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Abstract

In this paper, we propose a novel method to perform

weakly-supervised image parsing based on the dictionary

learning framework. To deal with the challenges caused by

the label ambiguities, we design a saliency guided weight

assignment scheme to boost the discriminative dictionary

learning. More specifically, with a collection of tagged im-

ages, the proposed method first conducts saliency detection

and automatically infers the confidence for each semantic

class to be foreground or background. These clues are then

incorporated to learn the dictionaries, the weights, as well

as the sparse representation coefficients in the meanwhile.

Once obtained the coefficients of a superpixel, we use a

sparse representation classifier to determine its semantic

label. The approach is validated on the MSRC21, PAS-

CAL VOC07, and VOC12 datasets. Experimental results

demonstrate the encouraging performance of our approach

in comparison with some state-of-the-arts.

1. Introduction

Image parsing is a fundamental but challenging problem

that aims to predict a semantic label for each pixel in the

image. In contrast to conventional fully supervised tech-

niques [26, 11, 13, 7, 9, 19], in recent years, it has been at-

tracting more and more research interest to infer labels from

weak supervision, for which expensive pixel-level annotat-

ed training samples are not required. So far, various forms

of weak supervision, such as image-level tags [27, 28, 29],

bounding boxes [36], and points [23], have been taken into

account. Considering that image-level tags are the cheap-

est [23] and most convenient to obtain, in this paper, we use

them to supervise image parsing.

This paper formulates our task within the dictionary

learning and sparse representation (SR) framework. Pre-

vious SR-based works [15, 16] mainly focus on sparse

constraints while using raw image patches for representa-
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tion. In light of the outstanding performance that dictionary

learning methods have exhibited in many other application-

s, we attempt to incorporate this technique to boost pars-

ing performance. However, most discriminative dictionary

learning methods [39, 37, 10] work in a fully supervised

manner. It is a challenge to extend them to weakly super-

vised data because of the label ambiguities. That is, when

image-level tags are given, we only know whether an ob-

ject is present or not within the image, but without loca-

tion information. Therefore, we are not able to obtain pixel-

or superpixel-level training instances to learn dictionary for

each semantic class. In order to accomplish the task, we

make the following contributions:

• For weakly supervised discriminative dictionary learn-

ing, we design an adaptive scheme to dynamically ad-

just the weights that a superpixel contributes to each

semantic class. For instance, given an image la-

beled with ‘grass’ and ‘cow’, a superpixel within it is

not equally important for the learning of ‘grass’ and

‘cow’ dictionaries. Instead, the weights are adaptively

learned according to some constraints.

• We introduce a saliency prior to guide the learning of

the weights. Intuitively, a saliency map provides us

with certain information about foreground and back-

ground, which helps to reduce the label ambiguities.

To make use of saliency, we propose an automatic

way to evaluate the confidence for a semantic class

to be foreground or background according to the co-

occurrence of tags. A linear programming constrain-

t is further formulated for the saliency guided weight

assignment. Moreover, the procedure of saliency de-

tection [41] often considers both local and global con-

texts within an image. Thus, incorporating the saliency

prior implicitly introduces global information into our

model.

• We also incorporate a smoothness prior into our mod-

el. This constraint encourages label consistency by en-

forcing superpixels that are similar in appearance to
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Table 1. A comparison of related works.

Supervision Framework Method Annotation Form Using Extra Dataset

Full
Conditional Random Field

TextonBoost [26]

Pixel-level Annotation

TextonForest [25]

HCRF [11]

NLT [13]

Deep Learning C+ref [9] ImageNet

Weak

Topic Model
Li et al. [12] Noisy Image tags

Spatial-LTM [3]

Image-level Tags

Conditional Random Field
MIM [28] Geometric context dataset

GMIM [29]

Zhang et al. [40]

Deep Learning

MIL-ILP-seg [22]

ImageNetFCN [19]

DCNN-EM-Adapt [20]

STC [31] ImageNet + Flickr

Russakovsky et al. [23] Boxes + Tags + Points
ImageNet

Max-margin Clustering ILT + transductive [36] Boxes + Tags + Parts

Graphical Model

WSG [14]

Image-level Tags

k-NN SG [33]

Weak k-NN SG + HG [34]

+ GT Tags PGC [38]

Xu et al. [35]

Sparse Representation

BiLayer [15]

BiLayer+Continuity [16]

LAS [17] Internet image search

WSDC [18]

have the same representation coefficients. The incor-

poration of the smoothness prior benefits both dictio-

nary learning and sparse representation results.

