
Incremental Object Discovery in Time-Varying Image Collections

Theodora Kontogianni Markus Mathias Bastian Leibe

Visual Computing Institute, Computer Vision Group

RWTH Aachen University

{kontogianni, mathias, leibe}@vision.rwth-aachen.de

Abstract

In this paper, we address the problem of object discovery

in time-varying, large-scale image collections. A core part

of our approach is a novel Limited Horizon Minimum Span-

ning Tree (LH-MST) structure that closely approximates the

Minimum Spanning Tree at a small fraction of the latter’s

computational cost. Our proposed tree structure can be cre-

ated in a local neighborhood of the matching graph dur-

ing image retrieval and can be efficiently updated whenever

the image database is extended. We show how the LH-MST

can be used within both single-link hierarchical agglomer-

ative clustering and the Iconoid Shift framework for object

discovery in image collections, resulting in significant ef-

ficiency gains and making both approaches capable of in-

cremental clustering with online updates. We evaluate our

approach on a dataset of 500k images from the city of Paris

and compare its results to the batch version of both cluster-

ing algorithms.

1. Introduction

Social media platforms have become favorite storage and

sharing sites for all kinds of images. A large part of those

images are touristic photos, resulting in a dense image cov-

erage of famous monuments and landmarks up to the scale

of entire cities [8, 2]. This has created a call for computer

vision algorithms that can perform efficient object discov-

ery [16, 15, 22], clustering, and matching in image collec-

tions for applications such as large-scale 3D reconstruction

[13, 1, 7], scene summarization [19], automatic image an-

notation [8], or visual search [24, 2].

However, the content of large-scale image repositories is

never static. Millions of images are added to such reposito-

ries each day, while others are withdrawn or deleted. Cur-

rent object discovery algorithms [16, 15, 24, 2, 22] do not

yet address this issue. They typically operate in a static set-

ting, making it necessary to re-run the entire clustering pro-

cess whenever the underlying image database changes, even

though only a small part of the clusters may be affected

by the changes. Image retrieval and recognition web ser-

vices using those algorithms waste thousands of core hours

of computation because of this.

Even leading providers of visual search engines such as

Google are bound to rebuild the clustering from scratch

every week [personal communication] due to changes in

the image database. Currently this problem of dynamic

database changes is not well researched in the community

despite its large effect on practical applications.

In this paper, we address the image clustering and object

discovery problem in an incremental setting. We propose a

novel clustering method that allows for efficient reuse of the

stored data. A key idea of this paper is that many cluster-

ing methods can be efficiently implemented with the help of

a spanning tree. In order to enable incremental clustering,

we therefore propose efficient techniques for incrementally

constructing and updating the spanning tree. Because of the

incremental updates, information about unaffected clusters

can be preserved and only those clusters need to be recom-

puted that contain updated parts of the spanning tree.

At the core of our approach is a novel Limited Hori-

zon Minimum Spanning Tree (LH-MST) data structure that

closely approximates a Minimum Spanning Tree (MST),

while being significantly faster to construct and to update

whenever new images are added to the matching graph.

The LH-MST can be used in any object discovery approach

that operates on spanning trees, such as single-link cluster-

ing [16, 8, 24] or Iconoid-Shift mode estimation [22, 23].

In contrast to a regular MST that always requires the full

matching graph to be known a priori, an LH-MST can be

computed starting from a local seed, making it suitable for

local exploration of a matching graph through Query Ex-

pansion [5]. We experimentally verify that in realistic use

cases, the differences to a regular MST are minimal, making

our algorithm an efficient alternative for parallel and dis-

tributed clustering applications.

We demonstrate our approach’s practical feasibility for

large-scale incremental object discovery by applying it to

the Iconoid Shift (IS) object discovery approach [22, 23].

As our results will show, replacing the MST by an LH-MST
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translates to a 5-fold improvement in runtime already dur-

ing batch operation. In addition, we experimentally show

that IS with LH-MST achieves stable incremental cluster-

ing results even when the image database is extended by a

significant fraction.

