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Abstract

In this paper we present a deep neural network topology

that incorporates a simple to implement transformation-

invariant pooling operator (TI-POOLING). This operator

is able to efficiently handle prior knowledge on nuisance

variations in the data, such as rotation or scale changes.

Most current methods usually make use of dataset augmen-

tation to address this issue, but this requires larger number

of model parameters and more training data, and results in

significantly increased training time and larger chance of

under- or overfitting. The main reason for these drawbacks

is that that the learned model needs to capture adequate

features for all the possible transformations of the input.

On the other hand, we formulate features in convolutional

neural networks to be transformation-invariant. We achieve

that using parallel siamese architectures for the considered

transformation set and applying the TI-POOLING operator

on their outputs before the fully-connected layers. We show

that this topology internally finds the most optimal ”canon-

ical” instance of the input image for training and therefore

limits the redundancy in learned features. This more effi-

cient use of training data results in better performance on

popular benchmark datasets with smaller number of param-

eters when comparing to standard convolutional neural net-

works with dataset augmentation and to other baselines.

1. Introduction

Recent advances in deep learning lead to impressive re-

sults in various applications of machine learning and com-

puter vision to different fields. These advances are largely

attributed to expressiveness of deep neural networks with

many parameters, that are effectively able to approximate

any decision function in the data space [18].

While this is true for all the neural network architectures

with many layers and with sufficient number of parameters,

the most impressive results are being achieved in the fields

∗The authors assert equal contribution and joint first authorship.

where deep architectures heavily rely on internal structure

of the input data, such as speech recognition, natural lan-

guage processing and image recognition [16]. For example,

convolutional neural networks [12] learn kernels to be ap-

plied on images or signals reflecting the spatial or temporal

dependencies between the neighbouring pixels or moments

in time. This structural information serves for internal reg-

ularization through weight sharing in convolutional layers

[17]. When combined with the expressiveness of multilayer

neural networks, it allows for learning very rich feature rep-

resentation of input data with little to no preprocessing.

Incorporating structural information permits to work

with the inner dependencies in the representation of the

data, but only few works have addressed the possible use of

other structural prior information known about the data. For

example, many datasets in computer vision contain some

nuisance variations, such as rotations, shifts, scale changes,

illumination variations, etc. These variations are in many

cases known in advance from experts collecting the data and

one can significantly improve the performance when being

considered during training.

The effect is even more explicit when dealing with

domain-specific problems. E.g. in many medical imaging

datasets, the rotation can be irrelevant due to symmetric na-

ture of some biological structures. At the same time, the

scale is fixed during imaging process and should not be con-

sidered as a nuisance factor. Moreover scale-invariance can

even harm the performance if object size is at least some-

how informative, for example, in case of classifying healthy

cells from cancer cells [24]. We describe one biomedical

example in details in section 4.2.

The state of the art approach to deal with these varia-

tions and the most popular one in deep learning is data aug-

mentation [27] – a powerful technique that transforms the

data point according to some predefined rules and uses it

as a separate training sample during the learning procedure.

The most common transformations being used in general

computer vision are rotations, scale changes and random

crops. This approach works especially good when applied

with deep learning algorithms, because the models in deep
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learning are extremely flexible and are able to learn the rep-

resentation for the original sample and for the transformed

ones and therefore are able to generalize also to the varia-

tions of the unseen data points [27]. This approach, how-

ever, has some limitations listed below.

• The algorithm still needs to learn feature representa-

tions separately for different variations of the original

data. E.g. if a neural network learns edge-detecting

features [7] under rotation-invariance setting, it still

needs to learn separately vertical and horizontal edge

detectors as separate paths of neuron activations.

• Some transformations of the data can actually result

in the algorithm learning from noise samples or wrong

labels. E.g. random crops applied to the input image

can capture only a non-representative part of the object

in the image, or can fully cut the object out, in which

case the algorithm can either overfit to the surrounding

or learn from a completely useless representation.