2. Related Work

Image parsing is also named semantic segmentation in

many literatures. In this paper, following the way defined

in [33], we use weakly supervised image parsing to refer

those researches that propagate labels from images to pixel-

s. It means that image-level tags (ILT) are available for all

images. While most semantic segmentation deal with test

images that have no ILT. We hereby briefly introduce ful-

ly and weakly supervised semantic segmentation first, and

then present parsing works.

2.1. Fully Supervised Semantic Segmentation

In these works, pixel-level annotation is available for

training. Therefore, traditional fully supervised methods

often train parametric [26, 25, 11] or non-parametric [13]

classifiers to segment pixels into different semantic cate-

gories, and meanwhile Conditional Random Field (CRF)

frameworks are commonly employed to ensure label consis-

tency between neighboring pixels. A major problem these

methods suffer is that they perform poorly in rare classes if

the training set contains unbalanced number of samples.

Recently, deep learning techniques have been applied to

semantic segmentation. Researchers [9] usually take a net-

work trained in ImageNet [4] as an initialization and fine-

tune it in semantic segmentation data sets. Due to the use of

extra data set and the power of deep structure, these meth-

ods demonstrate extremely outstanding performance.

2.2. Weakly Supervised Semantic Segmentation

Existing works take image-level tags, bounding boxes, or

other forms of annotations for weak supervision. They often

separate training data from test sets. Different techniques

such as latent topic models [3, 12, 40], multiple instance

learning[27], conditional random fields [28, 29], as well as

deep learning [22, 20, 31, 19], have been applied to train-

ing data to learn models for predicting pixel- or superpixel-

level labels. When testing a new image, they either adopt

an image-level annotator [28, 35] to predict the image’s tags

first, or directly use the trained model to infer labels for su-

perpixels. Due to the lack of ground truth tags in the test

set, their performance is limited.
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Figure 1. The overview of the proposed approach.

2.3. Weakly Supervised Image Parsing

As mentioned above, methods in this category assume

that tags are available for all images. Their spirit is to prop-

agate labels from image-level to pixel-level. Thus, vari-

ous graph-based label propagation techniques [14, 33, 34]

have been developed, which construct graphs or hyper-

graphs over superpixels regarding to k-NN or other crite-

ria. Vertices’ labels are propagated concerning superpixel

consistency, incongruity and the weak supervision informa-

tion. Another research line is using sparse representation

techniques [15, 16, 17, 18]. Liu et al. [15, 16] proposed a

bi-layer sparse model, in which each superpixel is sparse-

ly reconstructed via the atomic superppixels selected from

very few images. Labels are then propagated from images

to the associated superpixels. Other SR-based methods are

variant mainly on model construction and label propagation

scheme. In contrast to existing SR methods, our work focus

on dictionary learning and prior incorporation.

Table 1 lists most typical or state-of-the-art method-

s, whose formulation framework and supervision form are

provided. It needs to mention that the distinction between

two weakly supervised categories are ignored in some meth-

ods. Moreover, the name of each method is taken from their

own papers if available, otherwise the authors are listed.

3. Problem Formulation

Assume we are given an image collection I =
{I1, · · · , Ii, · · · , IN}. Each image is tagged with a label

set Yi, which is a subset of the full semantic labels Y =
{1, · · · , Nl}. We first segment each image into ni number

of superpixels via SLIC [1] and extract their feature descrip-

tors. All superpixels are then represented by A ∈ R
d×Ns ,

where d is the feature dimension and Ns =
∑N

i ni is the

total number of superpixels. Meanwhile, we detect a salien-

cy map [41] for each image to guide the learning of our

dictionary D = [D1, ...,Dl, ...,DNl
] ∈ R

d×Nd , in which

Dl = [Dl1, · · · ,DlM ] denotes the dictionary atoms associ-

ated with the l-th semantic class, M is the number of atoms

for a class, and Nd = M ·Nl. All superpixels are sparsely

represented by the dictionary, and the corresponding coeffi-

cient matrix is denoted by X ∈ R
Nd×Ns . Once we obtain

the coefficient matrix, the semantic label of each superpixel

is determined by the Sparse Representation Classifier (SR-

C) [32]. Figure 1 illustrates the overview of our algorithm.