In detail, this paper makes the following contributions.

(1) We propose a novel LH-MST spanning tree structure,

which approximates the MST and which can be incremen-

tally updated very efficiently. (2) We show how this tree

structure can be used for efficient approximative single-link

clustering and how it can be incorporated into the Iconoid

Shift approach [22] for large-scale object discovery in im-

age collections. (3) We verify experimentally that the result-

ing IS using LH-MST (or LH-IS) approach achieves very

similar results as the offline version of IS, while being both

considerably faster and capable of online updates of a sig-

nificant fraction of the image database.

Related Work. Object discovery approaches aim at find-

ing clusters of images showing the same object or landmark

building in large image collections. The standard proce-

dure for this is to apply local feature based matching tech-

niques [14] to build up a matching graph of images and to

then subdivide the connected components of this matching

graph into image clusters. A large range of clustering meth-

ods have been proposed for this step, including single-link

hierarchical agglomerative clustering [16, 8, 24], spectral

clustering [15, 12, 9], eigenvector centrality [10], spherical

k-means [19], Kernel Vector Quantization [2] and Medoid

Shift mode estimation [22, 23]. Because of the large size

of the datasets to be mined, runtime efficiency and ease of

parallelization are a prime concern.

In this paper, we focus on two classes of object discov-

ery algorithms that have proven their worth in large-scale

applications: single-link clustering [16, 8, 24] and Iconoid

Shift [22, 23]. Single-link clustering is directly related to

the Minimum Spanning Tree (MST). Given the MST of

a graph, the corresponding single-link clusters can be ob-

tained by cutting all MST edges above a chosen distance

threshold [17]. Iconoid Shift [22] uses Medoid Shift mode

estimation with a special kernel in order to find images that

have a locally maximal mutual homography overlap with

their neighbors. Those images often correspond to central,

iconic views of a landmark building, and the overlapping

images under the kernel form the resulting cluster. In order

to be able to apply the Medoid Shift formalism, the used dis-

tance measure needs to fulfill the triangle inequality. Since

this is usually not the case for local-feature based matching

scores, IS defines a transitive pairwise image distance mea-

sure that is computed over the edges of an MST. In practice,

the MST construction step is responsible for a significant

fraction of both clustering algorithms’ runtime.

As shown in [20, 3], the MST of a graph with N nodes

can be updated in O(N) when a new node is added to the

graph, which is simultaneously the lower bound for an ex-

act update. This may not seem like much, but the key issue

here is that such an exact update requires the full matching

graph to be available on a single machine. For practical ob-

ject discovery in large-scale image databases, even individ-

ual connected components of the matching graph may get

so large that processing them on a single computing node

becomes inefficient (in our experiments with 500k images,

the largest connected component comprises > 50k images).

We therefore aim at an approximation of the MST that can

be locally grown from a seed image, such that computation

can be distributed over a computing cluster.

2. Clustering Methods for Object Discovery

In this paper we are primarily interested in performing

efficient object discovery in large image collections. To that

end, we propose a novel tree structure which can speed-

up MST based clustering algorithms and has the additional

benefit of allowing incremental database updates without

the need of rebuilding the entire database. In the follow-

ing we will review two such clustering algorithms which

rely on the creation of an MST. In the remainder of the pa-

per we will then show that these algorithms benefit from our

proposed MST approximation.

2.1. Single­Link Agglomerative Clustering

Single-Link Agglomerative Clustering is a widely used

clustering method especially in the landmark discovery

community [16, 8, 24]. It offers the advantage of creat-

ing clusters without any assumptions on their shape and

the number of clusters. One of its drawbacks is that it is

prone to long chain-like clusters that require rigorous post-

processing in order to achieve competitive results. Addi-

tionally it does not allow for incremental database updates,

requiring a full re-computation after adding nodes.

