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Abstract

We address the problem of learning a pose-aware, com-
pact embedding that projects images with similar human
poses to be placed close-by in the embedding space. The
embedding function is built on a deep convolutional net-
work, and trained with triplet-based rank constraints on
real image data. This architecture allows us to learn a
robust representation that captures differences in human
poses by effectively factoring out variations in clothing,
background, and imaging conditions in the wild. For a
variety of pose-related tasks, the proposed pose embed-
ding provides a cost-efficient and natural alternative to ex-
plicit pose estimation, circumventing challenges of localiz-
ing body joints. We demonstrate the efficacy of the embed-
ding on pose-based image retrieval and action recognition
problems.

1. Introduction

There can be as much value in the blink of an eye as in
months of rational analysis. — Malcolm Gladwell

How much detail do we actually need to figure out in order
to understand a scene? While the answer largely depends
on the scene and a task at hand, we often make a good deci-
sion only with a thin slice of information. In fact, a decision
by a few glances is sometimes no worse and even better than
hours of pondering [26]. Given a limited time and resource,
this thin-slicing decision becomes crucial in particular. For
example, drivers often need to rely on their immediate un-
derstanding of situations they pass by, otherwise running
someone or themselves into danger.

This paper addresses learning a thin-slicing machine for
human pose, relieving the need for explicit pose estimation.
While a person in a specific pose is one of the most infor-
mative objects for scene understanding, the problem of pose
estimation, aiming at localizing individual body joints, still
remains a challenging open problem [13, 43, 50, 51, 61].
Even with a full body visible, frequent self-occlusion and
huge diversity in pose make the problem hard to solve. As
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Figure 1: The manifold of our pose embedding visualized
using t-SNE [53]. Each point represents a human pose im-
age. To better show correlation between the pose embed-
ding and annotated pose, we color-code pose similarities in
annotation between an arbitrary target image (red box) and
all the other images. Selected examples of color-coded im-
ages are illustrated in the right-hand side. Images similar
with the target in annotated pose are colored in yellow, oth-
erwise in blue. As can be seen, yellow images lie closer
by the target in general, which shows that a position on the
embedding space implicitly represents a human pose. (Best
viewed in color.)

often formulated a complicated structured inference prob-
lem [13, 50], human pose estimation is computationally
heavy in practice as well.

We argue that solving explicit pose estimation may not
be necessary for many problems that only require an es-
timate of pose similarity. To bypass pose estimation, we
learn an efficient pose embedding function based on a con-
volutional neural network (CNN) [18, 32] with a triplet rank
loss [12, 44, 56, 57, 59]. Our pose embedding, trained
on real data, provides a pose-aware, compact mapping that
projects images with similar human poses in same neigh-
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borhoods of the embedding space and far from each other
otherwise. A position in the embedding space represents
the corresponding pose in an implicit way, and helps in cap-
turing pose-related semantics in the images as illustrated in
Fig. 1. Even without the need for detailed labeling of pose
similarity, the triplet rank loss combined with a convolu-
tional neural network architecture enables us to learn a ro-
bust embedding space in an efficient manner.

The proposed pose embedding provides a practical al-
ternative to explicit pose estimation in a variety of ap-
plications. Efficient pose retrieval can be performed in
this embedding space to find images or video frames with
similar poses in a large database. The embedding can
be also used for a pose-based feature for action recogni-
tion [29, 30, 54, 60], group activities [15, 33, 34, 42], and
human object interaction analysis [62]. In experiments, we
transfer our learned model to the problems of pose-based
image retrieval and action recognition, and demonstrate that
the proposed embedding successfully generalizes to diverse
poses in cluttered scenes.

2. Related work

Our approach to human pose embedding is related to a
broad range of topics including pose estimation, pose-based
action recognition, and similarity-based embedding. Here
we briefly review representative work on those topics.