• The more variations are considered in the data, the

more flexible the model needs to be to capture all

the variations in the data. This results in more data

required, longer training times, less control over the

model complexity and larger potential for overfitting.

On the other hand we use the approach inspired by max-

pooling operator [1] and by multiple-instance learning [28]

to formulate convolutional neural network features to be

transformation-invariant. We take the path of neuron ac-

tivations in the network and feed it, in a similar manner to

augmentation, with the original image and its transformed

versions (input instances). But instead of treating all the

instances as independent samples, we accumulate all of the

responses and take the maximum of them (TI-POOLING op-

erator). Because of the maximum, the response is inde-

pendent from the variations and results in transformation-

invariant features that are further propagated through the

network. At the same time this allows for more efficient

data usage as it learns from only one instance, that already

gives maximum response. We call these instances ”canoni-

cal” and describe in more details in 3.3.

This topology is implemented as parallel siamese net-

work [2] layers with shared weights and with inputs corre-

sponding to different transformations, described in details

in section 3 and sketched in figure 1. We provide theo-

retical justification on why features learned in this way are

transformation-invariant and elaborate on further properties

of TI-POOLING in section 3.3.

Using TI-POOLING permits to learn smaller number of

network parameters than when using data augmentation,

and lacks a drawback of some data-points missing rele-

vant information after the applied transformation: it only

uses the most representative instance for learning and omits

the augmentations that are not useful. We review other ap-

proaches dealing with nuisance data variations in section 2.

We evaluate our approach and demonstrate it’s properties

on three different datasets. The first two are variations of the

original MNIST dataset [19], where we significantly outper-

form the state of the art approaches (for the first variation)

or match the current state of the art performance with sig-

nificantly faster training (on the second variation). The third

dataset is a real-world biomedical segmentation dataset with

explicit rotation-invariance. On this benchmark we show

that incorporating TI-POOLING operator increases the per-

formance over the baselines with similar number of param-

eters, and also demonstrate the property of TI-POOLING to

find canonical transformations of the input for more effi-

cient data usage.

2. Related works

2.1. Transformation invariant features

Predefined features. One of the easiest ways to en-

sure transformation-invariance in most computer vision

algorithms is to use specially designed features. The

most famous examples of general-purpose transformation-

invariant features are SIFT (scale-invariant feature trans-

form) [20] and its rotation-invariant modification RIFT

(rotation-invariant feature transform) [15]. Another exam-

ple of domain-specific features is rotation-invariant Line fil-

ter transforms [23], designed specifically to identify elon-

gated structures for blood vessel segmentation.

Using these features permits the machine learning algo-

rithm to deal with only the inputs that are already invariant

to some transformations. But designing the features manu-

ally is time-consuming and expensive while not always pos-

sible. Furthermore, this approach has two other major lim-

itations: these features are usually not adaptive to the task

being solved and they are able to handle only very specific

variations in the original data.

Feature learning. To overcome the limitation of task-

adaptability, one could use features learned from the input

data. E.g. ”bag of visual words” [21] does not distinguish

the positions in which the ”visual word” occurs, and there-

fore it is shift-invariant. With minor modifications, also

rotation-invariance can be achieved [29].

Another approach is transformation-invariant decision

jungles (TICJ) [13]. This algorithm learns features to be in-

variant to any type of predefined transformations as pseudo-

linear convolutional kernels and then combines them using

a decision tree-like algorithm. Two major limitations of

this approach are (i) greediness in the feature learning pro-

cess (only one kernel is learned at a time) and (ii) relatively

low expressiveness of the combining machine-learning al-

gorithm. The algorithms that are usually able to overcome

both of these limitations are neural networks.
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2.2. Deep neural networks

Convolutional deep neural networks [12] are known to

learn very expressive features in an adaptive manner de-

pending on the task. Moreover in many cases they resem-

ble some transformation-invariant properties, such as small

shift-invariance due to max-pooling layers [1]. Because the

maximum is taken over the neighbouring pixels, local one-

pixel shifts usually do not change the output of the subsam-

pling layer. A more general pooling operations [22] permit

to also consider invariance to local changes that however do

not correspond to specific prior knowledge.

