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Abstract

Human eye fixations often correlate with locations of

salient objects in the scene. However, only a handful of

approaches have attempted to simultaneously address the

related aspects of eye fixations and object saliency. In

this work, we propose a deep convolutional neural network

(CNN) capable of predicting eye fixations and segmenting

salient objects in a unified framework. We design the ini-

tial network layers, shared between both the tasks, such

that they capture the object level semantics and the global

contextual aspects of saliency, while the deeper layers of

the network address task specific aspects. In addition, our

network captures saliency at multiple scales via inception-

style convolution blocks. Our network shows a significant

improvement over the current state-of-the-art for both eye

fixation prediction and salient object segmentation across a

number of challenging datasets.

1. Introduction

Among the various striking features of the human visual

system, the ability to discriminate and selectively pay at-

tention to a few regions in the scene over others, distinctly

sets it apart. This phenomenon of selective visual atten-

tion has been a topic of interest for researchers in the fields

of both neuroscience and computer vision over the past

few decades [1, 2]. Modelling this focus of attention, also

termed as visual saliency, not only gives an insight into hu-

man vision, but also has various applications such as image

retargetting [3], object recognition [4], visual tracking [5],

foveated video compression [6] etc.

Computational models for visual saliency often aim to

solve one of the two problems - Predict the locations where

an observer will fixate while free-viewing an image; Detect

and segment the objects in a scene which grab our immedi-

ate attention. Eye fixation locations are considered to be

indicative of the bottom-up visual attentional mechanism

in humans. Models to predict fixation locations output a

(a) (b) (c) (d) (e)
Figure 1. Illustrative images (a) with their corresponding eye fix-

ation predictions (b), groundtruth (c) and salient object segmenta-

tion predictions (d), groundtruth (e).

saliency map - ‘a topographical map representing the con-

spicuity of each pixel in the image’ [7]. The second task

of salient object segmentation requires the generation of a

pixel-accurate binary map indicating the presence of strik-

ing objects in the image. An example image with eye fixa-

tion and salient object segmentation maps generated by our

model along with the ground-truth maps are shown in Fig. 1.

Recent studies have shown that the two tasks of eye fixa-

tion prediction and salient object segmentation are corre-

lated [8, 9]. Human eye fixations are often found to be

guided by the locations of salient objects in the scene. This

hypothesis of task correlation is bolstered by the work of Li

et al. [9] who used a simple eye fixation based model for

segmenting salient objects in an image and achieved state-

of-the-art results. Nevertheless, only a handful of the works

in visual saliency attempt to solve these two problems to-

gether [9]. In this work, we propose a deep network model

which performs both these tasks simultaneously.

Early approaches for modeling saliency were driven

by manually crafting features [10, 11] for over-segmented

image regions and estimating their saliency using ma-

chine learning or optimization methods. However, recent

advances in deep learning and the availability of large

datasets have enabled models to perform end-to-end learn-

ing. Specifically, the success of Convolutional Neural Net-

works (CNNs) for various computer vision tasks, has led to

a shift in focus from a paradigm of devising innovative fea-

tures and techniques of combining them, to that of learning

complex representations from data directly.
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In this work, we propose a deep convolutional architec-

ture for simultaneously predicting the human eye fixations

and segmenting salient objects in an image. Our network

has a branched architecture, where the shared layers, com-

mon to both the tasks, are designed to extract the crucial fac-

tors for saliency such as object level semantics and global

context. The layers specialized for each of the tasks tap fea-

tures from these shared layers using multi-scale convolution

modules and process them further to obtain the final predic-

tions. Our deep network has been evaluated on multiple

datasets for both the tasks and is shown to achieve state-of-

the-art performance across multiple metrics.

2. Related Work

In this section, we discuss a few important works in the

areas of visual saliency and deep convolutional networks.

2.1. Visual Saliency

The classic work of Itti et al. [2] considers low-level

features such as color and edge orientation at multiple

scales which are combined using a neural network to pre-

dict saliency maps. Bruce et al. [12] attributed saliency to

image patches using the criterion of maximizing the self-

information derived from color based features. Another

landmark work in saliency, by Harel et al. [13], obtained

pixel saliency values by calculating equilibrium distribution

of Markov chains constructed over image maps generated

from low level features.

