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Abstract

We conduct an empirical study to test the ability of con-

volutional neural networks (CNNs) to reduce the effects of

nuisance transformations of the input data, such as loca-

tion, scale and aspect ratio. We isolate factors by adopting

a common convolutional architecture either deployed glob-

ally on the image to compute class posterior distributions,

or restricted locally to compute class conditional distribu-

tions given location, scale and aspect ratios of bounding

boxes determined by proposal heuristics. In theory, averag-

ing the latter should yield inferior performance compared

to proper marginalization. Yet empirical evidence suggests

the converse, leading us to conclude that – at the current

level of complexity of convolutional architectures and scale

of the data sets used to train them – CNNs are not very effec-

tive at marginalizing nuisance variability. We also quantify

the effects of context on the overall classification task and

its impact on the performance of CNNs, and propose im-

proved sampling techniques for heuristic proposal schemes

that improve end-to-end performance to state-of-the-art lev-

els. We test our hypothesis on a classification task using

the ImageNet Challenge benchmark and on a wide-baseline

matching task using the Oxford and Fischer’s datasets.

1. Introduction

Convolutional neural networks (CNNs) are the de-facto

paragon for detecting the presence of objects in a scene, as

portrayed by an image. CNNs are described as being “ap-

proximately invariant” to nuisance transformations such as

planar translation, both by virtue of their architecture (the

same operation is repeated at every location akin to a “slid-

ing window” and is followed by local pooling) and by virtue

of their approximation properties that, given sufficient pa-

rameters and transformed training data, could in principle

yield discriminants that are insensitive to nuisance transfor-

mations of the data represented in the training set. In ad-

dition to planar translation, an object detector must manage

variability due to scaling (possibly anisotropic along the co-

ordinate axes, yielding different aspect ratios) and (partial)

occlusion. Some nuisances are elements of a transforma-

tion group, e.g., the (anisotropic) location-scale group for

the case of position, scale and aspect ratio of the object’s

support.1 The fact that convolutional architectures appear

effective in classifying images as containing a given object

regardless of its position, scale, and aspect ratio [28, 40]

suggests that the network can effectively manage such nui-

sance variability.

However, the quest for top performance in benchmark

datasets has led researchers away from letting the CNN

manage all nuisance variability. Instead, the image is first

pre-processed to yield proposals, which are subsets of the

image domain (bounding boxes) to be tested for the pres-

ence of a given class (Regions-with-CNN [19]). Proposal

mechanisms aim to remove nuisance variability due to po-

sition, scale and aspect ratio, leaving a “Category CNN” to

classify the resulting bounding box as one of a number of

classes it is trained with. Put differently, rather than com-

puting the posterior distribution2 with nuisance transforma-

tions automatically marginalized, the CNN is used to com-

pute the conditional distribution of classes given the data

and a sample element that approximates the nuisance trans-

1The region of the image the objects projects onto, often approximated

by a bounding box.
2One can think of the conditional distribution of a class c given

an image x, p(c|x), as defined by a CNN, as the class posterior∫
G
p(c|x, g)dP (g|x) marginalized with respect to the nuisance group G.

If the nuisances are known, one can use the class-conditionals p(c|x, gr)
at each nuisance gr ∈ G in order to approximate p(c|x) with a weighted

average of conditionals, i.e., p(c|x) ≃
∑

r
p(c|x, gr)p(gr|x).

When a CNN is tested on a proposal r ⊆ x determined by a ref-

erence frame xr , it computes p(c|x|r ) (x restricted to r), which is

an approximation of p(c|x, gr). Then, explicit marginalization (assum-

ing uniform weights) computes 1

|r|

∑
r
p(c|x|r ) which is different from

1

|r|

∑
r
p(c|x, gr) which in turn is different from

∑
r
p(c|x, gr)p(gr|x).

This approach is therefore, on average, a lower bound on proper marginal-

ization, and the fact that it would outperform the direct computation of

p(c|x) is worth investigating empirically.
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formation, represented by a bounding box. If the goal is

the nuisance itself (object support, as in detection [10]) it

can be found via maximum-likelihood (max-out) by select-

ing the bounding box that yields the highest probability of

any class [19, 22]. If the goal is the class regardless of the

transformation (as in categorization [10]), the nuisance can

be approximately marginalized out by averaging the con-

ditional distributions with respect to an estimation of the

nuisance transformations2.