To incorporate global transformation-invariance with ar-

bitrary set of transformations, usually the data augmentation

is used, as discussed in section 1. But also other approaches

exist, such as multi-column deep neural networks [8] and

spatial transformer networks [11].

The idea behind multi-column networks is to train dif-

ferent models with the same topology but using different

datasets: the original dataset, and the transformed datasets

(one separate model is trained for every transformation con-

sidered). Then an average of the outputs of individual mod-

els is taken to form the final solution.

Spatial transformer networks (STN) follow a completely

different idea of looking for a canonical appearance of the

input data point. They introduce a new layer to the topol-

ogy of the network, that transforms the input according to

the rules of parametrized class of transformations. The key

feature of this approach is that it learns the transformation

parameters from the data itself without any additional su-

pervision, except of a defined class of transformations.

The TI-POOLING approach in many ways has very simi-

lar properties to STN. As we demonstrate in section 3.3, our

method also finds a canonical position of the input image.

But instead of defining a class of transformations, we define

a more strict set of transformations to be considered. In sec-

tion 4.1 we show that we achieve similar to STN results on a

benchmark introduced by its authors [11], but with simpler

model and with shorter training time.

2.3. Multiple instance learning

Multi-column networks with model averaging described

above fall into a category of more general techniques called

”multiple instance learning” (MIL) [28]. The area of appli-

cations of MIL is very broad, and it can also be applied to

train the algorithms invariant to some variations defined as

a set of transformations Φ.

Assume that we are given an algorithm A with some

input x and scalar (for simplicity) output A(x). Then

multiple-instance learning approach suggests that algorithm

B(x) will be in many cases transformation-invariant if de-

fined as

B(x) = max
φ∈Φ

A(φ(x))

Instead of a maximum, many different operators can be used

(such as averaging), but maximum proves to work best in

most applications, so we also focus on it in this work.

The main difference between our approach and MIL

is that we propose to learn individual features to be

transformation-invariant, and not the algorithm as a whole.

Each of the features can then be learned in a way that is

most optimal specifically for this feature, allowing different

features to rely on different canonical instances and make

the most of feature inter-dependencies. We describe this

relation in more details in section 3.3. This results in our

method significantly outperforming the standard MIL mod-

els as we show further in section 4.2.

Other approaches that are based on the ideas similar to

the one presented in this paper are rolling feature maps 1 and

multi-view networks [26]. The former explores a pooling

over a set of transformations, but does not guarantee the

transformation-invariance of the features learned. And the

latter solves a problem of view invariance, not invariance to

an expert-defined set of transformations.

3. Method description

3.1. Convolutional neural networks notation

Convolutional neural networks are usually represented

as a sequence of convolutional and subsampling layers with

one or more fully-connected layers before the outputs. In

this section we for simplicity assume that the input image is

two-dimensional (i.e. incorporate no colour channels), but

the approach generalizes also for colored images. We also

omit the explicit notation for activation functions, assum-

ing activations to be incorporated in the specific form of an

operator O defined below.

Assume that each neuron performs an operation on the

input x, that we will refer to as an operator O(x, θ). It can

be either a convolution operator, in which case θ is a vector-

ized representation of a convolutional kernel. Or it can be a

subsampling operator, which is usually non-parametric, and

has no parameters θ. The size of the output matrix O(x, θ)
in each dimension is smaller than the size of x by the size

of the kernel in case of a convolution operator, or two times

smaller than the input x in case of a subsampling operator.