In addition to low-level features, Judd et al. [14] pro-

posed a learning based approach which also uses high-level

features from person and face detectors. Borji et al. [15]

examined the role of additional high-level descriptors such

as the presence of text and cars in predicting saliency.

While early saliency works were primarily aimed to-

wards generating saliency maps for predicting eye fixa-

tion locations, the works by Liu et al. [16] and Achanta

et al. [17] introduced the notion of object level saliency.

These works defined immediate attention-grabbing objects

in a scene as salient objects and formulated the problem

of salient object segmentation to predict a pixel-accurate

binary mask of the salient objects in a given test image.

Achanta et al. [17] proposed a frequency domain approach

for segmenting salient objects using low-level features of

color and luminance. Perazzi et al. [10] obtained an ab-

stract image representation having homogeneous regions by

removing unnecessary details and assigned saliency scores

based on the factors of a region’s uniqueness and spatial

distribution. Segmentation by assigning saliency scores to

over-segmented image regions (super-pixels) using various

priors (background [18], objectness [19]) has been another

popular approach.

There have been only a few works in visual saliency

which have explored the relation between eye fixations and

salient objects. Mishra et al. [20] segmented salient objects

using fixation points as identification markers on objects

and found an optimal contour around the fixation points.

Li et al. [9] proposed a salient object segmentation model

which used the saliency maps from existing fixation pre-

diction algorithms to classify image regions marked by an

object proposal algorithm as a salient object.

2.2. Deep Convolutional Nets

Deep Convolutional Networks, popularized by the semi-

nal work of Krizhevsky et al. [21], brought a paradigm shift

in vision research from hand-crafting of features to learning

them from data. While initial deep networks were aimed to-

wards image classification, they were successfully adapted

to pixel-level image tasks like semantic object segmenta-

tion [22] and depth estimation [23]. Fully convolutional

nets are a particular flavour of CNNs designed to make

structured predictions on the image grid. They were first

used by Long et al. [22] in their work of semantic object

segmentation. Long et al. converted fully connected lay-

ers in existing image classification nets into convolutional

layers for obtaining pixel-level predictions. Further, they

introduced novel deconvolutional layers for making predic-

tions at the original image resolution. Alternately, Chen

et al. [24], adopted a simpler approach for retaining spa-

tial resolution to the extent possible, by removing stride in

some of the constituent layers of the network. They also in-

troduced convolutional layers with holes which allowed the

filters to have receptive fields larger than their kernel sizes.

In our network, we use these layers with holes in order to

capture the global context of the scene.

Recently, in the realm of salient object segmentation,

Zhao et al. [25] proposed a multi-context approach using

deep convolutional networks. They considered two differ-

ent networks operating in parallel, over a subsampled and

upsampled image patch around each superpixel. The net-

work operating on subsampled image region was consid-

ered to capture global context while the network operating

on upsampled region captured local context. The output

features from the two networks were concatenated for de-

termining the saliency of the corresponding superpixel.

In eye fixation prediction, Liu et al. [26] took an ap-

proach similar to that of Zhao et al. [25] by considering

multiple convolutional networks, each operating at a partic-

ular scale in the image pyramid representation. This con-

struction of multiple CNNs was termed as Multiresolution-

CNN and was found to be efficient at characterizing the

low-level and high-level semantics of the image.

In contrast to the works of [25, 26], our model captures

the semantic context at various levels efficiently through a

single network, by leveraging intermediate representations

in the deep feature hierarchy for detecting saliency. The

multi-scale aspects of saliency are captured through convo-

lutional kernels of different sizes operating in parallel.
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Figure 2. Architecture overview of the proposed network for simultaneously predicting human eye fixations and segmenting salient objects.

3. Network Architecture

We propose a fully convolutional deep network with a

branched architecture for simultaneously predicting eye fix-

ations and segmenting salient objects. Layers specialized to

these two tasks branch out from a central shared pipeline in

the network. This shared pipeline comprises of a series of 6

convolution blocks (shown in gray bounding box in Fig. 2).