Now, if a CNN was an effective way of computing the

marginals with respect to nuisance variability, there would

be no benefit in conditioning and averaging with respect to

(inferred) nuisance samples. This is a direct corollary of

the Data Processing Inequality (DPI, Theorem 2.8.1 in [9]).

Proposals are subsets of the whole image, so in theory less

informative even after accounting for resolution/sampling

artifacts (Fig. 1). A fortiori, performance should further

decrease if the conditioning mechanism is not very rep-

resentative of the nuisance distribution, as is the case for

most proposal schemes that produce bounding boxes based

on adaptively downsampling a coarse discretization of the

location-scale group [24]. Class posteriors conditioned on

such bounding boxes discard the image outside it, further

limiting the ability of the network to leverage on side in-

formation, or “context”. Should the converse be true, i.e.,

should averaging conditional distributions restricted to pro-

posal regions outperform a CNN operating on the entire im-

age, that would bring into question the ability of a CNN

to marginalize nuisances such as translation and scaling or

else go against the DPI. In this paper we test this hypothesis,

aiming to answer to the question: How effective are current

CNNs to reduce the effects of nuisance transformations of

the input data, such as location and scaling?

To the best of our knowledge, this has never been done in

the literature, despite the keen interest in understanding the

properties of CNNs [20, 21, 34, 39, 43, 46, 47] following

their empirical success. We are cognizant of the dangers of

drawing sure conclusions from empirical evaluations, espe-

cially when they involve a myriad of parameters and exploit

training sets that can exhibit biases. To this end, in Sect. 2

we describe a testing protocol that uses recognized existing

modules, and keep all factors constant while testing each

hypothesis.

1.1. Contributions

We first show that a baseline (AlexNet [28]) with single-

model top-5 error of 19.96% on ImageNet 2014 Classifi-

cation slightly decreases in performance (to 20.41%) when

constrained to the ground-truth bounding boxes (Table 1).

This may seem surprising at first, as it would appear to

violate Theorem 2.6.5 of [9] (on average, conditioning on

the true value of the nuisance transformation must reduce

uncertainty in the classifier). However, note that the re-

striction to bounding boxes does not just condition on the

location-scale group, but also on visibility, as the image out-

side the bounding box is ignored. Thus, the slight decrease

in performance measures the loss from discarding context

by ignoring the image beyond the bounding box. When we

pad the true bounding boxes with a 10-pixel rim, we show

that, conditioned on such “ground-truth-with-context” in-

deed does decrease the error as expected, to 17.65%. In

Fig. 1 we show the classification performance as a function

of the rim size all the way to the whole image for AlexNet

and VGG16 [40]. A 25% rim yields the lowest top-5 errors

on the ImageNet validation set for both models. This also

indicates that the context effectively leveraged by current

CNN architectures is limited to a relatively small neighbor-

hood of the object of interest.

The second contribution concerns the proper sampling

of the nuisance group. If we interpret the CNN restricted

to a bounding box as a function that maps samples of

the location-scale group to class-conditional distributions,

where the proposal mechanism down-samples the group,

then classical sampling theory [38] teaches that we should

retain not the value of the function at the samples, but its lo-

cal average, a process known as anti-aliasing. Also in Table

1, we show that simple uniform averaging of 4 and 8 sam-

ples of the isotropic scale group (leaving location and as-

pect ratio constant) reduces the error to 15.96% and 14.43%
respectively. This is again unintuitive, as one expects that

averaging conditional densities would produce less discrim-

inative classifiers, but in line with recent developments con-

cerning “domain-size pooling” [12].

To test the effect of such anti-aliasing on a CNN absent

the knowledge of ground truth object location, we follow

the methodology and evaluation protocol of [16] to develop

a domain-size pooled CNN and test it in their benchmark

classification of wide-baseline correspondence of regions

selected by a generic low-level detector (MSER [32]). Our

third contribution is to show that this procedure improves

the baseline CNN by 5–15% mean AP on standard bench-

mark datasets (Table 3 and Fig. 5 in Sect. 2.2).