Pose estimation. Human pose understanding has been
studied extensively during the last decade. Unlike our ap-
proach, most previous work has focused on localzing ex-
plicit body parts or joints. Many of them rely on pictorial
structures of human body as a prior [5, 19, 23, 58, 61]. It
is shown in [55] that the pictorial structure can be learned
from data. Multi-modality of pose is captured at larger
granularities and estimated jointly with body part locations
in [43]. Following the great success in image classifica-
tion [32, 45, 48], CNN has recently become popular in pose
estimation. A pioneering work on this line of research was
done by Toshev and Szegedy [51], where body joint coordi-
nates are directly estimated by a regression machine based
on CNN. Chen and Yuille [13] combine a graphical model
with CNN, where the unary and pairwise clique potentials
of the graphical model are learned by CNNs. Instead of an
explicit graphical model, Tompson et al. [50] learn spatial
dependencies among all pairs of body joints through CNNs.

Action recognition with pose. Naturally, pose-based fea-
tures have shown to be effective for action recognition in
images or videos. Pose is treated as a latent variable for
action recognition in still images [60], and Bao and Fei-
Fei [63] estimate semi-3D pose for the same purpose. For
action recognition in video, estimated poses are often em-
ployed directly as descriptors [30, 54]. Cheron et al. [14]
use pose as a location prior for CNN-based features being
extracted around body parts.

Embedding by similarity. Learning embedding by pair-
wise similarity has been extensively studied. The siamese-
type CNN architecture was proposed to learn an embedding
space that reflects a semantic distance between data [9], and
has been applied to face verification [16] and visual rep-
resentation learning [3, 20]. For an embedding space that
preserves relative similarity among triplets, Athisos et al.
use AdaBoost with random embedding functions [0], and
Chechik et al. propose a bi-linear similarity function with a
triplet rank loss [12]. The triplet rank loss has been recently
adopted as a loss function of CNNs for various tasks such
as image ranking [56], face identification [44], visual repre-
sentation learning [57], and joint object categorization and
camera pose estimation [59].

Pose embedding. Low dimensional manifolds of articu-
lated human pose have been employed for person track-
ing [37, 52] and 3D pose estimation from silhouette [2, 21].
Taylor et al. [49] learn CNNs with neighborhood compo-
nent analysis criteria [27] to match images with similar
poses and estimate pose by nearest neighbor regression. As
a pose encoding, Pons-Moll et al. [39] propose posebits,
which are binary attributes about geometric relations be-
tween body parts and used for 3D pose estimation and re-
trieval. There is a parallel work about pose embedding [25]
motivated by a similar idea with ours. The most important
difference of ours from [25] is that in testing our method
does not require any pose information while [25] assumes
that the pelvis location of a person is known. Also, we show
how pose embedding can be adopted for action recognition
in image, which is not investigated in [25].

3. Algorithm overview

Instead of explicit pose estimation, we learn a function
that maps an image of a person into an embedding space.
A position of the image on the embedding space represents
a corresponding pose in an implicit way such that images
will be placed nearby if their poses are similar, otherwise far
from each other. We design the embedding function using a
CNN, and train it with a triplet rank loss [ 12, 44, 56, 57, 59].
In this work, two separate embedding functions are learned
and evaluated: (1) full-body pose embedding that takes a
full body as input, and (2) upper-body pose embedding that
considers only an upper part of a body as input. Both em-
bedding functions share the same network architecture.

3.1. Network architecture

Details of the network architecture is described in Fig. 2.
In particular, the structures and parameters of the five con-
volution layers (i.e., conv1-5) are transferred directly from
those of the VGG-S network [ 1], which is pre-trained for
ImageNet classification task [41]. It is demonstrated in [38]
that representation learned for a large scale image classi-
fication could be also useful in other tasks as well. The
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Figure 2: Our network architecture for pose embedding.
The network consists of 5 convolution layers (conv) fol-
lowed by 2 fully-connected layers (fc). In details, Local
Response Normalization (LRN) [32] is applied after conv1,
and the output of fc1 is regularized by Dropout [46]. All the
convolution layers and related operations (blue) are trans-
ferred directly from those of the VGG-S network [ 1], and
their parameters are fine-tuned during training.

parameters of the convolution layers are not fixed, but fine-
tuned during training with a smaller learning rate. We be-
lieve that the transferred representation would speed up net-
work learning and also result in better generalization as our
training dataset is not large when compared to the number
of parameters.