3.1. Weighted Dictionary Learning

Given all superpixels, the basic dictionary learning prob-

lem is formulated as

argmin
X,D

1

2
‖A−DX‖2F + λ1‖X‖1, (1)

where λ1 is a parameter for balancing the two terms. In

order to take the image-level tags into account, we convert

the formulation into the following form

argmin
X,D

1

2

Ns
∑

p=1

‖Ap −Ddiag(Vp)Xp‖
2
2 + λ1‖X‖1, (2)

in which Ap denotes the p-th superpixel; Xp is its represen-

tation coefficient; diag() transforms a vector into a diagonal

matrix; and Vp ∈ R
Nd is a vector indicating whether a dic-

tionary atom is used for representing the superpixel. Thus,

it is defined as

Vp[i] =

{

1, L(Di) ∈ YI(Ap)

0, otherwise
. (3)

Here, Vp[i] indicates the i-th element; L(Di) gets the class

of the dictionary atom Di; I(Ap) denotes the image to

which the superpixel Ap belong; and YI(Ap) is the asso-

ciated label set.
The above formulation confines that a superpixel only

impacts on the learning of the dictionary atoms which as-
sociate with its image-level tags. No matter which labels
are tagged, the superpixel contributes to each labeled class
equally. However, it is not desirable. For instance, if an im-
age is labeled with ‘grass’ and ‘cow’, we wish a superpixel
on ‘cow’ should play a more important role in learning the
‘cow’ dictionary than ‘grass’. To this end, we introduce a
dynamic weight vector Wp ∈ R

Nd to replace Vp. That is

arg min
X,D,W

1

2

Ns
∑

p=1

‖Ap −Ddiag(Wp)Xp‖
2
2 + λ1‖X‖1 s.t.

Wp ≥ 0,Πp(Wp) = 0,
∑

Πp(Wp) = 1, p = 1, 2, ..., Ns,

(4)
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in which Wp is assigned the same as Vp except that it-

s nonzero entries are unknown variables summed up to

be 1. Here, Πp( ) is an operator to extract the zero part

of a vector; Πp( ) gets the nonzero entries; and W =
[W1, · · · ,Wp, · · · ,WNs

].
The model defined in (4) provides a way to adjust the

weights dynamically. It makes possible to assign a higher

weight for a superpixel to its ‘real’ class if more information

is included, and thus a more discriminative dictionary can

be expected.

3.2. Dictionary Clustering

Before introducing how to adjust the weights, we first

explore the structure of dictionary atoms. We expect that

the dictionary atoms associated with the same label should

be similar to each other. Thus, the spectral clustering tech-

nique [30, 18] is employed.

We define an affinity matrix UD ∈ R
Nd×Nd as follows

to indicate whether two atoms belong to a same class or not.

UD(i, j) =

{

1, L(Di) = L(Dj)
0, otherwise

(5)

Then, dictionary clustering aims to minimize the term

tr(DLDD
T ), (6)

in which tr() represents the trace of a matrix, LD

is the Laplace matrix computed by LD = I −
B

−1/2
UDB

−1/2, and B is a diagonal matrix defined as

Bii =
∑Nd

j=1 UD(i, j).

3.3. Saliency Prior

In this subsection, we introduce how a saliency prior is

integrated to guide weight assignment. The use of salien-

cy is motivated by an observation that salient regions in an

image are often roughly aligned with foreground objects, as

shown in Figure 2. This property helps to reduce the ambi-

guities of superpixel labeling. For instance, in the simplest

cases where an image is tagged only with two classes, such

as ‘cow’ and ‘grass’ in Figure 2, we can assign salient re-

gions to be the foreground class ‘cow’ and the remaining

to be the background ‘grass’ with high confidence. When

an image contains multiple classes like ‘tree’, ‘grass’, ‘sky’,

‘building’, the saliency map at least helps to distinguish be-

tween foreground and background classes.