Our fourth contribution goes towards answering the

question set forth in the preamble: We consider two popular

baselines (AlexNet and VGG16) that perform at the state-

of-the-art in the ImageNet Classification challenge and in-

troduce novel sampling and pruning methods, as well as an

adaptively weighted marginalization based on the inverse

Rényi entropy. Now, if averaging the conditional class pos-

teriors obtained with various sampling schemes should im-

prove overall performance, that would imply that the im-

plicit “marginalization” performed by the CNN is inferior

to that obtained by sampling the group, and averaging the

resulting class conditionals.2 This is indeed our observation,

e.g., for VGG16, as we achieve an overall performance of

8.02%, compared to 13.24% when using the whole image
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Method AlexNet VGG16

Whole image 19.96 13.24

Ground-Truth Bounding Box (GT) 20.41 12.44

Isotropically Anisotropically Isotropically Anisotropically

GT padded with 10 px 17.66 17.65 10.91 10.30

Ave-GT, 4 domain sizes (padded with [0,30] px) 15.96 16.00 9.65 8.90

Ave-GT, 8 domain sizes (padded with [0,70] px) 14.43 14.22 8.66 7.84

Table 1. AlexNet’s and VGG16’s top-5 error on the ImageNet 2014 classification challenge when the ground-truth localization is provided,

compared to applying the model on the entire image. We pad the ground truth with various rim sizes both isotropically and anisotropically.

Then we show how averaging the class posteriors performs when applying the network on concentric domain sizes around the ground truth.

(Table 2). There are, however, caveats to this answer, which

we discuss in Sect. 3.

Our fifth contribution is to actually provide a method

that performs at the state of the art in the ImageNet Clas-

sification challenge when using a single model. In Ta-

ble 2 we provide various results and time complexity. We

achieve a top-5 classification error of 15.82% and 8.02%
for AlexNet and VGG16, compared to 17.55% and 8.85%
error when they are tested with 150 regularly sampled crops

[40], which corresponds to 9.9% and 9.4% relative er-

ror reduction, respectively. Data augmentation techniques

such as scale jittering and an ensemble of several models

[23, 40, 42] could be deployed along with our method.

The source code implementing our method and the

scripts necessary to reproduce the evaluation are available

at http://vision.ucla.edu/˜nick/proj/cnn_

nuisances/.

1.2. Related work

The literature on CNNs and their role in Computer Vi-

sion is rapidly evolving. Attempts to understand the inner

workings of CNNs are being conducted [6, 20, 21, 29, 34,

39, 43, 46, 47], along with theoretical analysis [2, 4, 8, 41]

aimed at characterizing their representational properties.

Such intense interest was sparked by the surprising per-

formance of CNNs [6, 11, 19, 23, 28, 36, 37, 40, 42] in

Computer Vision benchmarks [10, 15], where many couple

a proposal scheme [1, 5, 7, 14, 24, 25, 27, 31, 35, 44, 48]

with a CNN. As our work relates to a vast body of work, we

refer the reader to references in the papers that describe the

benchmarks we adopt, namely [6], [28] and [40].

Bilen et. al. [3] also explore the idea of introducing pro-

posals in classification. However, their approach leverages

on a significantly larger number of candidates and focuses

on sophisticated classifiers and post-normalization of class

posteriors. Our investigation targets selecting a very small

subset of the most discriminative candidates among generic

object proposals, while building on popular CNN models.

2. Experiments

2.1. Largescale Image Classification

What if we trivialize location and scaling? First, we test

the hypothesis that eliminating the nuisances of location and

scaling by providing a bounding box for the object of inter-

est will improve the classification accuracy. This is not a

given, for restricting the network to operate on a bounding

box prevents it from leveraging on context outside it. We

use the AlexNet and VGG16 pretrained models, which are

provided with the MatConvNet open source library [45],

and test their top-1 and top-5 classification errors on the

ImageNet 2014 classification challenge [10]. The valida-

tion set consists of 50, 000 images, where at each of them

one “salient” class is annotated a priori by a human. How-

ever, other ImageNet classes appear in many of the images,

which can confound any classifier.