On the pre-trained part of the network, we add two
fully-connected layers (i.e., fc1-2), which are learned from
scratch for adaptation to the pose embedding task. The em-
bedding dimensionality is fixed to 128. Finally, an l2 nor-
malization layer is added on the top of the network so that
the embedding vectors lie on a unit sphere.

3.2. Triplet rank loss

The triplet rank loss considers pose distances among a
triplet of images. Let X" be a set of human pose images and
Y a set of pose annotations of images in X'. We define a
dissimilarity between two images z;,z; € X as a distance
between their corresponding pose annotations y;,y; € Y,
which is denoted by D(y;, y;). Our goal is to learn an em-
bedding function f such that Euclidean distances in the em-
bedding space hold the same order relations with the pose
distances:

1/ (zs) = FEDIE < [1f (@) = F)II3,

(D
Vx¢7xi+7m; e X st D(yz,yf) < D(yi,y; )-

Based on this, our triplet rank loss L is defined as a hinge
loss with a safety margin:

N
L= (I = F@OIE = 1)~ F@IE+9]
o (2)

where NV is the number of triplets and § indicates the mar-
gin. Given a set of triplets together with pairwise pose
distances, the embedding function is learned by minimiz-
ing Eq. (2) through error back-propagation [36, 40] and
stochastic gradient decent (SGD) with momentum [47]. We
describe details for learning in the following sections.

4. Dataset compilation
4.1. Data sources

Learning a pose embedding space with the triplet loss re-
quires images of human poses, and pose distances between
them. To this end, we collect pose images with body joint
annotations, and compute the pose distances using the an-
notated joint coordinates. Our dataset mainly built on the
MPII Human Pose dataset [4] that contains around 25K im-
ages with diverse human poses from YouTube videos. The
images have extensive key-point annotations for body joints
as well as bounding box annotations for heads. Among
them, we selected 19,919 images with full body joint an-
notations, and included them in our dataset. Note that in-
visible joints are also counted as valid ones if their posi-
tions are annotated, because they would be useful to learn
an embedding function robust against partial occlusions. In
addition, we collected more images from the H3D [8] and
the VOC2009 person (trainval) [22] datasets with body joint
annotations [7]. As most of human poses in these datasets
are not fully annotated, we selected images that have at least
12 joint annotations.

In total, our dataset comprises 12,366 images for training
(MPII: 10,000, H3D: 843, VOC2009 people: 1,523), and
9,919 images for validation (MPII: 9,919).

4.2. Image and pose standarization

In our CNN architecture, all images need to be stan-
darized into a fixed-size input image (i.e., 224 X224 x 3) that
captures a target human body. The best way of obtaining
such input would be to align images using a stable center
of pose (e.g., pelvis), resize them with respect to a human
body scale, and crop the target human body. However, this
is problematic in testing because such a precise input is hard
to be obtained without explicit and accurate pose estima-
tion. Instead, we assume that the target person is localized
in the form of a bounding box by a person detector in test-
ing. To approximate this condition during training, we stan-
darize pose images using bounding boxes of target persons,
as described in Fig. 3. For full-body embedding, we find a
bounding box that most tightly encloses all annotated joints,
and crop the smallest square box that covers the bounding
box while sharing the center position. For upper-body em-
bedding, the cropped area is horizontally aligned using the
center of the annotated head, and rescaled so that its size is
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Figure 3: Visualization of the standarization procedure.

proportional to that of the head bounding box'. We disre-
gard annotations of ankles and knees for upper-body data.
All the cropped images and their annotated joint coordinates
are resized to the input size of our embedding network. The
pose distance between two images is defined as the mean
of Euclidean distances between standarized coordinates of
corresponding joints. When the two poses do not have the
same number of joint annotations, we compute the distance
using only shared joints.