Inspired from VGG-16 [27], the layers in first five blocks

(CONV-1 to CONV-5) of the shared pipeline have small ker-

nels of spatial size 3 × 3. Small kernels allow the network

to have a very deep architecture with a low memory require-

ment while making the model more discriminative. All the

five convolution blocks (CONV-1 to CONV-5) end with a max-

pool layer and every convolutional layer in the network is

followed by a ReLU non-linear activation. The architec-

tural details of these 5 convolution blocks are described in

Table 1. In the VGG-16 network, the spatial dimensions of

the data blob are halved after each block using a stride of 2
in the block’s max-pool layer. This strategy of spatially sub-

sampling the data blob is crucial in classification networks

for keeping the computational demand low, as data blobs

tend to have a large number of channels (usually > 1000)

at fully connected layers to cater to the large number of

classes. However, for fully convolutional networks, the spa-

tial resolution of the output blob is also important as they are

primarily trained for per-pixel recognition tasks. We retain

the spatial resolution of the data blob at 1/8 times that of the

original image after the third convolution block (CONV-3).

We accomplish this by reducing the stride value from 2 to 1
in the max-pool layers of fourth and fifth convolution blocks

(CONV-4, CONV-5).

During training, the first five convolution blocks (CONV-1

to CONV-5) of our network are initialized with weights of

the VGG-16 network, which was originally trained over 1.3

million images of the ImageNet [28] dataset. In the VGG-

16 net, the filters of the fifth block (CONV-5) were trained

to operate on a data blob with a resolution of 1/16 times

the original image, unlike our network where the blob has

a resolution of 1/8 times the image. We handle this scale

mismatch by introducing holes of size 2 in filters of the fifth

block which doubles their receptive field [24, 29]. This al-

lows the convolutional layers in fifth block to operate on the

blob at the scale that they were originally trained for. We re-

fer the readers to [24] for a more elaborate description of

convolutional layers with holes.

Capturing Global Context: Saliency is the distinctive

quality of an entity which makes it stand out from its neigh-

bors and captures our immediate attention [30]. Efficient

detection of these salient regions in an image would require

the model to capture the global context of the image before

assigning scores to its individual regions. To facilitate this,

we employ convolutional layers with very large receptive

fields in the sixth convolution block (CONV-6). Each of the

layers in this block operates with filters of kernel size 5 and

hole size 5, thus achieving an effective receptive field of

21× 21. Similar to the fourth and fifth convolution blocks,

the sixth block also ends with a max-pool layer of stride 1.

3.1. Salient Object Segmentation

Salient object segmentation consists of two sub-tasks:

detecting the salient objects in the image and determining

the spatial extent of the object by identifying its bound-

aries. While detection of a salient object requires the im-

age regions to be characterized using contextually rich se-

mantic features, the task of finding the object’s spatial ex-

tent requires lower level semantics like colour, contrast, tex-

ture and part composition. These two kinds of features are

referred to as global and local contexts in a recent deep

saliency work [25], where two different networks are used

for extracting them. However, previous studies [31] on deep

architectures have shown that early layers in a convolutional

network capture low-level image aspects while the later lay-
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ers capture high-level semantics. Our model captures fea-

tures from both the local and global contexts efficiently us-

ing this inherent feature hierarchy present in deep networks.

Recently, Hariharan et al. [32] have shown that informa-

tion of interest for pixel-level tasks is spread across all the

layers of a convolutional network. They introduced the con-

cept of hypercolumns, defined as the concatenation of fea-

tures corresponding to a spatial location across all the layers

of the deep network. These features were shown to be effec-

tive for fine-grained localization tasks. We extract features

from the max-pool layers of CONV-2, CONV-4, CONV-5 and

CONV-6 blocks for the task of salient object segmentation.

The features from these blocks are tapped using multi-

scale convolution kernels and are concatenated together.

