Test ∆ loss 0 3.0 3.0 0 2.0 3.0 0 3.0

Training time 0.005 seconds No training 18240 seconds 4222 seconds 2 seconds 1557 seconds 2106 seconds 10 seconds

Table 3. Performance on test dataset when the metric is learned on a training dataset with categories with different sizes (without noise).

5. Experiments

We evaluate our method in both clustering and segmen-

tation tasks on synthetic and real-world datasets.

5.1. Synthetic dataset

Clusters with the same size: We evaluate the clustering

performance and efficiency of our method on a synthetic

dataset inspired by [36] and illustrated in Fig 2. Our train-

ing set illustrated in Fig 2 (a) is composed of 3-dimensional

examples (i.e. d = 3) divided into 3 categories (i.e. desired

clusters), with 1, 000 examples per category. Each of these

categories is composed of 2 subclusters. The difficulty of

the task is that subclusters of the same category are closer

to subclusters from different categories than to each other

w.r.t. the Euclidean distance. Moreover, some noisy exam-

ples are in the subclusters of other categories in the initial

space. We generate our test dataset with the same proper-

ties (and the same number of examples n = 3, 000) as the

training set. We show the kmeans clustering obtained with

k = 3 on the test dataset with the Euclidean distance in

Fig 2 (b) and with our learned metric in Fig 2 (c): all ex-

amples with the same color are predicted to be in the same

cluster. One can see that the learned metric allows to pre-

dict a clustering close to the desired one for the test dataset.

The space induced by our metric is illustrated in Fig 2 (d),

which shows how similar examples are grouped together.

We next compare the clustering performance and com-

putational efficiency of our method with standard metric

learning approaches that are either intended for cluster-

ing [17, 36], or known to be efficient [9, 16, 21, 24, 35]. The

baselines are cross validated on a validation set with similar

properties (e.g. to determine the necessary number of gra-

dient descent iterations for [24]). We exploit all n(n− 1)/2
possible observation pairs to generate the sets of similar (S)

and dissimilar (D) pairs in ITML [9], KISSME [16], XQDA

[21], PCCA [24] and [36]. We do not report the results of

XQDA [21] in Tables 1 to 3 because it is an extension of

KISSME and obtains exactly the same results and training

times as KISSME in our toy experiments. We do not eval-

uate approaches optimized for k-NN classification such as

[15, 33] other than LMNN because they are not optimized

to perform clustering and would perform like LMNN.

Given the ground truth clustering matrix C ∈ Pn
3 of

the test set and the clustering matrix Ĉ ∈ Pn
3 predicted

by kmeans with a metric, Table 1 reports for each method

the training time and the loss ∆(Ĉ, C) = �Ĉ−C�2, which

is a standard clustering error metric [17] and is the loss that

our proposed method tries to minimize during the training

phase. While our method and most baselines return com-

parable clustering performance on this simple dataset1, our

method is orders of magnitude faster than iterative metric

learning approaches such as [9, 17, 24, 35, 36]. KISSME is

1The test error of our method and most baselines is 0 when there are no

noisy examples in the initial space.
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Figure 3. left to right: original image, ground truth segmentation (for the Flowers dataset: foreground in red, background in green and

uncertain segmentation in black), segmentation predicted with univariate MLCA, segmentation predicted with multivariate MLCA.

Method univariate MLCA multivariate MLCA Ncuts [31, 8] Lajugie et al. [17] KISSME [16] XQDA [21] ITML [9] PCCA [24] LMNN [35]

H
o
rs

es ∆ loss 1.34 ± 0.02 1.20 ± 0.02 1.81 ± 0.02 1.67 ± 0.02 1.50 ± 0.02 1.41 ± 0.02 1.48 ± 0.02 1.73 ± 0.02 1.65 ± 0.02

Rand loss 0.29 ± 0.02 0.32 ± 0.02 0.46 ± 0.01 0.36 ± 0.02 0.38 ± 0.02 0.34 ± 0.02 0.38 ± 0.02 0.42 ± 0.02 0.42 ± 0.02

Training time 13 seconds 13 seconds No training 5 days 20 minutes 20 minutes 2 hours 2 hours 1 day

F
lo

w
er

s ∆ loss 1.47 ± 0.01 1.29 ± 0.01 1.50 ± 0.02 1.38 ± 0.02 1.59 ± 0.02 1.51 ± 0.02 1.50 ± 0.02 1.63 ± 0.02 1.79 ± 0.02

Rand loss 0.22 ± 0.01 0.22 ± 0.01 0.36 ± 0.01 0.26 ± 0.01 0.28 ± 0.01 0.26 ± 0.01 0.26 ± 0.01 0.28 ± 0.02 0.31 ± 0.02

Training time 39 seconds 39 seconds No training 5 days 11 minutes 11 minutes 2 hours 1 hour 1 day

Table 4. Test segmentation error results (average and standard error) on Horses and Oxford Flowers-17 datasets. Lower is better.

the only baseline whose training time is less than 1 second

in this experiment, but our method is still 100 times faster.