However, a problem still remains: how to tell if a seman-

tic class is foreground or background. Instead of manually

determining it, we propose an automatic way to solve this

problem. Let us denote P (Lj |Li) as the probability that

label Lj occurs in an image conditioned on the occurrence

of label Li. This probability can be estimated from a given

data set. If P (Lj |Li) > P (Li|Lj), then label Li is more

likely to be foreground than Lj . The conclusion is based

on a phenomenon that a foreground label often presents a-

long with a certain background, while a background label

may occur with different foreground objects. For example,

‘cow’ commonly occurs with ‘grass’, but ‘grass’ may occur

with ‘sheep’, ‘building’, and other classes as well. In this

case, we get P (grass|cow) > P (cow|grass) and conclude

that ‘cow’ is more likely to be foreground than ‘grass’.

Thus, we define a foreground-background score to mea-

sure the confidence for a label Li to be foreground or back-

ground in an image Ik. It is

fbs(Li, Ik) =

{

− 1
2 + 1

1+exp(−g(Li,Ik))
, Li ∈ Yk

0, otherwise
(7)

where

g(Li, Ik) =
1

|Yk|

∑

Lj∈Yk

Lj 6=Li

P (Lj |Li)− P (Li|Lj), (8)

and |Yk| is the cardinality. The range of the score is

[−0.5, 0.5], in which a positive value indicates a high con-

fidence to be foreground and a negative value implies back-

ground.
Now, we design a guidance vector Gp ∈ R

Nd that is

Gp[i] =







−fbs(L(Di), I(Ap)) · S(Ap), S(Ap) > Ts

fbs(L(Di), I(Ap)), B(Ap) = 1
−c, otherwise

(9)

in which S(Ap) is the average saliency value of superpix-

el Ap; B(Ap) indicates if the superpixel is on the image

boundary or not; Ts is a threshold; L(Di) and I(Ap) are

defined in Eq.(3); and c is a constant experimentally deter-

mined.

The designed guidance vector is used for guiding weight

assignment. We propose to minimize

argmin
Wp

G
T
p Wp s.t.

Wp ≥ 0,Πp(Wp) = 0,
∑

Πp(Wp).
(10)

It is a linear programming problem that aims to assign large

weights to the dictionary atoms associated with the labels

having high foreground scores if a superpixel is salient. If

a superpixel is on the image boundary, it is treated as back-

ground so that large weights are expected for background

dictionary atoms. Meanwhile, the superpixels that are nei-

ther salient nor on boundary are assigned with equal weights

for all tagged labels.

3.4. Smoothness Prior

The smoothness prior refers that two neighboring super-

pixels tend to have the same labels if they are similar in ap-

pearance and saliency. In the sparse representation frame-

work, we are not able to enforce this constraint directly on
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(a) Color Image (b) Saliency Map (c) Boundary Map (d) Our Result (e) Ground Truth

Figure 2. Typical examples on MSRC21.

the labels as in MRF [28]. Instead, we confine such super-

pixels to have the same representation coefficients.

Let UX ∈ R
Ns×Ns denote a weighted affinity matrix. It

is defined as follows:

UX(i, j) =







exp(−‖Ai −Aj‖
2
2 − ‖S(Ai)− S(Aj)‖

2
2),

Ai ∈ N (Aj)
0, otherwise

(11)

in which N (Aj) is the neighboring superpixel set of Aj .

Then, the smoothness constraint is formulated by minimiz-

ing

tr(XLXX
T ), (12)

where LX is the Laplace matrix defined analogously to LD.

3.5. The Proposed Formulation

In summary, we get the entire model as follows:

arg min
X,D,W

1

2

Ns
∑

p=1

‖Ap −Ddiag(Wp)Xp‖
2
2 + λ1‖X‖1

+
λ2

2
tr(DLDD

T ) + λ3

Ns
∑

p=1

(GT
p Wp)

+
λ4

2
tr(XLXX

T ) s.t.

Wp ≥ 0,Πp(Wp) = 0,
∑

Πp(Wp) = 1, p = 1, 2, ..., Ns,

(13)

where λ1, · · · , λ4 are parameters for balancing the terms.