Li et al. [33] and Zhao et al. [25] have observed that

saliency can be captured better when semantics are con-

sidered across multiple scales by upsampling and down-

sampling image patches. Inspired by the recent success of

GoogLeNet [34], we capture this multi-scale semantic in-

formation using inception modules. Each inception module

operates on its input feature maps with filters of different re-

ceptive fields i.e., 1×1, 3×3 and 5×5 capturing information

from multiple scales. In order to reduce the computational

costs, we replace the usual 5 × 5 kernel with a 3 × 3 ker-

nel with 2 holes which will result in an effective receptive

field of 5×5. We also reduce the number of channels in the

inputs to 3 × 3 and 5 × 5 layers in the inception modules,

using a 1× 1 layer, similar to [34]. Apart from reducing the

computational load, these 1 × 1 layers aid in introducing

additional non-linearity.

Using inception modules to extract features from the in-

termediate layers, we obtain a multi-scale representation of

the hierarchical deep features. Also, having multiple path-

ways via the inception modules (INCP-1 to INCP-5) pro-

vides a plausible solution to the issue of vanishing gradients

while back-propagating error through the network [34].

The concatenated output from the inception modules is

fed to a block (Seg.Conv) with three convolutional layers

each of a kernel size 3 × 3. The resulting output is fed to a

1× 1 convolutional layer (Seg.Final) to predict the object

saliency map at a spatial resolution of 1/8 times the original

image.

3.2. Predicting Eye Fixations

The second task of predicting eye fixation saliency maps

requires the model to estimate the saliency score for every

pixel in a given test image. The ground-truth saliency map

for this task is generated by blurring the observer fixation

locations on the image with a Gaussian kernel of a constant

variance [8]. This blurring is done to take care of the noise

in eye tracker equipment and the saccade landing of the ob-

server. These saliency maps generally tend to be blurry,

and do not have sharp boundaries unlike the groundtruth of

Block Layer Kernel Stride Holes Output Size

CONV-1 2 conv 3x3 1 1 417x417x64

max-pool 3x3 2 1 209x209x64

CONV-2 2 conv 3x3 1 1 209x209x128

max-pool 3x3 2 1 105x105x128

CONV-3 3 conv 3x3 1 1 105x105x256

max-pool 3x3 2 1 53x53x256

CONV-4 3 conv 3x3 1 1 53x53x512

max-pool 3x3 1 1 53x53x512

CONV-5 3 conv 3x3 1 2 53x53x512

max-pool 3x3 1 1 53x53x512

CONV-6 3 conv 5x5 1 5 53x53x512

max-pool 3x3 1 1 53x53x512

INCP-1 conv a 1x1 2 1 53x53x24

conv b 1x1 1 1 105x105x36

conv c 1x1 1 1 105x105x16

conv d 3x3 2 1 53x53x72

conv e 3x3 2 2 53x53x32

INCP-2 conv a 1x1 1 1 53x53x24

conv b 1x1 1 1 53x53x36

conv c 1x1 1 1 53x53x16

conv d 3x3 1 1 53x53x72

conv e 3x3 1 2 53x53x32

INCP-3/ conv a 1x1 1 1 53x53x32

INCP-4/ conv b 1x1 1 1 53x53x80

INCP-5 conv c 1x1 1 1 53x53x32

conv d 3x3 1 1 53x53x160

conv e 3x3 1 2 53x53x64

Fix.Conv/

Seg.Conv
3 conv 3x3 1 1 53x53x512

Fix.Final/

Seg.Final
1 conv 1x1 1 1 53x53x1

Table 1. Architectural details of the proposed deep convolutional

network for segmenting salient objects and predicting eye fixations

salient object segmentation [8].

The assignment of saliency scores requires characteriz-

ing local regions in an image with semantic features while

incorporating the global context of the entire scene [29].

The layers in CONV-6 block, owing to their large receptive

fields (21×21), can provide contextually rich semantic fea-

tures necessary for estimating the saliency score of local im-

age regions. Following the multi-scale approach described

earlier for salient object segmentation, we tap the max-pool

layer of the CONV-6 block using an inception module with

layers of receptive fields: 1 × 1, 3 × 3 and 5 × 5. The out-

put from this inception module is fed to a block with three

convolutional layers (Fix.Conv) of spatial size 3×3, which

is followed by a 1 × 1 convolution layer (Fix.Final) for

estimating the fixation saliency map.