Single-Link clustering can be performed in a bottom-

up fashion with each image starting as an individual clus-

ter. Then the two closest clusters are iteratively joined

until either the whole database is represented by a single

cluster or a cut-off threshold θ on the between-cluster dis-

tance d(A,B) is reached. This cluster distance is defined as

d(A,B) = mina∈A,b∈B d(a, b).
An efficient O(N2) implementation of Single-Link clus-

tering can be obtained by first building the full matching

graph and then computing its MST. Removing all edges

above a certain threshold θ generates clusters of connected

components. This dependency on the MST creation makes

it an ideal candidate for MST approximation experiments.

2.2. Iconoid Shift

Iconoid Shift (IS) discovers landmark objects in image

collections by searching for so-called iconic images. Start-

ing from a set of seed images (typically obtained by Ge-
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Figure 1: Transitive overlap distance

ometric MinHash [4]), IS first builds up local matching

graphs G by recursively applying image retrieval [14, 5]

with the seed image r as a query. The edges between images

i and j are weighted by a distance measure dovl(i, j) that

quantifies the overlap region between the two directly con-

nected images. In addition to those direct distances, IS pro-

poses a transitive overlap distance tovl(i, j) that propagates

content overlaps between images that are not directly con-

nected via homography chains. The algorithm adds nodes

to G as long as the transitive distance to the root node r

is below a cut-off point β (the so-called kernel radius). As

a result of this local exploration, each seed image is con-

nected to a set of similar images via the graph structure G.

On this graph, IS first builds up an MST and then com-

putes the transitive distances tovl(i, j) between all pairs of

nodes (i, j) in G by propagating homography overlaps via

the MST. It then uses the Medoid Shift (MS) algorithm [18]

to find the modes of the density implicitly defined by the

transitive overlap distance, which correspond to the iconic

images. Medoid Shift is a generalization of the Mean Shift

mode estimation algorithm [6] that operates on graphs. In

each iteration, it computes the medoid of the graph nodes

under its kernel (defined by the pairwise image distances)

and then shifts the kernel window to this medoid. Whenever

such a shift happens, the local matching graph is extended

using the medoid as a new seed and the MST is recomputed.

It iterates until convergence (see Algorithm 1).

Transitive overlap distance (tovl): The transitive overlap

distance forms an important part of calculating the overlap

over paths in the graph. It defines a distance for a pair of

images (i,k) which are not directly connected in G, only

through a path j of nodes. All directly connected images in

G have corresponding homographies and bounding boxes

enclosing the matching feature points. As shown in Fig-

ure 1, the transitive overlap distance between images i and

k through images j1 or j2 is computed by projecting the

matching bounding box from images i (blue box) and k

(red box) to their common neighbor j1 or j2. The overlap

region between these two projections is found by intersect-

ing the boxes (green box in j1 and j2) and back-projecting

them to images i and k. Then the transitive overlap distance

tovl(i, k, j) is defined as 1 minus the minimum overlap of

the projected boxes divided by the image area (see [22]).

Figure 1 also shows that the path j influences the final

distance between i and k, i.e. the overlap via j1 is much

larger than via j2. There are as many distances as paths

from i to k. The choice of the spanning tree can therefore

crucially influence the behavior of IS.

Caveats. The use of MS in a distance graph G requires

the edge weights to form a metric. However due to the lim-

ited repeatability of the features used for image retrieval,

the graph G may contain cycles which violate the triangu-

lar inequality for dovl in G, i.e. dovl(i, k) 6≤ dovl(i, j) +
dovl(j, k). Although dovl is symmetric, the retrieval system

is not. As such, it is not possible to use MS directly on G (at

this point G is not fully connected). The spanning tree con-

struction is necessary in order to circumvent this problem.

By computing the MST on G, all potentially inconsistent

cycles are removed, before the fully-connected, consistent

graph G′ is constructed by connecting nodes via transitive

connections tovl (see Algorithm 1). Through the definition

of tovl (see [22]), the resulting graph fulfills the triangular

inequality, making it possible to perform an iteration of MS.

When the mode shifts to a new node, the retrieval has

to be performed again, as new nodes might now be within

reach of the kernel distance, while others might drop out.

This means that the MST has to be recomputed on the new

local neighborhood. Although this new neighborhood is

usually smaller than the full connected component, this step

can still incur heavy computation. An efficient alternative to

the MST creation can therefore result in significant speed-

ups.