4. Optimization

Before optimization, we first initialize the dictionary D

and the weight matrix W as follows. Based on the defini-

tion in Eq.(9), we know that a small Gp[i] value indicates a

high confidence for superpixel Ap belonging to the L(Di)
class. Therefore, for each class we collect the superpixels

of the smallest guidance values and use k-means to cluster

them. The obtained centroids are taken as the initial dic-

tionary atoms of the corresponding semantic class. For W,

we simply assign normalized equal values for all non-zero

entries.

With above initializations, we then employ an alternating

scheme to solve X, D, and W iteratively.

4.1. Update X

The superscript t denotes the t-th iteration. At the (t+1)-
th iteration, we fix D

t and W
t to solve X

t+1. Thus, the

problem in Eq. (13) is turned into the following form:

X
t+1 = argmin

X

1

2

Ns
∑

p=1

‖Ap −D
tdiag(Wt

p)Xp‖
2
2

+ λ1‖X‖1 +
λ4

2
tr(XLXX

T ).

(14)

It consists of one L1 term and two quadratic terms. Al-

though the first two terms are separable in column-wise, the

trace term is only separable in rows. Therefore this problem

can not be solved in column-wise. We thus apply a general

method, FISTA [2], to solve the whole matrix X. It first

computes a gradient step on the terms except the sparse one

and then applies a soft-thresholding step on X to get the s-

parse results, so it is applicable to our model. In addition,

FISTA is also efficient.

4.2. Update D

When fixing X
t+1 and W

t, we update D via solving

D
t+1 = argmin

D

Ns
∑

p=1

‖Ap −Ddiag(Wt
p)X

t+1
p ‖22

+ λ2tr(DLDD
T ).

(15)

This is a quadratic problem so that we apply L-BFGS [24]

to solve it efficiently.

4.3. Update W

We finally fix X
t+1 and D

t+1 to optimize W. Note
that ‖Ap − D

t+1diag(Wp)X
t+1
p ‖22 can be rewritten

as ‖Ap − (Dt+1 ◦ X
t+1
p )Wp‖

2
2, where D ◦ Xp =

[D1Xp1,D2Xp2, ...]. Therefore W can be solved column-
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wisely as below.

W
t+1
p =argmin

Wp

1

2
‖Ap − (Dt+1 ◦Xt+1

p )Wp‖
2
2 + λ3G

T
p Wp

s.t. Wp ≥ 0,Πp(Wp) = 0,
∑

Πp(Wp) = 1,

(16)

This is a standard quadratic programming problem that can

be solved via an interior-point-convex algorithm [8].

4.4. Segmentation

Once we obtain the final coefficient matrix X, the se-

mantic label of each superpixel is determined by the Sparse

Representation Classifier (SRC) [32]. It chooses the label

via minimizing the representation residual, i.e.

argmin
l

‖Ap −Ddiag(Wp)δl(Xp)‖
2
2. (17)

Here, δl(Xp) sets the coefficients that are not associated

with the class l to be zero while preserves others.

5. Experiments

In this section, we conduct a series of experiments to

validate and analyze the performance of our approach.

5.1. Experimental Setup

The experiments are performed on three extensively used

datasets: MSRC21 [26], PASCAL VOC07, and VOC12 [6].

Throughout all experiments, we empirically set the involved

parameters as follows: λ1 = 10−3, λ2 = 5 × 10−1, λ3 =
10−1, and λ4 = 10−2 in Problem (13); Ts = 50 and c =
10−1 in Eq. (9). Moreover, the number of dictionary atoms

for each class is set to be 30. The number of iterations for

updating X, W and D is 5, which is enough for getting

converged in almost all images.

On each dataset, we compare our results to the available

results reported in some typical or state-of-the-art methods.

Two criteria are used for comparison, which are, respective-

ly, the average per-class accuracy (mAcc) and the average

intersection-over-union score (mIOU) [5]. The former cri-

terion measures the percentage of correctly labeled pixels

for each class then averaged over all classes. It is common-

ly used for previous works to evaluate the performance on

MSRC21 and VOC07. The mIOU is a standard measure for

segmentation evaluation in PASCAL VOC12 challenges.

5.2. Experiments on MSRC

The MSRC21 dataset contains 591 images, accompanied

by ground-truth segmentations of 21 classes. The scenarios

range from simple objects to complicated road scenes. The

average number of tagged labels is about 3.