4. Refining Saliency Maps

Our network predicts the saliency maps at a sub-sampled

resolution of 1/8 times the original image resolution.
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Ground-truth saliency maps for eye fixations are usually

smooth. Hence, we directly interpolate the network’s fix-

ation saliency output, using bi-cubic interpolation to obtain

the final saliency map.

In the case of salient object segmentation, the ground-

truth maps are binary and have sharp edges at the object

boundaries. Since the network’s salient object predictions

are coarse in resolution, we use the fully connected Condi-

tional Random Field (CRF) formulation of Phillip et al. [35]

to obtain the final pixel-accurate segmentation prediction.

We construct a dense graph on the image grid at its orig-

inal resolution by considering each pixel as a node. The

unary costs for a node to take the labels - salient and back-

ground are defined using the network’s object saliency map

prediction. The object saliency map is bicubic interpolated

to the original image resolution and transformed using a sig-

moid activation to obtain a pixel-level saliency scores. This

saliency score of a pixel is assumed to be the unary cost for

the corresponding graph node to take the background label.

The additive inverse of this object saliency map is taken to

be the unary cost for the salient label.

We use the pair-wise formulation of Phillip et al. [35] for

defining the pair-wise cost between two nodes. This formu-

lation connects every pixel in the image to every other pixel

with an edge resulting in a densely connected graph. The

pair-wise cost for two nodes taking different labels is de-

fined as a function of the corresponding pixels’ color simi-

larity and spatial proximity. Specifically, the pair-wise cost

ψ(i, j) for two nodes i, j is defined as

ψ(i, j) =

waexp

appearance kernel
︷ ︸︸ ︷
(

−
|pi − pj |

2

σ2
ap

−
|Ii − Ij |

2

σ2
ai

)

+ws

smoothness kernel
︷ ︸︸ ︷

exp

(

−
|pi − pj |

2

σ2
sp

)

Here wa, ws indicate the relative weights and

σap, σai, σsp are the standard deviation values of the Gaus-

sian kernels in the appearance and smoothness terms. pi, pj
are the position vectors and Ii, Ij are the RGB vectors of

the pixels i, j.

The overall energy to be minimized, which is a combi-

nation of unary φu(i) and pair-wise ψp(i, j) terms, can be

expressed as

EG =




∑

∀i∈VG

φu(i) +
∑

∀(i,j)∈CG

ψp(i, j)





where VG andCG denote the nodes and edges in the con-

structed dense graph respectively.

Every pixel is binary classified into the labels of salient

and background by minimizing the above energy using the

approach of mean-field approximation [35].

5. Experimental Evaluation

5.1. Network Training

We train the proposed network on MSRA10K [17] and

SALICON [38] datasets. MSRA10K dataset comprises of

10, 000 images picked from a variety of scenarios - natural

scenes, animals, indoor, outdoor, etc. Each of these im-

ages is provided with a pixel-accurate ground truth binary

mask indicating the salient object and is used for training

the network for segmentation task. SALICON is a saliency

dataset with 15, 000 images where eye fixation annota-

tions are simulated through mouse movements of users on

blurred images. The authors of [38] show that the mouse-

contingent saliency annotations strongly correlate with ac-

tual eye-tracker annotations. We use the SALICON dataset

for training the network to predict eye fixations .

For training the network, we use a mini-batch of 8 im-

ages in each iteration, 4 of which have segmentation ground

truth and the rest have fixation ground truth. CONV-1 to

CONV-6 blocks, as shown in Fig. 2, are shared between both

the tasks of salient object segmentation and eye fixation pre-

diction and are trained for both the tasks simultaneously us-

ing all the images in the batch. The layers of the network

specialized to each of the tasks are trained using only those

images in the batch having the corresponding ground-truth.

The first five convolution blocks (CONV-1 to CONV-5)

in the network are initialized from the weights of VGG-

16 [27]. The weights in all the other convolutional layers

and inception blocks are initialized from zero mean Gaus-

sian with a standard deviation of 0.01 and the biases are set

to 0. The layers in (CONV-1 to CONV-5), whose weights are

initialized from VGG-16, are trained with a learning rate

of 5 × 10−8 while the rest of the layers in the network are

trained with a higher learning rate of 5× 10−7.