We refer to these operators applied in layer l ∈
{1, . . . , L} using superscript l on the parameters θ and

we refer to a specific index of the operator within a

layer as a subscript. E.g. convolutional operations ap-

plied in the first layer of the network can be referred as

O(x, θ11), . . . , O(x, θ1n1
), where n1 is the number of neu-

rons in layer 1 (we define all the constants in table 1). Input

to the neuron i in layer l is constructed as a sum of outputs

of a previous layer:
∑nl−1

j=1 O(x, θl−1
j ).

1http://benanne.github.io/2015/03/17/plankton.html
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Figure 1. Network topology and pipeline description. First, input image x (a) is transformed according to the considered set of transfor-

mations Φ to obtain a set of new image instances φ(x), φ ∈ Φ (b). For every transformed image, a parallel instance of partial siamese

network is initialized, consisting only of convolutional and subsampling layers (two copies are shown in the top and in the bottom of the

figure). Every instance is then passed through a sequence of convolutional (c, e) and subsampling layers (d), until the vector of scalars is

not achieved (e). This vector of scalars is composed of image features fk(φ(x)) learned by the network. Then TI-POOLING (element-wise

maximum) (g) is applied on the feature vectors to obtain a vector of transformation-invariant features gk(x) (h). This vector then serves

as an input to a fully-connected layer (i), possibly with dropout, and further propagates to the network output (j). Because of the weight-

sharing between parallel siamese layers, the actual model requires the same amount of memory as just one convolutional neural network.

TI-POOLING ensures that the actual training of each features parameters is performed on the most representative instance φ(x).

We refer to feature fk of the input image x as an output

of a neuron k in a layer that contains only scalar values, i.e.

layer l such that O(·, θli) ∈ R
1×1. Formally this feature is

defined as the following composition that we for notation

clarity split into a sequence of formulas:

fi(x) =

nl−1∑

j=1

O(·, θl−1
j ),where

O(·, θl−1
k ) =

nl−2∑

j=1

O(·, θl−2
j ),where

. . .

O(·, θ1k) = O(x, θ1j ) (1)

On top of these features fk(x), fully-connected layers

are usually stacked with some intermediate activation func-

tions, and possibly with dropout masks [10] during learn-

ing. These details are not directly relevant for this paper

and therefore not described in details.

3.2. Network topology

Features fk(x), introduced before, are very powerful

when all the parameters θ are properly trained. They, how-

ever, lack a very important property of incorporating any

prior information, such as invariance to some known nui-

sance variations in the data. We fix this property with a

relatively easy trick, inspired by multiple-instance learning

(MIL) and max-pooling operator.

Assume that, given a set of possible transformations Φ,

we want to construct new features gk(x) in such a way that

their output is independent from the known in advance nui-

sance variations of the image x. We propose to formulate

these features in the following manner:

gk(x) = max
φ∈Φ

fk(φ(x)) (2)

We refer to this max-pooling over transformations as to

transformation-invariant pooling or TI-POOLING. Because

of the maximum being applied, every learned feature be-

comes less dependent on the variations being considered.

Moreover, for some sets Φ we achieve full transformation-

invariance, as we theoretically show in section 3.3.

As mentioned before and as we show in section 3.3, TI-

POOLING ensures that we use the most optimal instance

φ(x) for learning, and comparing to MIL models we allow

every feature k to find its own optimal transformation φ of

the input x: φ = argmaxφ∈Φ fk(φ(x)).
The topology of the proposed model is also briefly

sketched and described in figure 1.

Back-propagation. Let ∇fk(x) be the gradient of the

feature fk(x) defined in equations 1 with respect to the out-

puts O(·, θl−1
j ) of the previous layer. This gradient is stan-

dard for convolutional neural networks and we do not dis-

cuss in details how to compute it. From this gradient we can
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easily formulate the gradient
dgk(x)
dfk(x)

of the transformation-

invariant feature gk(x) in the following manner:

dgk(x)

dfk(x)
= ∇fk(φ(x)),where φ = argmax

φ∈Φ
fk(φ(x))

The gradient of the neurons of the following fully-

connected layer with respect to the output of gk(x) stays ex-

actly the same as for conventional network topology. There-

fore, we have all the building blocks for a back-propagation

parameter optimization [6], which concludes the descrip-

tion of TI-POOLING and of the proposed topology.