We first investigate the performance of our saliency guid-

ed weight assignment scheme. Figure 3 illustrates a typ-

ical example, in which the superpixels coming from each

class and their weights contributed to all dictionary atoms

are presented. In this image, the foreground-background s-

core (fbs) of ‘tree’, ‘building’, ‘sky’, and ‘grass’ are 0.0277,

0.0035, 0.0018, and −0.0329 respectively. According to

Formulation (10) we know that if a superpixel is salient

then its weights are assigned to the class with the largest

fbs, like ‘tree’ in this case, and a boundary superpixel as-

signs its weights to the class with the smallest fbs, such as

‘grass’. With the balance of the representation term, as de-

fined in (16), the weights of ‘sky’ and ‘building’ superpixels

are correctly assigned. Taking the ‘building’ superpixel as

an example, although there are non-zero weights assigned to

dictionary atoms of the other classes, the weights of ‘build-

ing’ dictionary atoms are dominant. Moreover, due to the

sparse constraint on X, the weights are also learned sparse-

ly.

Figure 3. An illustration of superpixels and their weights learned

for each label. In the right figures, the x-axis represents the index-

es of dictionary atoms. The atoms belonging to ‘building’, ‘grass’,

‘tree’, and ‘sky’ are marked in red, green, orange, and blue respec-

tively.

Then, we justify the effectiveness of each prior in our

proposed model. We take the full formulation in (13), which

is named the Saliency Guided Dictionary Learning (SGDL)

model, as a reference, and leave the smoothness prior and

the saliency prior out step by step. The model without

the smoothness prior is referred to as SGDL-Sm and the

one without both priors is denoted by SGDL-Sm-Sal. Ex-

periments are conducted on MSRC21 for the three models

and compared. Figure 4 presents some typical examples,

from which we gain the following observations: 1) With-

out the guidance of saliency, the learned dictionary might

be wrong even for simple objects, which results in total-

ly wrong labeling results such as shown in the ‘sheep’ im-

age. 2) The use of the smoothness prior greatly improves

label consistency. 3) The full model obtains encouraging

results in most cases. However, as shown in the last row,

if the saliency order of regions do not match the estimated

foreground-background scores, we may get wrong labeling

results. Quantitative results listed in Table 2 show that S-

GDL greatly improves mAcc and mIOU in comparison with

SGDL-Sm and SGDL-Sm-Sal.

We also compare our models to the classical or state-of-

the-art techniques summarized in Table 1 if their results are
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(a) Color Image (b) Saliency Map (c) SGDL-Sm-Sal (d) SGDL-Sm (e) SGDL (f) Ground Truth

Figure 4. Performance comparison of our models on MSRC21. SGDL refers to the entire model, SGDL-Sm is the model leaving the

smoothness prior out, and SGDL-Sm-Sal is the one without both prior terms.

Table 2. Performance comparison on MSRC21.
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d
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b
o

at

m
A

cc

m
IO

U

Fully-supervised

TextonBoost[26] 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7 58

HCRF[11] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9 75

Weakly-supervised

MIM [28] 12 83 70 81 93 84 91 55 97 87 92 82 69 51 61 59 66 53 44 9 58 67 -

Weakly-supervised + Ground Truth Tags

WSG[14] 70 92 49 10 10 83 36 82 62 20 52 98 88 48 98 70 75 95 76 43 23 61 -

LAS [17] - - - - - - - - - - - - - - - - - - - - - 67 -

BiLayer+Cont[16] - - - - - - - - - - - - - - - - - - - - - 70 -

WSDC [18] - - - - - - - - - - - - - - - - - - - - - 71 -

k-NN SG+HG[34] 71 89 60 64 57 93 90 76 90 85 95 99 95 83 99 99 66 99 99 34 25 80 -

SGDL-Sm-Sal 42 42 52 24 20 51 21 73 63 59 86 97 81 59 98 67 52 92 69 31 5 56 49

SGDL-Sm 52 86 76 80 86 94 74 75 83 56 64 96 87 85 97 89 43 98 91 31 80 77 60

SGDL 50 96 89 78 83 93 82 80 81 60 87 96 91 83 97 88 83 95 90 34 77 82 70

reported. Table 2 lists quantitative comparisons. Note that

both fully supervised methods and weakly-supervised but

without tags methods split the dataset into training and test

parts. Their results are evaluated on the test set. While for

methods in the category of ‘weakly-supervised + Ground

Truth Tags’, results are on the entire dataset. From the re-

sults we see that the proposed approach outperforms both

traditional fully supervised techniques and state-of-the-art

weakly supervised methods.
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Table 3. Experimental results on VOC07.
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tv m
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m
IO