5. Learning pose embedding network

5.1. Triplet sampling

Instead of using all possible triplets in training, which
is impractical due to the combinatorial explosion, we sam-
ple a set of triplets that would be useful to learn the em-
bedding function. In particular, given an anchor image x;,
we divide the other images into two sets of positive (sim-
ilar) images P; = {xj'} and negative (dissimilar) images
N; = {x; }, respectively, and assemble a triplet by choos-
ing one from each of P; and ;. Since in our dataset there is
no given positive/negative distinction a prior, one straight-
forward way to do this would be to divide images by thresh-
olding their pose distances from the anchor. However, due
to the imbalanced distribution of poses in the dataset, some
common poses will have a lot of positive images while oth-
ers could not have any positive. Furthermore, the pose dis-
tance metric may be inconsistent over anchor images since
we do not know exact body scales nor 3D positions of body
joints. Hence, for each anchor image x;, we consider its
p nearest neighbors in pose distance as P;, and other im-

!'Since this procedure entails head box annotations, 2366 images from
the H3D dataset and VOC2009 person datasets, which do not provide head
annotation, are not used for learning upper-body embedding.

Upper-body

Figure 4: Examples of anchor images (/eft), and their posi-
tive (middle) and negative images (right).

ages as ;. Examples of positive and negative images are
illustrated in Fig. 4.

Although the above sampling strategy reduces the num-
ber of combinations significantly, still there exist numerous
triplets per anchor and some of them would be trivial and
ineffective for learning embedding network. Hard nega-
tive mining has been commonly used to avoid such trivial
triplets and boost learning procedure, especially when train-
ing images are annotated by categorical labels [44, 57, 59].
In our case, however, it is not straightforward to sample hard
negatives from N since human poses are continuous and
changes smoothly between P; and ;. In other words, hard
negative images are often too close to positive images in
pose distance, so it is not desirable to separate such nega-
tives from positives in the embedding space. Instead of hard
negative mining, we reduce the size of A; every epoch by
removing negative images farthest from the anchor, while
assuming that the farthest negative images would be trivial
in general. This assumption is not necessarily true, but we
found that it holds in most cases. We believe that our ap-
proach could allow the embedding networks to focus more
on subtle differences between poses in later stages of train-
ing. Also, it practically improved performance when the
learned embedding was applied to action recognition.

5.2. Learning network with random triplets

Since many triplets share identical images, it is ineffi-
cient to calculate embedding vectors and gradients for each
triplet individually. For learning network efficiently, we first
assemble a mini-batch with an anchor image and randomly
selected positive and negative images, and generate triplets
by all combinations of positive and negative images in the
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Figure 5: The MPII validation images on the manifold of
our full-body pose embedding. The 2D manifold is esti-
mated by t-SNE [53], and the pose images are deployed
by [31]. The zoomed parts of the manifold show that im-
ages depicting similar poses are located in similar positions
as desired, even though they are not used when learning
the embedding function. More visualization results can be
found in our project webpage [1].

batch. By doing this, individual images in the batch are em-
bedded (forward-propagated) once. In this approach, mul-
tiple loss-gradients are computed for each embedding vec-
tor since an image participates in multiple triplets, so we
accumulate them per embedding vector and perform back-
propagation once.

6. Experiments

In this section, we first describe implementation details,
and then validate our concept empirically by qualitative
analysis of our pose embedding manifold. We also demon-
strate the effectiveness of our approach in three tasks: 1)
pose retrieval on the MPII dataset [4], 2) action recognition
on the VOC2012 Action dataset [22], and 3) action recog-

nition on the People Playing Musical Instrument (PPMI)
dataset [62].

6.1. Implementation details

The number of positive images p per anchor is fixed to 30
for full-body pose embedding, and 15 for upper-body coun-
terpart. The size of a mini-batch is set to 128, which consists
of an anchor image, 5 randomly selected positives, and 122
randomly selected negatives. The size of ; is decreased by
3K every epoch until it becomes 1K. During training, im-
ages in the batch are translated and scaled individually up
to +10% of the input size, and the entire batch is horizon-
tally flipped with probability 0.5. The learning rate for the
fully-connected layers is initialized as 0.01, and multiplied
by 0.2 every epoch. The learning rates for the pre-trained
part (i.e., convl-5) are 10 times smaller than that for the
fully-connected layers. The momentum and weight decay
parameters are set to 0.9 and 0.0005, respectively. Our sys-
tem is implemented in Torch7 [17]. We run 60K SGD iter-
ations for learning, which took about three days on a single
Nvidia TITAN Black with 6GB RAM in our experiment.
Code and trained networks will be released online at [1].