3.3. Theory and properties

Theoretical transformation-invariance. Lemma 1,

adapted for our feature from [13], formulates the conditions

on the set Φ for which the features formulated in equation

2 are indeed transformation-invariant, i.e. give exactly the

same output for both the original image x and every consid-

ered transformation φ(x), φ ∈ Φ.

Lemma 1. Let the function gk(·) to be defined as a maxi-

mum over transformations φ ∈ Φ of the function fk(·). This

function is transformation-invariant if the set Φ of all possi-

ble transformations forms a group, i.e. satisfies the axioms

of closure, associativity, invertibility and identity.

Proof. For the detailed proof please refer to [13].

The statement of the lemma is satisfied for many com-

puter vision tasks: simple transformations, such as rotations

or non-linear distortions, as well as their compositions form

a group. One common example that does not satisfy this

property is local shifts (jittering). E.g. if one wants to con-

sider only one pixel shifts, then the closure axiom of the

group does not hold: one pixel shift applied twice gives

two-pixel shift, which is not in a transformation set.

Canonical position identification. From a practical

point of view, however, the algorithm achieves approxi-

mate transformation-invariance even for local transforma-

tions. Even if the set Φ does not form a group, we often

observe that the algorithm tries to find a canonical appear-

ance of the image, and then maps a new transformed im-

age to one of the canonical modes. This allows to preserve

transformation-invariance in most practical cases with no

limitations on Φ. Figure 2 shows some examples of neu-

ronal structures oriented in the same manner to a canonical

orientation for one of the features.

This property is useful for most problems as it allows

for better use of input images. For example, learning dis-

criminative features for every orientation of the image is of

course possible with large and deep enough neural network.

But assume that now features need to be learned only for

canonical orientation (e.g. for membranes oriented in all the

same direction).

Figure 2. First and third rows show the input patches from neuronal

segmentation dataset. For this dataset we consider Φ to be a set of

rotations. We then apply a learned model to these patches x and

record the angle at which the maximum is achieved for specific

feature gk(x). Then we show the same patches rotated by this

angle as shown in rows two and four. One could notice that in

most cases the membranes (slightly darker elongated structures)

are oriented in approximately the same direction. This means that

the algorithm considers this orientation to be canonical for this

specific feature and rotates new images to appear similarly.
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Figure 3. Validation error plot for the neuronal segmentation

dataset. Depending on how many angles we sample to form a

transformation set Φ (from one, which is equivalent to data aug-

mentation, up to 24) – the results improve significantly.

First, for this, much simpler problem, smaller models

can be used. Second, the algorithm sees many more ex-

amples of canonical vertical edges and therefore can better

generalize from them. This brings the next important prop-

erty of the algorithm.

Improved performance and convergence. Because of

more representative examples being used for network train-

ing, we observe better performance and convergence rate,
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when compared with simple data augmentation. Figure 3

shows that the larger the transformation set Φ – the better

usually the results achieved. This is most probably due to

the fact that fewer canonical positions needs to be handled

by the learning algorithm.

What TI-POOLING is doing to achieve that can be formu-

lated as an exhaustive search over the transformed instances

for an instance better corresponding to the current response

of the feature. Then only this instance is used to even bet-

ter improve the performance of the feature. On the other

hand, we do not limit all the features to use the same canon-

ical appearance, allowing features to better explore inter-

dependencies between the outputs of network layers. We

elaborate more on the results in section 4.