We test the classifier in various settings (Table 1); first,

by feeding the entire image to it and letting the classifier

manage the nuisances. Then we test the ground-truth an-

notated bounding box and concentric regions that include

it. We try both isotropic and anisotropic expansion of the

ground-truth region. We observe similar behavior, which is

also consistent for both models.

Only for AlexNet at Table 1 using the object’s ground-

truth support performs slightly worse than using the whole

image. After we pad the object region with a 10-pixel rim,

the top-5 classification error decreases fast. However, there

is a trade-off between context and clutter. Providing too

much context has diminishing returns. In Fig. 1 we show

how the errors vary as a function of the rim size around the

object of interest. Performance starts dropping down when

we add more than 25% rim size. This padding gives 15.08%
and 8.37% top-5 error for AlexNet and VGG16, as opposed

to 19.96% and 13.24% respectively, when classifying the

whole image.

To ensure that this improvement is not due to downsam-

pling, we repeat the experiment with fixed resolution for

the whole image and every subregion. We achieve this by

shrinking each region with the same downsampling factor
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Figure 1. The top-1 and top-5 classification errors in ImageNet

2014 as a function of the rim size for AlexNet (above) and VGG16

(below) architecture. A 0 rim size corresponds to the ground-truth

bounding box, while 1 refers to the whole image. A relatively

small rim around the ground truth provides the best trade-off be-

tween informative context and clutter.

that we apply to the whole image to pass to the CNN. Fi-

nally we rescale the downsampled region to the CNN in-

put. These results appear with the label “same resolution”

in Fig. 1.

Finally, we apply domain size average pooling on the

class posterior (i.e., the network’s softmax output layer)

with 4 and 8 domain sizes that are concentric with the

ground truth. The added rim has the declared size either at

both dimensions (for the anisotropic case) or only along the

minimum dimension (for the isotropic case), and it is uni-

formly sampled in the range [0, 30] and [0, 70], respectively.

The latter one further reduces the top-5 error to 14.22% for

AlexNet, which is lower than any single domain size (c.f .

Fig. 1). This suggests that explicitly marginalizing samples

can be beneficial. Next we test whether the improvement

stands when using object proposals.

Introducing object proposals. We deploy a proposal al-

gorithm to generate “object” regions within the image. We

use Edge Boxes [48], which provide a good trade-off be-

tween recall and speed [24].

First, we decide the number of proposals which will pro-

vide a satisfactory cover for the majority of objects present

in the dataset. In a single image we search for the highest

Intersection over Union (IoU) overlap between the ground-

truth region and any proposed sample and in turn we eval-

uate the network’s performance on the most overlapping

sample. We repeat this process for various number of pro-

posals N in a small subset of validation set and finally

choose N = 80, which provides a satisfactory trade-off be-

tween classification performance and computational cost.

Among the extracted proposals, we choose the most in-

formative subset for our task, based on pruning criteria that

we introduce later. Next we discuss what other samples we

use, which are also drawn in Fig. 2.

Domain-size pooling and regular crops. We investigate

the influence of domain-size pooling at test time both as

stand-alone technique and as additional proposals for the

final method which is described in Algorithm 1. We de-

ploy domain-size aggregation of the network’s class poste-

rior over D sizes that are uniformly sampled in the range

[r, 1], where 1 is the normalized size of the original image.

After parameter search, we choose D = 5 and r = 0.6.

We use both the original and the horizontally flipped area,

which gives 10 samples in total.

Finally, we use standard data augmentation techniques

from the literature. As customary, the image is isotropically

rescaled to a predefined size, and then a predetermined se-

lection of crops is extracted [28, 40, 42].

Pruning samples. Continuing to sample patches within

the image has diminishing return in terms of discriminabil-

ity, while including more background patches with noisy

class posterior distribution. We adopt an information-

theoretic criterion to filter the samples that we use for the

subsequent approximate marginalization.