U

Fully-supervised

TextonForest[25] 22 77 45 45 19 14 45 48 29 26 20 59 45 54 63 37 40 42 10 68 72 42 -

Weakly-supervised

Zhang et al. [40] 75 47 36 65 15 35 82 43 62 27 47 36 41 73 50 36 46 32 13 42 33 45 -

Weakly-supervised + Ground Truth Tags

WSG[14] 65 28 20 62 28 46 41 39 60 25 68 25 35 17 35 56 36 46 17 31 20 38 -

BiLayer[15] 82 24 25 40 25 32 35 27 45 16 49 24 32 13 25 56 28 17 16 33 18 32 -

k-NN SG+HG[34] 41 77 48 87 50 56 48 44 60 27 76 18 38 25 31 52 38 59 31 51 34 47 -

SGDL 79 65 56 75 67 27 58 56 69 25 54 33 65 67 69 28 45 60 23 67 48 54 31

Table 4. Experimental results on VOC12 val set.

Methods b
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tv m
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cc

m
IO

U

Weakly-supervised

MIL-FCN [19] - - - - - - - - - - - - - - - - - - - - - - 26

CCNN[21] 66 24 18 23 19 36 47 47 47 16 36 22 43 34 45 40 30 33 22 39 36 - 35

MIL-ILP[22] 73 25 18 23 22 29 40 45 47 12 40 12 45 40 36 35 21 42 17 35 30 - 33

MIL-ILP-seg[22] 80 50 22 41 35 41 46 52 61 13 51 12 57 53 45 43 31 55 22 39 37 - 42

STC[31] 85 68 20 61 43 45 68 64 65 15 52 23 58 55 58 61 41 57 23 57 31 - 50

Weakly-supervised + Ground Truth Tags

SGDL 68 37 19 32 21 24 49 35 44 13 38 22 45 38 42 29 23 40 23 48 26 60 34

5.3. Experiments on VOC

We further validate the proposed method on the more

challenging PASCAL VOC07 and VOC12 datasets [5]. The

reason of choosing these two datasets is that most previous

works have reported experimental results on VOC07 and

the recent deep learning approaches are mainly performed

on VOC12. VOC07 contains 632 segmented images of 21

labels. VOC12 has the same number of classes but more im-

ages. Its training, validation and test sets have 1464, 1449,

and 1456 images respectively. We conduct our experiments

on the training and validation sets, i.e. 2913 images in total,

for evaluation because the ground truth segmentation of the

test set is not available.

Table 1 presents the quantitative results of our full model,

together with comparisons to the classical and state-of-the-

art methods. It shows that our approach outperforms the

others to a great extent, even for k-NN SG+HG[34] that is

comparable to ours on MSRC21.

The results on VOC12 are also provided in Table 4. A-

mong all the methods summarized in Table 1, only these

powerful deep learning techniques published their results

on this dataset. Therefore, although these techniques do not

use the ground-truth tags and evaluate their results on the

val set, we still include their results, only for the purpose of

reference.

6. Conclusion

In this paper, we have presented a Saliency Guided

Dictionary Learning (SGDL) method to conduct weakly-

supervised image parsing. The spectral dictionary cluster-

ing, the saliency prior, and the smoothness prior are inte-

grated into our model to learning dictionaries, weights, and

sparse representations at the same time. Extensive experi-

ments on three challenging datasets have validated the ef-

fectiveness of our approach.

Future work will focus on placing a group sparse con-

straint on the weights so that each superpixel only con-

tributes to less semantic classes. We believe it will improve

the performance of our approach further. Moreover, in the

current model, some errors in saliency detection are un-

avoidably propagated to dictionary learning. How to reduce

error propagation is also another direction we will take.
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