6.2. Manifold visualization

We validate our pose embedding qualitatively by visual-
izing its low-dimensional manifold of the standarized MPII
images. We first illustrate how images depicting similar hu-
man poses are distributed on the manifold in Fig. 1. As ex-
pected, images resembling each other in pose are also close
to each other on the manifold in general. This means that
a position in the embedding space approximates a human
pose. The manifold is also visualized by deploying the im-
ages directly on it, and the result is shown in Fig. 5.

6.3. Pose retrieval

We evaluate our full-body pose embedding network on a
pose retrieval task using the MPII validation set. Among
9,919 standarized images in the validation set, the first
1,919 images are used as queries, and the remained 8K im-
ages are regarded as a test set on which retrieval is per-
formed. We compare our full-body pose embedding with
VGG-S [11], which is the base network of our embedding
function, and Chen and Yuille’s method [13] that estimates
human pose explicitly using CNN. For VGG-S, 4,096-D
output of its penultimate fully-connected layer is employed
as a descriptor. For Chen and Yuille’s, 26 part-locations ob-
tained by its explicit pose estimation is directly used. Note
that for Chen and Yuille’s, the approximate scale of person
is assumed to be known in order to boost both of its speed
and accuracy.

Three performance metrics are defined to evaluate re-
trieval results quantitatively. We first compute the mean of
pose distances between queries and their K nearest neigh-
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Figure 6: Quantitative evaluation of pose retrieval on the MPII validation set. Oracle is always 1 in (b) and (c).
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Figure 7: Qualitative examples of the 1st nearest pose.

bors. Note that the pose distance is the mean of Euclidean
distances between standarized joint coordinates, defined in
Section 4.2. We also measure retrieval performance by
Hit@ K rate, which counts how many queries have at least
one correct image among their K nearest neighbors. We
consider a retrieved image as correct when it belongs to
the 50 nearest neighbors of the query in the pose distance.
Finally, we design a modified version of normalized dis-

counted cumulative gain (nDCG) [10]:

1 & 2n
nDCG = — —_ 3)
x(@) Zx ; log, (i + 1)
where 7; = —logy (||yq —¥i||2+1) is the relevance between

the query ¢ and ™ retrieval in terms of their true poses Yq
and y;. The relevance is reduced by the discounting factor
1/1og, (i + 1) to place a greater emphasis on one returned
at a higher rank. nDCGg considers only top K retrievals,
and Z is for normalization so that the maximum nDCG g
becomes 1. A higher nDCG means a better retrieval. Note
that the modified nDCG evaluates ranking quality while the
Hit@ K measures classification accuracy.

The quantitative evaluation results are summarized in
Fig. 6. Our full-body pose embedding outperforms both of
VGG-S [11] and the pose estimation [ 3] in terms of all the
three metrics. Also, our approach was three orders of mag-
nitude faster than the pose estimation on the same hardware.
Selected retrieval examples are visualized in Fig. 7. The re-
sults show that VGG-S tends to focus more on object cate-
gory (cello in Fig. 7(e)) or holistic characteristics of images
(Fig. 7(a,b,g)) than pose. Although a subset of its weights
is initialized by VGG-S, our network successfully captures
human poses out of diverse background contexts. Our em-
bedding often makes reasonable results even if human bod-
ies are partially occluded (Fig. 7(c,e)), and sometimes its
results look better than those by oracle (Fig. 7(d,f)). Our ap-
proach could fail when query pose is rarely observed from
the training data (Fig. 7(g)), and the explicit pose estimation
performs better than ours in that case. However, it often
fails to distinguish front- and back-facing poses (Fig. 7(a))
and is inaccurate when query pose is occluded (Fig. 7(c)).