For each proposal n ∈ N we evaluate the network

and take the normalized softmax output vn ∈ R
C , where

vn
i

∈ [0, 1], i = {1, . . . , C} and C = 1, 000 on ILSVRC

classification. The output is a set of non-negative num-

bers which sum up to 1. We can interpret the vector vn

as a probability distribution on the discrete space of classes

{1, . . . , C} and compute the Rényi entropy as Hα(v
n) =

1

1−α
log(

∑C
i=1

(vn
i
)α).
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Figure 2. Visualizing different sampling strategies. Upper left:

Object proposals. Generic proposals using Edge Boxes [48]. Up-

per right: Concentric domain sizes are centered at the center of the

image. Below: Regular crops [28, 40, 42].

Our conjecture is that more discriminative class distribu-

tions tend to be more peaky with less ambiguity among the

classes, and therefore lower entropy. In Fig. 3 we show how

selecting a subset of image patches whose class posterior

has lower entropy improves classification performance.

We extract N candidate object proposals3 [48] and eval-

uate the network for both the original candidates and their

horizontal flips. Then we keep a small subset E, whose

posterior distribution has the lowest entropy. We use Rényi

entropy with relatively small powers (α = 0.35), as we

found that it encourages selecting regions with more than

one highly-confident candidate object. While the parameter

α increases, the entropy is increasingly determined by the

events of highest probability. Larger α would be more ef-

fective for images with a single object, which is not the case

in most images in ILSVRC.

Finally we introduce a weighted average of the selected

posteriors as
∑

r
p(c|x|r )p(x|r ), where x|r is the support

of sample r and p(x|r ) is the weight of its posterior2. We

try both uniform weights and weights proportional to the

inverse entropy of the posterior p(c|x|r ). The latter is ex-

pected to perform better, as it naturally gives higher weight

to the most discriminative samples.

Comparisons. To compare various sampling and infer-

ence strategies, we use the AlexNet and VGG16 models.

All classification results in Table 2 refer to the validation

set of the ILSVRC 2014 [10], except for the last row which

demonstrates results on the test set. On the rows 2–5
we show the performance of popular multi-crop methods

[28, 40, 42]. Then we compare them with strategies that

involve concentric domain sizes (rows 6–8) and object pro-

posals (rows 9–14).

3We introduce a prior encouraging the largest proposals among the ones

that the standard setting in [48] would give. To this end, instead of directly

extracting, for example, N = 80 proposals, we generate 200 and keep the

80 largest ones (Algorithm 1).
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Figure 3. We show the top-5 error as a function of the number of

proposals we average to produce the final posterior. Samples are

generated with Algorithm 1 and classified with AlexNet. The blue

curve corresponds to selecting samples with the lowest-entropy

posteriors. We compare our method with simple strategies such as

random selection, ranking by largest-size or highest confidence of

proposals. The random sample selection was run 10 times and we

visualize the estimated 99.7% confidence intervals as error-bars.

Empirically, the discriminative power of the classifier increases

when the samples are selected with the least entropy criterion.

Before extracting the crops and in order to preserve the

aspect ratio of each single image, we rescale it so that its

minimum dimension is 256. The proposals are extracted

at the original image resolution and then they are rescaled

anisotropically to fit the model’s receptive field. Addi-

tionally, some multi-crop algorithms resize the image in

S different scales and then sample C patches of fixed size

224 × 224 densely over the image. Szegedy et al. [42] use

S = 4 scales and C = 36 crops per scale, which yields 144

Algorithm 1 Regular & adaptive sampling in classification.

• Object proposals. We extract several object proposals

from the image x (e.g., 200 Edge Boxes [48] and keep the

N largest ones). Among them we choose E proposals

whose class posterior has the lowest Rényi entropy with

parameter α. After hyper-parameter search, we choose

N = 80, E = 12 and α = 0.35.

• D concentric domain sizes around the center of x (in-

cluding their horizontal flip). We use 5 sizes that are uni-

formly extracted in the normalized range [0.6, 1], where

1 corresponds to the whole image (D = 10).

• C crops. Regular crops; e.g., C = 10 or C = 50 in 1
or 3 scales, as in [28, 40, 42].