Before feeding the input images and ground-truth maps

to the network, we scale the images such that the larger di-

mension is 417 and zero pad along the smaller dimension to

bring the image to a fixed size of 417×417 pixels. The net-

work is trained using stochastic gradient descent with a mo-

mentum of 0.9. The entire training procedure takes about 1
day for completion on Nvidia TITAN X GPU with deeplab

version [24] of caffe deep learning framework [39].

5.2. Datasets and Evaluation

We evaluate the proposed approach on multiple datasets

with images from a wide-variety of scenarios and varying

resolutions, number of objects and level of background clut-

ter. A good model should perform well consistently, on

most of the datasets. PASCAL-S [9], DUT-OMRON [40],

iCoSeg [41] and ECSSD [42] datasets consisting of 850,

5168, 643 and 1000 images respectively are used for eval-

uating the model on the task of salient object segmenta-

tion. PASCAL-S [9], DUT-OMRON [40], MIT1003 [14]
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Image SF[10] PCA[36] DRFI[11] SMD[37] MDF[33] Proposed Proposed GT

(CNN) (CNN+CRF)
Figure 3. Qualitative results of our approach along with other state-of-the-art methods for salient object segmentation. Proposed (CNN)

refers to the results from the CNN alone, whereas the Proposed (CNN+CRF) refers to the final binary segmentation results obtained after

refining the maps obtained from CNN using CRF. The object saliency maps of other state-of-the-art methods and Proposed (CNN) are

thresholded such that their Fw
β values are maximized.

and IS [43] datasets consisting of 850, 5168, 1003 and 235

images respectively are used for evaluating fixation predic-

tion.

We used Mean Absolute Error (MAE) and Weighted

Fβ-Measure to evaluate the performance of our network

for salient object segmentation. Earth Mover’s Distance

(EMD), Normalized Scanpath Saliency (NSS) and the

shuffled-Area Under Curve (s-AUC) were used for evaluat-

ing the performance on eye-fixation prediction. We briefly

describe each of these metrics in the following section.

5.2.1 Salient Object Segmentation

Mean Absolute Error (MAE) : MAE is computed as the

mean of pixel-wise absolute difference between the contin-

uous object saliency map and the binary ground-truth .

Weighted Fβ-Measure (Fw

β ) : Weighted Fβ-measure [44]

evaluates a binarized map with respect to ground truth based

on weighted precision and recall values. It combines these

two values into a single number by taking their weighted

harmonic mean. Similar to other works, we consider β2 =
0.3, thereby giving more importance to precision.

For binarizing the object saliency map to obtain the

salient object segmentation, we follow the procedure de-

scribed in [45]. Initially, the saliency map is binarized by

thresholding at various intermediate values in the range of

[0 255] and the Fw
β is computed for each of them. We use

the mean and maximal Fw
β values to evaluate the salient ob-

ject segmentation capabilities of a model.

5.2.2 Predicting Eye Fixations

Earth Mover’s Distance (EMD) : EMD considers the

ground-truth and predicted saliency maps to be two prob-

ability distributions and measures the cost of transforming

one distribution to the other.

Normalized Scanpath Saliency (NSS) : Normalized Scan-

path Saliency is the average of the response values at eye

fixation locations in a model’s saliency map, normalized to

have zero mean and unit standard deviation.

shuffled - Area Under Curve (s-AUC) : sAUC is the area

under the ROC curve of true positives vs. false positives

during the binary classification of fixation and non-fixation

points using saliency map at various thresholds. The non-

fixation points are taken from fixations on other images in

the dataset to tackle the issue of centre-bias in eye fixations.

5.3. Results

5.3.1 Salient Object Segmentation

The quantitative results obtained by the proposed method on

PASCAL-S, DUT-OMRON, iCoSeg and ECSSD datasets

for salient object segmentation are shown in Table 2.

We compare our model against the methods – SF [10],

PCA [36], DRFI [11], SMD [37] and MDF [33]with respect

to the metrics discussed in Sec. 5.2.1.