6.4. VOC2012 Action recognition

The VOC2012 Action dataset [22] consists of 10 ac-
tion classes: jumping, phoning, reading, playing instrument,
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jump phone instr. read bike horse run photo comp. walk | Mean

PosE(full) 572 244 416 224 T71.1 694 770 307 348 608 | 489
PosE(upper) 387  26.1 39.7 284 662 62.1 656 233 335  47.0 | 43.1
PosE(full,upper) 57.5 306 485 325 768 73.8 787 339 429 609 | 53.6
VGG(img) 78.8 567 912 627 876 930 786 565 88.5 447 | 738
VGG(img) + PosE(full,upper) 833 569 91.8 644 929 968 877 619 889 672 | 792
VGG(img,box) 824 648 931 700 937 974 844 66.7 904 612 | 804
VGG(img,box) + PosE(full,upper) | 850 64.8 935 702 949 980 888 69.6 90.5 69.5 | 82.5

Table 1: APs (%) on the trainval set of VOC2012 Action.

\ jump phone instr. read bike horse run photo comp. walk | Mean

VGG(img) 844 610 932 631 924 938 839 614 852 513 | 770
VGG(img) + PosE(full,upper) 86.3 612 929 635 960 974 905 659 859 735 | 813
VGG(img,box) 88.3 68.0 947 681 968 972 89.1 702 869 633 | 822
VGG(img,box) + PosE(full,upper) | 885 68.0 945 678 97.6 98.1 925 73.0 87.0 746 | 842

Table 2: APs (%) on the test set of VOC2012 Action.

riding bike, riding horse, running, taking photograph, using
computer, and walking. The dataset also contains images of
others class that does not belong to any of the above classes.
The number of human subjects is 6,278 in the trainval set
and 6,283 in the test set. The bounding boxes of people
performing actions are provided in both training and test-
ing, and we use the boxes to standarize input images of our
embedding network as described in Section 4.2.

We first evaluate our pose embedding on the trainval set
to analyze its characteristics. We extract two pose embed-
ding vectors per image: one for full-body pose, denoted by
PosE(full), and the other for upper-body pose, denoted by
PosE(upper). For classification, SVMs with RBF kernels
are trained with the embedding vectors. We compute two
separate RBF kernels for PosE(full) and PosE(upper), and
also compute a combined one, PosE(full,upper), that simply
combines the two kernels by summation. The SVM param-
eter and kernel bandwidths are chosen by cross-validation.
The top part of Table 1 (1st-3rd rows) summarizes aver-
age precision (AP) scores of the classification results on the
trainval set. It shows that the combination PosE(full,upper)
improves over either PosE(full) or PosE(upper) alone.

Our pose embeddings, however, are not strong enough to
capture all action features beyond pose, e.g., people often
perform different actions with similar poses as illustrated in
Fig. 8. Such an ambiguity issue can be handled by exploit-
ing context information in nearby objects and background.
To this end, we combine our pose embedding vectors with
features from ImageNet pre-trained CNNs, VGG-16 and
VGG-19 [45], as follows. We apply VGG-16 to an origi-
nal image (not standarized) with multiple scales in a fully
convolutional manner, and obtain a 4,096-D activation vec-
tor, which is in turn /5 normalized. In a similar manner, we
extract a 4,096-D vector through VGG-19. These two vec-

Query

3 NNs in the embedding space

Z, 8

using computer

riding bike

using computer phoning

Figure 8: Nearest neighbors of VOC Action (trainval) im-
ages in the full-body pose embedding space. If the nearest
neighbors are from the same action class with the query,
they are colored in blue, otherwise in red. Even when our
pose embedding captures pose configurations well, the ac-
tion classes of the nearest neighbors are frequently incorrect
since semantically different actions can be performed from
similar poses.

tors are concatenated to obtain an 8,192-D feature vector
per image. We denote it by VGG(img). The same proce-
dure is done for the bounding box region so that another
8,196-D feature vector is calculated. We call it VGG(box).
VGG(img,box) denotes the concatenation of VGG(img) and
VGG(box), which is a 16,384-D feature vector. We refer
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| mAP
Oquab et al. [38] 70.2
Hoai [28] 76.3
Simonyan and Zisserman [45] 84.0
VGG(img,box) 82.2
VGG(img,box) + PosE(full,upper) | 84.2

Table 3: Comparison with state of the arts in VOC Action.

readers to [45] for more details about feature extraction
through VGG-16 and VGG-19.