KISSME exploits only pairwise constraints through the in-

verse covariance matrix of pairs of similar (Σ−1
S ) and dis-

similar (Σ−1
D ) examples, and it returns a closed-form solu-

tion, which is the projection of
�

Σ
−1
S − Σ

−1
D

�

onto the PSD

cone. Its complexity is dominated by the computation of

ΣS (and ΣD), which is O(|S|d2) where |S| is the number of

similar pairs, and by its inversion followed by the projection

of
�

Σ
−1
S − Σ

−1
D

�

onto the PSD cone, which is O(d3). The

complexity of KISSME [16] is then O((|S|+ |D|)d2 + d3)
while the complexity of our method is O(nd2) as explained

previously. Since |S| + |D| is quadratic in the number of

observations n, we have n � |S| + |D|, showing that our

method has better complexity than KISSME.

Clusters with different sizes: We now exploit a training

set similar to the previous one except that categories contain

a different number of examples: 1000, 2000 and 4000 ex-

amples, respectively. The learned metric should be robust to

the size of clusters and avoid being biased by the largest cat-

egory [17]. The loss scores obtained on a test set with simi-

lar properties and 2,000 examples per category are reported

in Table 2. KISSME obtains worse results than our method,

which suggests that it is less robust than our method to the

size of categories. PCCA is the only non-clustering baseline

that is comparable to our method but it is a lot slower since

it requires about 300 gradient descent iterations to learn a

metric that produces a desired clustering.

Table 3 reports test scores when the noise is removed

from the previous dataset. Only our method, Lajugie et

al. [17] and PCCA produce a desirable clustering. Nonethe-

less, our method is orders of magnitude faster.

5.2. Image segmentation

We evaluate our method in the image segmentation task

on the Horses [6] and Oxford Flowers-17 [27] datasets com-

posed of 326 and 848 images, respectively. Each image is

provided with a ground truth foreground/background seg-

mentation. In this task, an observation is the combined

SIFT [23] + color representation (Lab, RGB and intensity

of light) of a patch/pixel, its dimensionality is d = 135. To

make the method of Lajugie et al. [17] tractable, we reduce

the size of images to a maximum height of 100 pixels (there

are then about 104 patches per image, and our matrix X has

about 2 · 106 rows). In the Flowers dataset, the ground truth

segmentation of some pixels is uncertain (see Fig 3), these

pixels are then ignored from test evaluation and from the

training of most methods except [17] which exploits spatial

information. Our method concatenates the representations

of the patches of all the training images into a single matrix

X , and the assignment matrix Y is created so that back-

ground and foreground patches are grouped into 2 clusters.

We run 5 random splits of 200 training and 30 validation

images, we use the rest for test. For evaluation purposes,

we use ∆(Ĉ, C) = �Ĉ − C�2 which evaluates the cluster-

ing performance, and Rand loss [13] (RandLoss(Ĉ, C) =
1

n(n−1)�YĈY
�

Ĉ
− YCY

�
C �2 where YĈ ∈ {0, 1}n×2 is the

segmentation predicted for Ĉ ∈ Pn
2 ), a standard evaluation

metric in image segmentation [17, 34].2

We call our method presented in Section 4 univariate

MLCA and our method presented in Section 3 when k = 2
(i.e. the assignment matrix Y has two columns) multivari-

2In the case of univariate MLCA, we convert our rank-1 assignment

matrix into a rank-2 matrix to compute the ∆ loss and rand loss.
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Method MLCA KISSME [16] XQDA [21] ITML [9] PCCA [24] Teney et al. [32]

Rand index 0.902 0.590 0.593 0.864 0.870 0.902

Training time 0.3 seconds 4 seconds 4 seconds 10 minutes 50 minutes 5 minutes

Table 5. Rand index averaged over the 100 test sequences of the SynthDB dataset in the segmentation task of dynamic textures.