• The class conditionals are approximated as∑
r
p(c|x|r )p(x|r ), where p(x|r ) is either uniform

or equals to the inverse entropy of the posterior p(c|x|r ).
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Method AlexNet VGG16
#eval #ave

# crops # sizes # proposals top-1 top-5 t (s/im) top-1 top-5 t (s/im)

− D = 1 − 43.00 19.96 0.01 33.89 13.24 0.06 1 1

C = 10 − − 41.50 18.69 0.06 27.55 9.29 0.48 10 10

C = 50 − − 41.01 18.05 0.66 27.44 9.12 1.34 50 50

C = 10× 3 − − 40.58 17.97 0.16 27.23 8.88 1.26 30 30

C = 50× 3 − − 40.41 17.55 0.82 27.14 8.85 3.48 150 150

− D = 10 − 40.00 17.86 0.08 28.16 9.46 0.60 10 10

C = 10 D = 10 − 39.38 17.08 0.22 26.94 8.83 1.08 20 20

C = 10× 3 D = 10 − 39.36 17.07 0.46 26.76 8.68 1.88 40 40

− − E = 40 40.18 17.53
1.26

25.60 8.24
3.02

160 40

C = 10 − E = 20 38.91 16.63 25.28 7.91 170 30

− D = 10 E = 12 38.05 16.19
1.34

25.19 8.11
4.38

170 22

C = 10 D = 10 E = 12 37.69 15.83 25.11 8.01 180 32

C = 10 D = 10 E = 12 (fast) 37.71 15.88 0.94 25.12 8.08 3.70 180 32

C = 10 D = 10 E = 12 (W, fast) 37.57 15.82 1.28 25.11 8.02 3.80 180 32

C = 10 D = 10 E = 12 (test set) 37.417 16.018 − 25.117 7.909 − 180 32

Table 2. Top-1 and top-5 errors on the ImageNet 2014 classification challenge. The rows 2–5 include the common data augmentation

strategies in the literature [28, 40, 42] (i.e., regular sampling). The next three rows use concentric domain sizes that are uniformly sampled

in the range [0.6, 1] with 1 being the normalized size of the original image (c.f . Fig. 2). Finally, in the last seven rows, we introduce

adaptive sampling, which consists of a data-driven object proposal algorithm [48] and an entropy criterion to select the most discriminative

samples on the fly based on the extracted class posterior distribution. The last row shows results on the test set. #eval stands for the

number of samples that are evaluated for each method, while #ave is the number of samples that are eventually element-wise averaged to

produce one single vector with class confidences. The previous top-reported with regular sampling and our results are shown in bold.

patches in all. Following the methodology from Simonyan

et al. [40], it is comparable to deploy S = 3 scales and ex-

tract C = 50 crops per scale (5× 5 regular grid with flips),

for a total of 150 crops over 3 scales (row 5 in Table 2).

The results, presented in Table 2, indicate as expected

that scale jittering at test time improves the classification

performance for both 10-crop and 50-crop strategies. Addi-

tionally, the 50-crop strategy is better than the 10-crop strat-

egy for both models. The results on row 5 in bold are the

lowest errors that can be achieved with these specific single

models4 using only regular crops.

Then we present our methods and observe that using the

AlexNet network with D = 10 concentric domain sizes out-

performs most multi-crop algorithms even if it only eval-

uates and averages 10 patches. Furthermore, combining it

with 10 common crops achieves the best results for both net-

works, even without using 3-scale jittering. One interpreta-

tion for these improvements is that the concentric samples

serve a natural prior for the majority of ILSVRC images,

4Specifically, we use the VGG16 model which is trained without scale

jittering at training and appears on the first row of D area in Table 3 in [40].

Pre-trained models for both AlexNet and VGG16 are publicly available

with the MatConvNet toolbox [45]. Simonyan et al. in their evaluation

with 50 crops and 3 scales report 8.6% top-5 error on ImageNet 2014

validation. In contrast our implementation produces 8.85%, which can be

attributed to using a different pre-trained model, as the initial weights are

sampled from a zero-mean Gaussian distribution with standard deviation

0.01 and there might also be minor differences in the training process.

i.e., the object of interest lies most probably at the center

than at the image boundaries. This is a common assump-

tion in the literature that also appears in large-scale video

segmentation [26].