As evident from the table, our model achieves state of

the art results on all the datasets across these metrics. The
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Image ITTI[2] GBVS[13] AWS[46] BMS[47] eDN[48] Junting[49] Proposed GT

Figure 4. Qualitative results of our approach along with other state-of-the art methods for eye fixation prediction.

qualitative results for salient object segmentation are shown

in Fig. 3. As shown in the figure, our method performs

well in a variety of challenging cases, e.g., multiple dis-

connected objects (fourth row), low contrast between object

and background (second row), cluttered background (sixth

row). We can also see that our method captures local fea-

tures like edges and boundaries quite well (fifth row) com-

pared to other methods. In the first image, while most of the

existing methods fail to predict the person’s legs as salient,

our model correctly identifies the entire person as salient.

5.3.2 Predicting Eye-Fixations

The quantitative results obtained by the proposed method on

PASCAL-S, DUT-OMRON, MIT1003 and IS datasets for

eye-fixation prediction are shown in Table 3. We quantify

our results in terms of the previously discussed EMD, NSS

and s-AUC metrics. Results illustrate that our method out-

performs existing methods with respect to NSS and EMD

by a huge margin and achieves state of art results with re-

spect to s-AUC as well.

The qualitative results for eye fixation prediction are

shown in Fig. 4. The proposed network is able to detect

saliency arising from faces of both humans (third row) and

animals (fourth row) efficiently. From the images in fifth

and sixth rows, we also note that our model can correctly

detect the text and sign boards as salient. Our network

also captures multiple salient objects (third row) and weighs

their relative importance in the scene appropriately.

In addition to the above four datasets, we further evaluate

our model on another large-scale test set – SALICON which

comprises of 5000 test images. We obtain the metric scores

on this dataset by submitting our fixation predictions to the

SALICON challenge website. Results, shown in Table. 4

illustrate that our method outperforms the winner of LSUN

Saliency Challenge 2015, JuntingNet [49, 50], a CNN based

model, by a significant margin.

For both the tasks of eye fixation prediction and salient

object segmentation, our model has been evaluated in a

cross-dataset manner i.e., the train and test sets have been

taken from different datasets. Inspite of this, our model per-

forms consistently well across various metrics on both the

tasks highlighting its generalizability.

5.3.3 Simultaneous versus Independent Training

In order to understand the effect of simultaneously training

the network, we train relevant parts of the network indepen-

dently for the tasks of salient object segmentation and eye

fixation prediction. We compare the results from these inde-

pendently trained models with the proposed simultaneously

trained model on DUT-OMRON dataset. Results, shown

in Table. 5, illustrate that simultaneously training the net-

work retains the performance of independently trained mod-

els across MAE, sAUC metrics while giving a small im-

provement across Fw
β , EMD, NSS metrics. Also, a model

which can simultaneously predict eye fixations and segment

salient objects is computationally efficient compared to in-

dependent models as the former shares the low-level feature

computations for both tasks.
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Dataset Metric SF PCA DRFI SMD MDF Proposed Proposed

[10] [36] [11] [37] [33] (CNN) (CNN+CRF)

MAE ↓ 0.26 0.25 – 0.21 0.15 0.12 0.10

PASCAL-S [9] mean Fw
β ↑ 0.33 0.35 – 0.49 0.64 0.75 0.77

max Fw
β ↑ 0.43 0.49 – 0.56 0.68 0.78 0.77

MAE ↓ 0.27 0.21 0.14 0.17 0.09 0.09 0.07

DUT-OMRON [40] mean Fw
β ↑ 0.30 0.34 0.48 0.45 0.59 0.65 0.68

max Fw
β ↑ 0.42 0.46 0.58 0.53 0.61 0.69 0.68

MAE ↓ 0.25 0.20 0.14 0.14 0.10 0.10 0.08

iCoSeg [41] mean Fw
β ↑ 0.36 0.42 0.58 0.61 0.67 0.76 0.79

max Fw
β ↑ 0.54 0.58 0.67 0.68 0.74 0.77 0.79

MAE ↓ 0.29 0.25 0.16 0.17 0.11 0.08 0.06

ECSSD [42] mean Fw
β ↑ 0.33 0.39 0.59 0.58 0.74 0.85 0.88

max Fw
β ↑ 0.46 0.54 0.71 0.67 0.77 0.87 0.88

Table 2. Quantitative results of our approach on salient object segmentation compared against other state-of-the art methods on PASCAL-