Any type of transformations. Another property of the

technique, that is worth mentioning, is that it can work with

a set of almost any arbitrary transformations. Many works,

such as spatial transformer networks [11], focus on only

limited class of transformations. Those classes can be very

rich, e.g. include all the possible affine transformations or

projections. But still, they need to be differentiable with

respect to some defined parameters of the transformation,

and, depending on the problem at hand, this can be not

enough. TI-POOLING, on the contrary, does not rely on

differentiability or on any properties of bijective functions

or even on the parametrization itself. Examples of com-

mon transformations that can be used with our method, and

not with [11] are reflections, most morphological operations

and non-linear distortions.

3.4. Implementation details

We use Torch7 framework for model formulation and

training [9]. The easiest way to formulate a proposed model

is to use parallel network notation with shared weights as

described in figure 1. The whole model definition requires

just few additional lines of code. An example in pseudo-lua

code is provided below. Here nPhi is a size of the set Φ.

−− d e f i n e f i r s t s i a m e s e l a y e r s

s i a m e s e = S e q u e n t i a l ( )

. . .

−− c l o n e and s h a r e w e i g h t s

p a r a l l e l = P a r a l l e l ( 1 , 3 )

f o r p h i = 1 , nPhi do

c l o n e = s i a m e s e : c l o n e ( )

p a r a l l e l : add ( c l o n e )

c l o n e : s h a r e ( s iamese , ’ we igh t ’ , ’ b i a s ’ ,

’ g radWeigh t ’ , ’ g r a d B i a s ’ )

end

−− f o r m u l a t e a f u l l model

model = S e q u e n t i a l ( )

model : add ( p a r a l l e l )

model : add ( S p a t i a l M a x P o o l i n g ( nPhi , 1 , 1 ) )

−− add f u l l y −c o n n e c t e d l a y e r s ,

−− d r o p o u t and o u t p u t l a y e r

The only other modification is to the data: we increase

the dimension of the input data tensor by one and stack input

instances φ(x), φ ∈ Φ across the new dimension.

Computational complexity. It may seem like an ex-

haustive search in the space of possible transformations

Φ significantly increases computational complexity of the

pipeline. Indeed, instead of processing one image at a time,

we forward-pass |Φ| images through almost the whole net-

work. We can speed it up by sampling from the space

of transformations, but in practice, even searching the full

space appears to be more efficient than just data augmenta-

tion, because of the following reasons.

• Only partial forward pass is done multiple times for

the same image, forward-pass through fully-connected

layers and back-propagation are exactly the same com-

putationally as for a standard convolutional neural net-

work with the same number of parameters.

• Comparing to the data augmentation approach, we

make use of every image and it’s augmented versions

in one pass. Standard convolutional neural network

instead makes one pass for every augmented sample,

which in the end results in the number of passes equal

to the number of augmentated samples to process one

image. And because of the previous point, we actually

do it more than two times faster.

• Because we make use of canonical appearance of the

image, the proposed pipeline actually trains more effi-

ciently than the standard neural network, and usually

requires smaller number of overall parameters.

4. Experiments

In this section we present the experimental results on

three computer vision datasets. The first two datasets are

different variations of MNIST dataset [19] designed to test

artificially-introduced variations in the data. The third

one is a neuronal structures segmentation dataset [4], that

demonstrates a real-world example of rotation invariance.

4.1. Rotated MNIST

Original MNIST dataset [19] is a very typical toy dataset

to check the performance of new computer vision algo-

rithms modifications. Two variations of MNIST exist to test

the performance of different algorithms that are designed to

be invariant to some specific variations, such as rotations.

For both the datasets we use the same topology, but

slightly different sets Φ. The topology is described in ta-

ble 1. We perform the training using tuning-free convergent

adadelta algorithm [30] with the batch size equal to 128 and

dropout [10] for fully-connected layers.
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Layer Parameters & channel size

input size: 32x32

convolution kernel: 3x3, channel: 40

relu

max pooling kernel: 2x2, stride: 2

convolution kernel: 3x3, channel: 80

relu

max pooling kernel: 2x2, stride: 2

convolution kernel: 3x3, channel: 160

relu

max pooling kernel: 2x2, stride: 2

linear channel: 5120

relu

TI-POOLING transformations: Φ
dropout rate: 0.5

linear channel: 10

softmax

Table 1. The topology of the network in the experiments.