In summary, we see that, as for single-link clustering, the

expensive calculation of the MST (O(N2) in the number of

tree nodes N ) is a major bottleneck of IS and it restricts its

usability as an online algorithm.

3. Limited Horizon Minimum Spanning Tree

In this section we introduce a novel tree structure called

Limited Horizon Minimum Spanning Tree (LH-MST).

This tree structure (Section 3.1) is built during image re-

trieval (e.g. in Step 1 in Algorithm 1). It is considerably

faster to compute than the regular MST (Section 3.1.1) and

allows to incrementally add new nodes to an initial dataset

instead of rebuilding the whole database when new imagery
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Algorithm 1: Iconoid Shift Steps

Require: photo collection C, seed image s
while s shifts to a new mode do

Step 1. Build graph G around s that connects similar images via

distance dovl.
→ Edge weights are not a metric.

Step 2. Create minimum spanning tree T of G to remove cycles.

Step 3. Construct fully connected G′ from T by replacing missing

edges with tovl.
→ Edge weights are now a metric.

Step 4. Perform Medoid Shift in G′. Mode m is now the new s.

Algorithm 2: Compute LH-MST

Require: root r, priority queue qupdate
qupdate = ∅
push(qupdate, {edge(r, r), dovl(r, r)})
while qupdate 6= ∅ do

edge(p, n) = pop(qupdate)
if n /∈ spanning tree T then

add(edge(p, n)) to T ;

children = retrieve(n)
for c ∈ children do

if φ(tovl(r, c)) < θ then

push(qupdate, {edge(n, c), dovl(n, c)})
return T

is available.

3.1. Offline Construction of LH­MST

Algorithm 2 shows the creation of our Limited Hori-

zon Minimum Spanning Tree (LH-MST). The algorithm

is based on the priority queue qupdate, which contains tu-

ples of edges and their corresponding edge cost dovl. The

edges are directed from a parent node p to a child node n

and the queue is sorted by the edge cost in ascending or-

der. As before, we start with a seed, the root image r. The

priority queue is initialized by a directed edge from p = r

to n = r with weight equal to one. As long as the pri-

ority queue contains elements, we remove the first tuple

{edge(p, n), dovl(p, n)} from qupdate and perform image

retrieval on image n. Newly retrieved images c are added to

the qupdate (as {edge(n, c), dovl(n, c)}) if they are within

kernel distance to the root node and do not create cycles. A

few iterations of the algorithm are visualized in Figure 2.

LH-MST is an MST approximation constructed in a

greedy way. After iteration k the resulting spanning tree

contains at most k nodes and has a maximal depth of k. The

resulting spanning tree would be equivalent to the MST if

the retrieval system were symmetric.

3.1.1 Complexity Analysis.

A major advantage of using LH-MST over MST to enforce

the triangular inequality in G is speed. The LH-MST is

constructed during retrieval and causes negligible mainte-

nance overhead during the update. Step 2 of the IS pipeline

(see Algorithm 1) is not needed anymore. Saving the over-

Algorithm 3: Incremental Update LH-MST- Addition

Require: root r, priority queue qupdate
Require: spanning tree T
qupdate = ∅
for edge(p, n) ∈ T do

push(qupdate, {edge(p, n), dovl(p, n)})
while qupdate 6= ∅ do

edge(p, n) = pop(qupdate)
if n /∈ T then

add(edge(p, n)) to T
children = retrieve(n)
for c ∈ children do

if φ(tovl(r, c)) > θ then

push(qupdate, {edge(n, c), dovl(n, c)})
return T

Figure 2: Three Steps of the Limited Horizon Minimum

Spanning Tree. LH-MST k: The current tree (solid lines)

contains k nodes, the update set new node candidates with

their corresponding weights (dashed lines). LH-MST k+1:

the node with the minimal distance to any existing tree node

(green line) is added to the tree; redundant edges are re-

moved; the retrieval system finds new image candidates

(within kernel distance) and adds them to update setk+1.