S, DUT-OMRON, iCoSeg and ECSSD datasets. Proposed (CNN) refers to the results using the CNN alone, whereas the Proposed

(CNN+CRF) refers to the final results obtained after refining the CNN’s output using CRF. The best results are shown in red and the

second best in blue. ↑ indicates higher scores on the metric are better and ↓ indicates lower scores on the metric are better.

Dataset Metric ITTI GBVS AWS BMS eDN MrCNN JuntingNet Proposed

[2] [13] [46] [47] [48] [26] [49]

s-AUC ↑ 0.64 0.65 0.67 0.67 0.65 – 0.69 0.72

PASCAL-S [9] EMD ↓ 1.21 1.16 1.38 1.32 1.29 – 1.03 0.73

NSS ↑ 1.30 1.36 1.12 1.28 1.42 – 1.90 2.22

s-AUC ↑ 0.78 0.81 0.78 0.79 0.80 – 0.83 0.83

DUT-OMRON [40] EMD ↓ 1.47 1.32 1.62 1.58 1.56 – 1.37 1.03

NSS ↑ 1.54 1.71 1.51 1.66 1.33 – 2.03 3.02

s-AUC ↑ 0.66 0.66 0.69 0.69 0.66 0.71 0.68 0.73

MIT1003 [14] EMD ↓ 2.33 2.19 2.54 2.40 2.39 2.30 1.91 1.49

NSS ↑ 1.06 1.17 1.07 1.19 1.24 1.28 1.60 2.08

s-AUC ↑ 0.66 0.67 0.72 0.71 0.61 – 0.65 0.70

IS [43] EMD ↓ 1.30 1.22 1.49 1.43 1.49 – 1.11 0.77

NSS ↑ 1.50 1.58 1.58 1.74 1.27 – 1.72 2.30

Table 3. Quantitative results of our approach on eye fixation prediction compared against other state-of-the-art methods on PASCAL-S,

DUT-OMRON, MIT1003 and IS datasets. The best results are shown in red and the second best in blue.

LSUN Saliency Challenge 2015 - SALICON

Method s-AUC↑ CC↑ AUC-Borji↑ NSS↑

Proposed 0.76 0.78 0.88 2.61

JuntingNet [49] 0.67 0.60 0.83 –

Table 4. Quantitative results of our approach on SALICON Test set

compared against JuntingNet - the winner of LSUN 2015 Saliency

Challenge. The best results are shown in red.

6. Conclusion

In this work, we have proposed a novel deep convolu-

tional architecture capable of simultaneously predicting hu-

man eye fixations and segmenting the salient objects in an

image. Our network captures the global context, which

is crucial for saliency, through layers with large receptive

fields and handles multi-scale aspects of saliency using in-

ception modules. Also, our network has a branched archi-

tecture to efficiently capture both the low-level and high-

level semantics necessary for salient object segmentation.

Simultaneous vs. Independent Training

Segmentation Fixation

Method MAE ↓ Fw
β ↑ sAUC ↑ EMD ↓ NSS ↑

Simul. 0.07 0.68 0.83 1.03 3.02

Indp. 0.07 0.67 0.83 1.07 2.80

Table 5. Quantitative Results on DUT-OMRON dataset when the

networks are trained simultaneously versus independently for the

tasks of eye fixation prediction and salient object segmentation.

The best results are shown in red.

We evaluate our method on four datasets of eye fixation

prediction and salient object segmentation and show that it

outperforms the existing state-of-the-art approaches.
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[32] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hy-

percolumns for object segmentation and fine-grained local-

ization,” in CVPR, 2015.

[33] G. Li and Y. Yu, “Visual saliency based on multiscale deep

features,” arXiv preprint arXiv:1503.08663, 2015.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich, “Going deeper with convolutions,” arXiv preprint

arXiv:1409.4842, 2014.
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