Method Error, %

ScatNet-2 [3] 7.48

PCANet-2 [5] 7.37

TIRBM [25] 4.2

TI-POOLING (ours) 2.2

Table 2. Results on mnist-rot-12k dataset.

4.1.1 mnist-rot-12k dataset

The most commonly used variation of MNIST that is

used for validating rotation-invariant algorithms is mnist-

rot [14]. It consists of images from the original MNIST,

rotated by a random angle from 0 to 2π (full circle). This

dataset contains 12000 training images, which is signifi-

cantly smaller, than in the original dataset, and 50000 test

samples.

For this dataset we include a TI POOLING step over Φ
containing 24 rotations sampled uniformly from 0 to 2π.

We train this network on a single GPU for 1200 epochs

and compare the achieved test error with the best results

published for this dataset. The best approach by [25] em-

ploys restricted boltzmann machines and achieves 4.2% er-

ror, while we achieve 2.2% – the results almost two times

better in terms of classification error. The final errors for the

proposed and the state of the art results are present in the ta-

ble 2. It can be seen that using TI-POOLING indeed leads to

significant improvements with no significant effort of opti-

mising topology and just by better exploiting the variations

in the data.

Method Error, %

FCN 2.1

CNN 1.2

STN (general) 0.8

STN (affine) 0.7

TI-POOLING (ours) 0.8

Table 3. Results on half-rotated MNIST dataset.

4.1.2 Half-rotated MNIST dataset

The second dataset we consider is the dataset introduced in

[11]. There are two reasons why the authors decided to ad-

vance further from the original mnist-rot-12k. First, mnist-

rot-12k is very small in size (five times less than training

set in MNIST dataset). And second, it has somewhat arti-

ficial limitation of images being rotated full circle. So they

proposed to take full MNIST dataset, use random angle in

the range [−π
2 ,

π
2 ] (half the circle) and use the input images

rotated by this angle as training samples. This makes the

problem a little easier, but closer to real-world scenarios.

As discussed in section 2, the authors of spatial trans-

former networks [11] propose an elegant way of optimis-

ing the transformation of the image while learning also

the canonical orientation. Here we show that for some

classes of transformations, we achieve comparable results

with simpler model and shorter training time.

For this problem formulate a set of transformations Φ
as a set of angles sampled uniformly from half a circle,

to match the dataset formulation, overall 13 angles. With

this relatively simple model, we converge to the results of

0.8% error within 360 epochs, while STN was trained for

1280 epochs. Moreover, using TI POOLING does not re-

quire grid sampling and therefore each individual iteration

is faster. With this we still match the performance of the

most general STN model defined for a class of projection

transformations. For more narrow class of transformations

selected manually (affine transformations), our results are

slightly worse (by 0.1%). However, we did not optimise

with respect to the transformation classes, and therefore the

comparison is not fully fair in this case. Table 3 shows fur-

ther comparison with STN and other related baselines on

this dataset. Baseline fully-connected (FCN) and standard

convolutional (CNN) neural networks are defined in [11]

and tuned to have approximately the same number of pa-

rameters as the baseline STN.

4.2. Neuronal structures segmentation

The neuronal membrane segmentation dataset was used

for ISBI 2012 challenge [4]. It consists of images of neu-

ronal tissue captured with serial section transmission elec-

tron microscopy. The task is to perform pixel segmentation

into two classes: cell membranes and inner parts of the neu-
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Method Error, %

MIL over CNN [28] 8.9

CNN with augmentation [12] 8.1

TI-POOLING - dropout 7.4

TI-POOLING + dropout 7.0

Table 4. Results on neuronal segmentation dataset.

ron. We take 2x downsampled images and split them into

training and test sets: first 25 sections are used for training,

and the last five are left for test.