Figure 3: The incremental update of the LH-MST can result

in slightly different trees. The red node belongs to set M , all

other nodes to set N . In batch mode (middle), the red node

would be retrieved during tree-construction with cost “2”.

The incremental update (right) starts with a pre-existing tree

resulting in a slightly different path.

head for the MST construction (O(N2)) makes the pro-

posed method significantly faster.

In contrast, one might suggest to use the basic IS algo-

rithm as is and only replace the MST creation by a faster

approximate MST algorithm [11]. The resulting speed-up

would be limited, as any faster MST algorithm still needs to

build a full image graph first (not a spanning tree) and then

compute the MST as a separate step.
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3.2. Incremental Update of LH­MST

Performing any kind of clustering on databases with hun-

dreds of thousands of images is very time consuming. Al-

though we are able to speed up the tree creation, it might

well happen that the image database has already been out-

dated before the clustering finished. Instead of collecting

new data and re-running the clustering, the LH-MST is able

to perform incremental updates. In this section we will de-

scribe the update procedure; Section 4.3 will then experi-

mentally show its validity.

Algorithm 3 shows the incremental update of an

LH-MST. The algorithm extends an already existing span-

ning tree LH-MST (N) consisting of N nodes with a set of

new nodes M to create the spanning tree LH-MST (N+M).

The update procedure is similar to the initial construction

of an LH-MST. Instead of starting from the root node r, we

start with a complete tree built based on set N , and fill the

priority queue with edges from this initial tree. The retrieval

is performed in the order of the priority queue, but only re-

trieves images from the new set M . This adds new edges to

the existing tree from N to M . As such, the resulting trees

might slightly differ, as shown in Figure 3.

3.2.1 Complexity Analysis

We consider the worst case scenario (in terms of complex-

ity) of a fully connected retrieval graph, where each node

upon retrieval returns all other nodes in the connected com-

ponent. As complexity we consider the number of distance

measure computations between nodes. Our full database

has N elements.

Offline Version considers the construction of an

LH-MST consisting of N nodes (including the seed s).

In iteration k=1, there is only one node already in the

LH-MST, the seed s and N -1 nodes to be considered for

addition. Thus, N -1 distance computations between node

pairs are needed. Each iteration of adding a node to the

tree reduces the number of distance computations by one,

resulting in a complexity of

comploffline = 1 + 2 + 3 + 4 + · · ·+N − 1 (1)

=
(N) · (N − 1)

2
(2)

Online Update considers a pre-existing LH-MST with an

initial set of nodes N1 and updates the initial tree with a

new set of nodes N2, where N1+N2 = N . In iteration k=1

there are N1 · N2 distances computed between all the N1

nodes of the initial spanning tree and all the N2 nodes of the

update set in order to pick a new edge to add in the spanning

tree. Similar to the offline update, in each iteration elements

from N2 will be added to the tree resulting in a decrement

of distance computations:

complupdate = N1 ·N2 +
(N2) · (N2 − 1)

2
(3)

As expected, the complexity of the offline version is larger

than the complexity of incrementally updating the existing

initial tree with the additional nodes by

comploffline − complupdate =
(N1) · (N1 − 1)

2
, (4)

which is the number of distance computations to create the

spanning tree with the initial set of nodes N1. Note that

this analysis includes the effort for retrieval and distance

computations. Without considering retrieval, the remaining

effort of node addition is in O(1).

4. Experiments

In this paper we propose to replace MST by LH-MST in

order to speed up computation and allow for efficient online

updates. We will now use LH-MST to perform Single-Link

Agglomerative clustering and Iconoid Shift as follows.

Limited Horizon Single-Link Clustering (LH-SL). In the

tree construction we replace MST by LH-MST.

Limited Horizon Iconoid Shift (LH-IS). We replace steps

1 and 2 in Algorithm 1 by creating the tree T ′ directly.