Following, we introduce the adaptive sampling mecha-

nism with Algorithm 1 and reduce the top-5 error to 15.83%
and 8.01% for AlexNet and VGG16 respectively. To set this

in perspective, Krizhevsky et al. [28] report 16.4% top-5

error when they combine 5 models. We improve this per-

formance with one single model. The relative improvement

for the deployed instances of AlexNet and VGG16, com-

pared to the data-augmentation methods used in [40, 42], is

9.9% and 9.4%, respectively. Row 14 shows results where

the marginalization is weighted based on the entropy (no-

tated as W ), while the methods in rows 9–13 use uniform

weights (c.f . Algorithm 1). At the last row we show results

from the ILSVRC test server for our top-performing method

(row 13).

Regular and concentric crops assume that objects occupy

most of the image or appear near the center. This is a known

bias in the ImageNet dataset. To analyze the effect of adap-

tive sampling, we calculate the intersection over union error

between the objects and the regular and concentric crops,

and show in Fig. 4 the performance of various methods as a

function of the IoU error. The improvement of using adap-

tive sampling (via proposals) over only regular and concen-
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Figure 4. Classification error as a function of the IoU error between

the objects and the regular and concentric crops.

tric crops is increased as IoU error grows, indicating that

objects occupy less domain or are far away from the center.

Time complexity. In Table 2 we show the number of

evaluated samples (#eval) and the subset that is actually

averaged (#ave) to extract a single class posterior vector.

The sequential time needed for each method is linear

to the number of evaluated patches #eval. We run the

experiments with the MatConvNet library and parallelize

the load for VGG16 so that the testing is done in batches

of B = 20 patches. We report the time profile5 for each

method in Table 2. A few entries cover two boxes, as their

methods are evaluated together. Extracting the proposals is

not a major bottleneck if using an efficient algorithm [24],

such as Edge Boxes [48]. In rows 13–14 we report results

of our faster version, where the Edge Boxes do not leverage

edge sharpening and use one decision tree. Overall,

compared to the 150-crop strategy, the object proposal

scheme introduces marginal computational overhead.

2.2. WideBaseline Correspondence

We test the effect of domain-size pooling in correspon-

dence tasks with a convolutional architecture, as done by

[12] for SIFT [30], using the datasets and protocols of [16].

This is illustrated in Fig. 2 (upper right), but here the domain

sizes are centered around the detector. We expect that such

averaging will increase the discriminability of detected re-

gions and in turn the matching ability, similar to the benefits

that we see on the last rows of Table 1.

We use maximally-stable extremal regions (MSER) [32]

to detect candidate regions, affine-normalize them, align

them to the dominant orientation, and re-scale them for

5We use a machine equipped with a NVIDIA Tesla K80 GPU, 24 Intel

Xeon E5 cores and 64G RAM memory.

head-to-head comparisons. For a detected scale σ at each

MSER, the DSP-CNN samples D domain sizes within a

neighborhood [λ1σ, λ2σ] around it, computes the CNN re-

sponses on these samples and averages the posteriors. The

deployed deep network is the unsupervised convolutional

network proposed by [16], which is trained with surro-

gate labels from an unlabeled dataset (see the methodol-

ogy in [13]), with the objective of being invariant to sev-

eral transformations that are commonly observed in images

captured from different viewpoints. As opposed to network-

classifiers, here the task is correspondence and the network

is purely a region descriptor, whose last two layers (3 and

4) are the representations.

In Fig. 5 (left) we show the comparison between CNN

and DSP-CNN on Oxford dataset [33]. CNN’s layer 4 is

the representation for each MSER and DSP-CNN simply

averages this layer’s responses for all D domain sizes. We

use λ1 = 0.7, λ2 = 1.5 and D = 6 sizes that are uniformly

sampled in this neighborhood. There is a 15.1% improve-

ment based on the matching mean average precision.

Fischer’s dataset [16] includes 400 pairs of images, some

of them with more extreme transformations than those in

the Oxford dataset. The types of transformations include

zooming, blurring, lighting change, rotation, perspective

and nonlinear transformations. In Fig. 5 (center) and Table

3 we show comparisons between CNN and DSP-CNN for

layer-3 and layer-4 representations and demonstrate 7.7%
and 5.0% relative improvement. We use λ1 = 0.5, λ2 = 1.4
and D = 10 domain sizes. These parameters are selected

with cross-validation. In Table 3 we show comparisons with

baselines, such as using the raw data and DSP-SIFT [12].