From the neurological experts we know, that membrane

appearance does not depend on the orientation of the mem-

brane, and therefore we can safely include [0, 2π] rotations

in the set of transformations Φ. We sample rotations every

15 degrees, resulting in 24 transformations considered.

Because this is a segmentation task, we extract patches

around a pixel and classify those patches (here label of the

patch is the label of the central pixel of the patch). We per-

form training on all the available pixel patches (balanced

between classes). The patch is decided to be square and has

the size of 46 pixel, but after the rotation we crop the patch,

so the actual input to the network is a 32× 32 patch. Some

examples of the patches are present in figure 2.

For every algorithm we run for this dataset, we se-

lect the same network topology, in order to better evalu-

ate the improvement of the proposed TI-POOLING operator

for rotation-invariant feature learning without incorporating

any other effects such as model size. As our baselines, we

select the following two algorithms, that are closely related

to the proposed technique as discussed in sections 1 and 2:

• standard convolutional neural network with data aug-

mentation, that is able ideally to learn features expres-

sive enough to handle rotations in the data;

• multiple instance learning of convolutional neural net-

works, that is able to learn a transformation-invariant

algorithm for a given set of transformations, but not

the features.

For all the underlying networks we select the same topol-

ogy as described in table 1, except of TI-POOLING and the

number of outputs (two classes for this dataset). We also re-

port the results with and without dropout, as discussed later.

Table 4 shows the pixel error achieved by all the algo-

rithms after 16 epochs. To make the comparison absolutely

fair, for standard convolutional neural network with aug-

mentation we record the results after 16 ∗ 24 = 384 epochs,

so that the number of images ”seen” by the algorithm is the

same (because for the proposed approach and for the MIL

modification, we take the maximum over all the 24 rotations

in one iteration). We also run MIL modification with no

dropout, and compare the results with the version of our al-

gorithm trained with no dropout. For both baselines we see

the significant improvement for the same topology. From

this we can conclude that the proposed TI-POOLING is in-

deed very helpful for real-world problems with nuisance

variations.

5. Conclusions

In this paper we propose a novel framework to incor-

porate expert knowledge on nuisance variations in the data

when training deep neural networks. We formulate a set of

transformations that should not affect the algorithm deci-

sion and generate multiple instances of the image according

to these transformations. Those instances, instead of be-

ing used for training independently, are passed through ini-

tial layers the network and through TI-POOLING operator

to form transformation-invariant features. These features

are fully-trainable using back-propagation, have the rich ex-

pressiveness of standard convolutional neural network fea-

tures, but at the same time do not depend on the variations

in the data.

Convolutional neural network with TI-POOLING has

some theoretical guarantees of being transformation-

invariant algorithm for variations common in computer vi-

sion problems. But more importantly, it has some nice prac-

tical properties that we show in this work, e.g. it permits to

learn from the most representative instances, that we call

”canonical”. Because of that the network does not have to

learn features separately for every possible variation of the

data from augmented samples, but instead it learns only fea-

tures that are relevant for one appearance of the image, and

then applies it for all the variations. It also allows to better

use the input data to learn these features: e.g. all the sam-

ples including edges participate in learning transformation-

invariant edge detector feature, and no separate vertical or

horizontal edge detector features are needed.

We test the method on three datasets with explicitly de-

fined variability. In all the experiments we either signifi-

cantly outperform or at least match the performance of base-

line state of the art techniques. Often we also show faster

convergence rates than baselines with smaller yet smarter

data-aware models.

The proposed TI-POOLING operator can be used as a

separate neuronal unit for most networks architectures with

very little effort to incorporate prior knowledge on nuisance

factors in the data. But the range of its applications goes

well beyond that, allowing to incorporate many types of

prior information on the data and opening the opportuni-

ties for more robust expert-driven algorithms in combina-

tion with the powerful expressiveness of deep learning.
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