LH-MST is one instance of many possible spanning tree

alternatives that would also allow for fast creation and on-

line updates. The alternatives could also be constructed dur-

ing the retrieval step (similar to LH-MST) and thus would

be faster than the original MST. We will show the advan-

tages of LH-MST over several of such spanning tree base-

lines: BFT - Breadth First Spanning Tree (siblings with

higher priority in queue), DFT - Depth First Spanning Tree

(children with higher priority in queue), RAND - Random

Spanning Tree (random order priority queue), SPT - Short-

est Path Spanning Tree (queue sorted by shortest path to

initial medoid).

All experiments are performed on the full 500k im-

ages of the Paris dataset [21] collected from Flickr and

Panoramio.

4.1. Evaluation of Single­Link Clustering

In Single-Link Clustering changing the cut-off thresh-

old θ affects the number of resulting clusters starting from

one cluster for the whole database to individual clusters for

each element. Replacing the MST creation with LH-MST

will likely result in a slightly different tree structure and

therefore in different clusters. To assess the magnitude of

this difference we compare the resulting trees by their edit-

distance Ed as a function of θ:

Ed(S, T ) =
1
2
(|{(i, j)|(i, j) ∈ S ∧ (i, j) 6∈ T}|

+|{(i, j)|(i, j) 6∈ S ∧ (i, j) ∈ T}|)
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Figure 4: The cumulative histogram of image distances in

the cases of disagreeing tree edges.

where T is the MST and S is the candidate tree. First the

two full trees are compared based on the number of edges

that need to be removed/added to convert the approximation

(LH-MST) back into MST. We then keep track of the tree

differences when changing θ.

Figure 4 shows the percentage of changed edges in the

alternative trees (BFS,DFS,RAN,LH-MST) compared to

the MST when varying θ. The LH-MST is the closest to

the MST by a large margin.

While this result shows that the approximation does not

deviate by more than 0.027 percent for the original MST,

it should be noted that the performed comparison is still

slightly too strict. From a practical point of view, the under-

lying tree structure is irrelevant as long as the same images

are clustered together by both methods.

4.2. Evaluation of Offline LH­IS

After using LH-MST for the case of Agglomerative

Clustering, we now show its validity of performing Iconoid

Shift with LH-MST called LH-IS. We compare our results

to the ones of [22]. In the following, we introduce the gen-

eral setup and evaluation measures used for the evaluation.

Seeds. We use the seeds provided by the authors of [22]: A

seed group S with geometric min-hash [5] using 5 min-Hash

sketches of size 2 returns a total 10487 images. Duplicates

are removed resulting in a set of 477 images. Empirically

this limited number of seeds offers a good coverage of the

database.

Medoid Shift kernel. We used a hinge kernel for the MS

with a cut-off threshold of 0.9, which means that we allow

images with at least 10% overlap to the support set of the

Iconoid.

Evaluation measures glossary. In the following we com-

pare various evaluation measures to the “ground truth”, the

set of medoids MMST originating from the original (offline)

τ |M| |MA| |MO| |MU | |K| Rank |Ssup| DB cover

avg. avg.

IS 324 - - - 90 - 380.42 73249

LH-IS 321 282 28 4 87 18.71 380.43 70762

BFT-IS 396 150 213 14 153 172.6 1146.27 73886

DFT-IS 365 137 136 87 154 75.0 331.65 68023

SPT-IS 256 88 148 12 220 132.39 1334.86 61828

RAN-IS 346 194 135 15 99 61.29 981.7 70414

Table 1: Performance of the LH-MST compared to base-

lines when replacing the MST in the IS framework.

τ potential spanning tree are

τ ∈ { MST, LH-MST, BFT, DFT, RAN, SPT }
M

τ the set of medoids resulting from method τ

MA the set of medoids common between ground

truth and method τ .

MO the set of medoids of method τ that do not

match the medoid selected in the ground truth.

Still, the medoids are members of the ground

truth cluster. How close they are to the ground

truth is expressed by the Rank.

MU the set of medoids of method τ that are not

even part of any ground truth cluster.

K the set of seeds for which the MS is stuck in

initialization.