ate MLCA. In Table 4, we compare our methods to a popular

image segmentation framework [31] and to metric learning

approaches known to be efficient [9, 16, 21, 24] or opti-

mized for clustering [17]. Overall, multivariate MLCA is

better than the baselines w.r.t. all the evaluation metrics and

is much faster to train. This is expected for the ∆ loss since

it is the evaluation metric that it optimizes during train-

ing. Its univariate counterpart obtains better rand loss but

worse ∆ loss results, which means that it obtains better im-

age segmentation performance but worse clustering perfor-

mance (the ∆ loss takes into account the size of each cluster

whereas the rand loss does not, see [17, Section 3.2]).3

We note that we outperform the method of [17] which is

also optimized for clustering. This illustrates the fact that it

may be better to consider the training set as a whole instead

of as independent subsets when it is possible.

5.3. Dynamic texture segmentation

We evaluate our method in the segmentation task of dy-

namic textures on the SynthDB [7] dataset. The goal is to

segment video textures from 12 texture categories such as

sea, river, pond, grass, trees, fire etc. The SynthDB dataset

is a challenging dataset that contains grayscale videos, and

each video contains distinct video textures. A major dif-

ficulty is that adjacent textures may be hard to distinguish

because their static grayscale representations may be very

similar. Since their dynamic appearances are usually more

different, motion descriptors are commonly exploited.

We use the part of the dataset containing synthetic col-

lages of 3 videos as in [32]. The current state-of-the-art

method for segmenting these videos was proposed in [32],

using filter-based motion features within a hierarchical seg-

mentation framework, and using a custom metric learned to

compare those motion features. We use the features kindly

provided by Teney et al. [32]: each feature of dimensional-

ity d = 154 represents a segment made of the histograms

of pixel color and responses to motion filters within the seg-

ment. As in [32], we exploit both ground truth segmentation

masks and semantic annotations of the 12 texture categories

to learn a metric. The ground truth segmentation is used as

an oracle to simulate the hierarchical segmentation of train-

ing videos, and the features within the segments during the

process are retained as training data. The texture categories

are used to provide additional training similarity constraints

between segments from different training videos, but known

3Nevertheless, univariate MLCA is faster than multivariate MLCA at

test time since it does not require post-processing by kmeans: the seg-

mentation of a test image with multivariate MLCA takes about 0.3 seconds

whereas univariate MLCA segments an image in less than 10
−3 seconds.

to belong or not to the same categories. From these similar-

ity constraints, we filter out segments that are very differ-

ent from segments from the same category, and we gener-

ate from the remaining segments a ground truth partition of

k = 12 clusters with same size (otherwise some clusters

are 60 times larger than others). We then keep about 1,000

samples per cluster. We apply our metric learning method

to the generated desired partition and integrate the learned

metric in the framework of [32].

We evaluate our learned metric on the segmentation of

the test sequences as in [32], and obtain essentially identical

performance. Table 5 reports the training time and rand in-

dex of our learned metric averaged on 100 test videos (note

that RandIndex(Ĉ, C) = 1 - RandLoss(Ĉ, C)). The re-

sults reported in [32] exploit a specific strategy taking into

account the scale of segments when learning their Maha-

lanobis metric, which we do not. Our method is orders of

magnitude faster and returns a distance matrix with smaller

rank (rank(M) = 12). We report the scores obtained with

other metric learning baselines. They all obtain worse seg-

mentation results. Particularly, KISSME and XQDA ob-

tain very poor performances, even when balancing the num-

ber of similar/dissimilar constraints. This may be because

their covariance matrices ΣS and ΣD are ill-conditioned

and their inversion is problematic, and/or their approach is

less suitable when the number of clusters is large.

6. Discussion

We have presented an efficient method for learning a

metric to perform supervised clustering. Our approach is

simple and its complexity is linear in the number of obser-

vations. Three key factors contribute to the efficiency of our

method. First, using the assumption that all examples are

drawn i.i.d. and can be combined into a single dataset, our

method focuses on the dataset as a whole instead of many

subsets. Second, we exploit relaxations of our problem to

directly optimize the (nonconvex) worst-case empirical risk

in a convenient way. Finally, by exploiting algebraic prop-

erties on eigenvalues and eigenvectors, we are able to find

a closed-form solution of our relaxed problem, which also

happens to bear a pleasant similarity to multivariate linear

regression. Experiments on both synthetic and real datasets

confirm the efficiency of our method.
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