After fine parameter search (λ1 = 0.5, λ2 = 1.24) and con-

catenating the layers 3 and 4, we achieve state of the art

performance as shown in Fig. 5 (right), observing though

the high dimensionality of this method compared to local

descriptors.

Method Dim mAP

Raw patch 4,761 34.79

SIFT [30] 128 45.32

DSP-SIFT [12] 128 53.72

CNN-L3 [16] 9,216 48.99

CNN-L4 [16] 8,192 50.55

DSP-CNN-L3 9,216 52.76

DSP-CNN-L4 8,192 53.07

DSP-CNN-L3-L4 17,408 53.74

DSP-CNN-L3 (PCA128) 128 51.45

DSP-CNN-L4 (PCA128) 128 52.33

DSP-CNN-L34 (concat. PCA128) 256 52.69

Table 3. Matching mean average precision for different approaches

on Fischer’s dataset [16].
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Figure 5. Head to head comparison between CNN and DSP-CNN on the Oxford [33] (left) and Fischer’s [16] (center) datasets. The layer-4

features of the unsupervised network from [16] are used as descriptors. The DSP-CNN outperforms its CNN counterpart in terms of

matching mAP by 15.1% and 5.0%, respectively. Right: DSP-CNN performs comparably to the state-of-the-art DSP-SIFT descriptor [12].

Given the inherent high-dimensionality of CNN layers,

we perform dimensionality reduction with principal com-

ponent analysis to investigate how this affects the matching

performance. In Table 3 we show the performance for com-

pressed layer-3 and layer-4 representations with PCA to 128
dimensions and their concatenation. There is a modest per-

formance loss, yet the compressed features outperform the

single-scale features by a large margin.

3. Discussion

Our empirical analysis indicates that CNNs, that are de-

signed to be invariant to nuisance variability due to small

planar translations – by virtue of their convolutional archi-

tecture and local spatial pooling – and learned to manage

global translation, distance (scale) and shape (aspect ratio)

variability by means of large annotated datasets, in prac-

tice are less effective than a naive and in theory counter-

productive practice of sampling and averaging the condi-

tionals based on an ad-hoc choice of bounding boxes and

their corresponding planar translation, scale and aspect ra-

tio.

This has to be taken with the due caveats: First, we

have shown the statement empirically for few choices of

network architectures (AlexNet and VGG), trained on par-

ticular datasets that are unlikely to be representative of the

complexity of visual scenes (although they may be repre-

sentative of the same scenes as portrayed in the test set),

and with a specific choice of parameters made by their re-

spective authors, both for the classifier and for the evalua-

tion protocol. To test the hypothesis in the fairest possible

setting, we have kept all these choices constant while com-

paring a CNN trained, in theory, to “marginalize” the nui-

sances thus described, with the same applied to bounding

boxes provided by a proposal mechanism. To address the

arbitrary choice of proposals, we have employed those used

in the current state-of-the-art methods, but we have found

the results representative of other choices of proposals.

In addition to answering the question posed in the in-

troduction, along the way we have shown that by framing

the marginalization of nuisance variables as the averaging

of a sub-sampling of marginal distributions we can leverage

of concepts from classical sampling theory to anti-alias the

overall classifier, which leads to a performance improve-

ment both in categorization, as measured in the ImageNet

benchmark, and correspondence, as measured in the Oxford

and Fischer’s matching benchmarks.

Of course, like any universal approximator, a CNN can in

principle capture the geometry of the discriminant surface

by “learning away” nuisance variability, given sufficient re-

sources in terms of layers, number of filters, and number

of training samples. So in the abstract sense a CNN can

indeed marginalize out nuisance variability. The analysis

conducted show that, at the level of complexity imposed by

current architectures and training set, it does so less effec-

tively than ad-hoc averaging of proposal distributions.

This leaves researchers the choice of investing more ef-

fort in the design of proposal mechanisms [18, 36], subtract-

ing duties from the Category CNN downstream, or invest

more effort in scaling up the size and efficiency of learning

algorithms for general CNNs so as to render the need for a

proposal scheme moot.
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