Ssup the cardinality of the final clusters

Rank the smallest relative position (rank) that the

medoids of method τ achieve in all ground

truth clusters. The smaller the value of Rd is,

the closer the result is to the optimum.

DB

Cover

the size of the database explored

Table 2: Glossary: Evaluation Measures

version of IS. In Section 4.3 we compare to the online ver-

sion and use the sets MLH−IS as “ground truth”.

4.2.1 Results of Offline LH-MST

Table 1 summarizes the results of our evaluation of using

different spanning trees in place of the MST. As it can

be seen, using LH-IS provides the closest approximation of

IS. The majority of clusters are represented with the same

medoid (87% or 282 medoids). In 28 cases the algorithm

converges to a different medoid which is part of the same

cluster. Figures 7e and 7f show exemplary samples of the

result of LH-IS and IS. Most picked medoids are the same,

in case of divergence the images are still similar. This is

also expressed by the low rank difference of 18.71. In 4

cases the medoid does not have a direct correspondence,

i.e. the medoid is not part of the support set of MST. Such

an example is shown in Figure 5.

Interestingly, the second most similar result to IS is

achieved by RAN-IS, confirming that in principle any tree

could perform well as long as it is not biased towards cer-

tain nodes. An important property of ’good’ spanning trees

is to allow IS to shift away from its initial seed. SPT-IS is
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⇒

(a) 2 iterations of LH-MST

⇒

(b) 2 iterations of MST

Figure 5: Example iterations of IS using (a) LH-MST and (b) MST. Both algorithms are initialized with the same seed image

(green border) that depicts the Eiffel Tower and Cleopatra’s Needle but they converge to different medoids (red border). The

MST’s final cluster (b) shows only one of the landmarks (Eiffel Tower). As can be seen, the final medoid of LH-MST does

not belong to the support set of the final medoid MST and visa versa. This is one of the rare cases where medoids cannot be

matched (see Table 1, column MU ).

LH-MST |M| |MA| |MO| |MU | |S| Rank |Ssup| DB cover

Split

100 - 321 - - - 87 - 416 70762

S1 90 10 327.33 ± 1.89 263.0 ± 8.83 53.67 ± 8.96 3.67 ± 1.89 90.0 ± 2.16 79.93 ± 74.43 424.04 ± 32.72 61716

S1 70 30 327.0 ± 7.79 264.0 ± 22.73 56.67 ± 25.62 2.67 ± 1.7 86.33 ± 0.94 36.13 ± 19.29 435.14 ± 28.13 69689

S1 50 50 325.33 ± 2.49 234.0 ± 6.53 85.67 ± 9.84 2.0 ± 0.0 91.0 ± 1.41 81.1 ± 57.32 445.94 ± 65.38 68570

S2 70 30 340.33 ± 2.49 212.0 ± 21.65 116.0 ± 19.6 5.0 ± 2.16 87.33 ± 10.87 32.4 ± 8.36 423.41 ± 31.73 69659

S2 50 50 338.0 ± 4.32 180.33 ± 12.5 144.0 ± 14.31 4.0 ± 1.41 83.33 ± 3.86 153.12 ± 107.98 390.75 ± 23.2 67246

S1 90 - 329.67 ± 0.47 252.33 ± 1.25 65.0 ± 1.41 4.0 ± 2.16 90.0 ± 2.16 178.53 ± 4.38 365.61 ± 24.18 55583

S1 70 - 352.33 ± 12.5 170.33 ± 15.8 128.0 ± 16.97 5.67 ± 2.49 126.0 ± 35.39 100.29 ± 53.06 277.42 ± 13.65 45980

S1 50 - 347.33 ± 4.64 84.33 ± 5.79 184.33 ± 12.68 4.67 ± 2.05 135.0 ± 5.72 192.81 ± 43.39 176.64 ± 22.28 31321

Table 3: Performance of the online version of the LH-MST compared to the offline version of the LH-MST.

performing worst with almost half of its initial seeds unable

to shift to a better medoid. It is unsuitable by design as it is

biased towards the root by keeping the edges that minimize

the distance to the root.