For classification, we apply a linear kernel for the VGG
features, and combine it with those of PosE by simple sum-
mation. The AP scores of the combinations of VGG and
PosE is reported in the bottom part (4th-7th rows) of Ta-
ble 1. Note that VGG(img,box) in the table means our re-
production of [45]. As can be seen from the result, VGGs
are improved by combination with PosE(full,upper), espe-
cially for the classes like jumping, running, and walking,
where people do not interact with nearby objects thus pose
is more discriminative than context. It is also worth not-
ing that VGG(img) + PosE(full,upper) performs on par with
VGG(img,box) although the representation power of PosEs
is limited by the smaller network size and dimensionality
compared to VGG(box). This empirically confirms that our
embedding is complementary to VGGs and useful for action
recognition.

Table 2 reports APs of the combinations of VGGs and
PosEs on the test set. The result shows that PosEs enhances
the performance of walking class with a large margin, and
also substantially improves the performance in running and
taking photo classes. Our best performing model is also
compared with state of the arts in VOC Action in Table 3,
where VGG(img,box) + PosE(full,upper) outperforms other
methods with a small margin. Note that VGG(img,box),
our reproduction of [45], does not achieve the same per-
formance reported in [45] probably due to implementation
issues. We believe that our best model, that is VGG(img,box)
+ PosE(full,upper), will perform better when combined with
the original VGG(img,box) features.

6.5. PPMI action recognition

The PPMI dataset [62] contains images of people hold-
ing 7 musical instruments: bassoon, erhu, flute, French
horn, guitar, saxophone, and violin. In this experiment, we
consider a task of classifying whether a person is playing or
not playing. Performing this task may involve recognizing a
pose of persons holding the target instrument.

For each instrument and each action category, 100 train-
ing images and 100 test images are provided. Since all im-
ages in the datasets exhibit only upper-bodies, we apply the
upper-body pose embedding only. Although the images are
already standarized by an upper-body detector, scales and

[ 551 291 [62]1 [ PosE VGG V+P

bassoon 715 685 78.0 | 82.0 745 835
erhu 78.0 755 785 | 81.0 88.0 87.0
flute 845 79.0 90.5 | 96.5 98.5 99.0
Frenchhorn | 785 755 805 | 850 91.0 950
guitar 79.5 81.0 755 | 875 88.5 89.0
saxophone 76.0 765 785 | 820 85.0 88.0
violin 785 755 850 | 8.0 940 94.0
Average 78.1 759 809 | 85.7 88.5 908

Table 4: Classification accuracy on the PPMI dataset.

positions of people in the images vary substantially. For
each image, we thus crop multiple patches with different
scales from the center of the image, and aggregate embed-
ding vectors of the patches by max-pooling per dimension.
We train linear SVMs with the aggregated pose embedding
vectors, where the SVM hyper-parameter was estimated by
cross-validation on the training dataset. The classification
result is quantified and compared in Table 4.

Our approach, denoted by PosE, clearly outperforms the
previous results on this task [24, 35, 62] with a substan-
tial margin even without explicitly considering instruments.
Our method is also compared with a linear SVM on top
of 8,192-D feature vector from VGG-16 and VGG-19, that
is denoted by VGG. The feature vector is computed by the
same procedure as VGG(img) of Section 6.4. VGG demon-
strates a strong representation power on this task, outper-
forming all the others. By concatenating our pose embed-
ding vector with VGG feature, we achieve better classifica-
tion accuracies. Along with the previous experiments, this
demonstrates again that our pose embedding provides a use-
ful feature for pose-related tasks.

7. Conclusion

We have presented a deep embedding network for human
pose, which leverages available pose annotations and learns
a compact mapping from images to a pose-aware space. We
have empirically shown that our pose embedding is useful
for pose retrieval and action recognition, and that it further
improves action recognition performance when combined
with different types of features. We believe this thin-slicing
type of approach to pose understanding can be an effective
alternative for many challenging pose-related applications,
in particular, that require cost-efficient and implicit pose in-
formation. In future, we will investigate action recognition
in videos, spatio-temporal pose embedding, and more effec-
tive embedding with other types of loss functions.
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