Summary. Compared to the original IS, LH-IS converges

to exactly the same medoids in most cases (87% of the clus-

ters); 97% of the medoids depict the same object with only

minor viewpoint/color changes. (see supplementary mate-

rial). For the result in Table 1, the runtime of IS using

LH-MST ( 1 day) is 5 times faster than using MST ( 5 days).

LH-MST is therefore not only a suitable alternative in terms

of quality but is also considerably faster than MST.

4.3. Evaluation of online LH­MST

As has been shown in the previous section, LH-MST is

suitable for performing IS. Besides the speed advantage in

an offline setting, LH-MST also offers the ability to be used

with online updates of the image database (Section 3.2).

⇒ ⇒ ⇒

⇒ ⇒ ⇒

⇒ ⇒

⇒ ⇒

Figure 6: Examples of IS shift sequences using LH-MST.

In the following, we compare the batch with the online

version of LH-IS. For each experiment, we split the dataset

into initial set and update set. After performing IS using
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(a) Initial Seed (b) LH-IS*

50/50

(c) LH-IS*

70/30

(d) LH-IS*

90/10

(e) LH-IS

100

(f) IS

100

Figure 7: Examples of cluster centers for different version of LH-MST compared to original IS. With * we

denote the online version of the algorithm.

LH-MST on this initial set, we add the remaining data

via online update. All experiments are repeated 3 times

to account for different random splits. To keep the results

comparable, we enforce the seed images to be contained in

the initial set. Two basic scenarios are considered:

Scenario 1. The split is performed randomly. This scenario

mirrors real world setting.

Scenario 2. First, the dataset is split randomly. Second,

images that represent medoids in offline LH-IS are shifted

into the update set. As such no seed has converged to the

“ground truth” cluster prior to the update. This setting

gives further insights into the ability of our online version

to perform useful shifts during the update step.

Table 3 compares offline LH-IS to various settings of on-

line LH-IS. For both scenarios, we report results using dif-

ferent ratios of images in the initial and update set (from

50/50 to 90/10).

As it can be seen from Table 3 the online version of

LH-IS offers comparable results to the offline version. As

expected, the selected medoids are closer with a smaller up-

date set. Even in the case of a 50/50 split, many of the re-

sulting medoids agree with offline LH-IS. Note that such

a set-up is quite unrealistic considering the drastic change

of the database (doubles in size). Yet, in Scenario 1 on av-

erage still 234 of the medoids agree with the offline LH-IS

compared to 84 if no update is performed. For Scenario

2, although none of the correct medoids were in the initial

database (MA = 0), more than 2/3 of them are recovered

through the update (in the 70/30 split) confirming that our

update step is able to add meaningful connections in the

graph and to also shift medoids to their rightful place.

A detailed comparison between online LH-IS to original

IS can be found in the supplementary material.

Figure 7 shows various example medoids resulting from

different splits (Scenario 1). In some cases the medoids are

different, but visually very similar images are selected (e.g.

Mona Lisa in LH-IS, 70/30 split).

Summary. In the realistic scenario of a random initializa-

tion of 90% and an update of 10% using online LH-IS, 82%

of the medoids are exactly the same as in offline LH-IS;

77% when compared to IS; 98% of the clusters depict the

same object. The runtime of the LH-IS update is ∼3 hours,

8 times faster than re-computing LH-MST from scratch; 40

times faster than rerunning the original IS algorithm.

5. Conclusion

In this paper we introduced the Limited Horizon Min-

imum Spanning Tree (LH-MST), an approximation of the

well known Minimum Spanning Tree (MST). In contrast to

the MST, the LH-MST can be constructed much faster and

has the additional property of allowing online updates of the

tree structure, even for large changes in the image database.

Yet various experiments have shown that this approximation

is very close to the original algorithm. Our novel LH-MST

can potentially be used in many algorithms which involve a

costly Minimum Spanning Tree (MST) calculation. Finally,

we demonstrated its applicability for two distinct methods

of landmark discovery in large datasets: Single-Link Ag-

glomerative and Iconoid Shift clustering.
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