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Abstract

Cross-view recognition that intends to classify samples

between different views is an important problem in comput-

er vision. The large discrepancy between different even het-

erogenous views make this problem quite challenging. To

eliminate the complex (maybe even highly nonlinear) view

discrepancy for favorable cross-view recognition, we pro-

pose a multi-view deep network (MvDN), which seeks for a

non-linear discriminant and view-invariant representation

shared between multiple views. Specifically, our proposed

MvDN network consists of two sub-networks, view-specific

sub-network attempting to remove view-specific variations

and the following common sub-network attempting to ob-

tain common representation shared by all views. As the ob-

jective of MvDN network, the Fisher loss, i.e. the Rayleigh

quotient objective, is calculated from the samples of al-

l views so as to guide the learning of the whole network.

As a result, the representation from the topmost layers of

the MvDN network is robust to view discrepancy, and also

discriminative. The experiments of face recognition across

pose and face recognition across feature type on three

datasets with 13 and 2 views respectively demonstrate the

superiority of the proposed method, especially compared to

the typical linear ones.

1. Introduction

The images of an object can be captured by different

cameras, different sensors, or from different view angles,

which brings about a great challenge of matching images

from these different views to recognize them. This kind of

problem is generally called as cross-view recognition or het-

erogenous recognition. Usually, the appearance of samples

from different views are quite different from each other, and

the large view discrepancy makes it quite challenging to di-

rectly compare them based on the image appearance. Sub-

stantial efforts have been dedicated to eliminate the view

discrepancy or extract view-invariant feature presentations.

Figure 1. An overview of Multi-view Deep Network (MvD-

N). MvDN consists of two sub-networks, the view-specific sub-

network fi|
v

i=1 and the common sub-network gc, along with a dis-

criminant Fisher objective.

A straightforward way to deal with the view discrepancy

is to project all views into a common space, like the Canon-

ical Correlation Analysis (CCA) [10][2]. CCA attempted

to learn two transforms, one for each view, to respective-

ly project the samples from the two views into a common

subspace, by maximizing the cross correlation between two

views. CCA is only applicable for two-view scenario. To

deal with multi-view cases, the pairwise strategy is usually

exploited or a more efficient and robust solution is to learn a

unified common space shared by all views rather than only

two views. For this purpose, the Multiview CCA (MCCA)

[25][27] was proposed to obtain one common space for v

views. In MCCA, v view-specific transforms, one for each

view, are obtained by maximizing the total correlations be-

tween any two views. Another commonly used method was
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proposed in [28][5], which employed Partial Least Squares

(PLS) regression to regress the samples from one view to

another. Specifically for photo vs. sketch face recognition, a

coupled information-theoretic projection tree [36] was pro-

posed to reduce the modality gap by maximizing the mutual

information between photos and sketches in the quantized

feature spaces. In [34], a pair of semi-coupled dictionaries

were proposed to characterize both views with a mapping

function modeling the intrinsic relationship between the t-

wo views, and this work was further extended by using a u-

nified model for coupled dictionary and feature space learn-

ing in [11]. Besides, some methods employed either view

as the common space, e.g., a pseudo-sketch of photo was

synthesized for photo-sketch recognition [32][20].

Although the view discrepancy can be minimized by the

above methods, the discriminant information, e.g., class la-

bel, is not explicitly taken into account, which is unfavor-

able for recognition or classification. Therefore, quite a few

methods has examined how to incorporate the discriminant

information as well as the view discrepancy.

In [21][31][15], CCA was extended to Correlation Dis-

criminant Analysis and Discriminative Canonical Correla-

tion Analysis by maximizing the within-class correlation

and minimizing between-class correlation across two-view

for a discriminant common space. In [7][8], Multiview

Fisher Discriminant Analysis was proposed to employ the

label information for binary classification. In [19], Com-

mon Discriminant Feature Extraction (CDFE) was pro-

posed to minimize the intra-class scatter and meanwhile

maximize the inter-class separability, resulting in very en-

couraging performance. In [6], a large margin approach was

proposed to discover a predictive latent subspace represen-

tation shared by two views based on an undirected laten-

t space Markov network. In [17], Coupled Spectral Re-

gression (CSR) learnt a projection from the observation to

the common low-dimensional embedding of the class la-

bel through least squares regression. Similarly, in [33], two

coupled linear regression models were used to project data

from different modalities into a common subspace that is

directly defined by the class label. In [16], a local feature-

based discriminant analysis method was proposed to match

a forensic sketch and a mug shot photo. Besides, some oth-

er methods proposed to apply discriminant classifier in the

common space achieved from some unsupervised method,

like [18]. Recently, a generalized multi-view analysis (G-

MA) framework was proposed in [29], in which the su-

pervised information of each view was coupled with the

correlation between views, leading to a discriminant com-

mon subspace. Furthermore, a multi-view discriminant

analysis (MvDA) approach [13] was proposed by consider-

ing intra-view discriminancy, inter-view discriminancy, and

view correlations all together in an unified framework. Ben-

efitted from the supervised information, these discriminant

methods usually outperform those unsupervised ones.

Most of these methods are linear ones, and may become

insufficient for challenging scenarios. At first thought, eas-

ily they can be extended to non-linear models with kernel

trick, such as Kernel Canonical Correlation Analysis (KC-

CA) [2][22]. However, it is trival to design a favorable ker-

nel and also it is inefficient to deal with the out-of-sample

problem. So recently, several works proposed to employ the

more flexible deep neural network to handle the non-linear

discrepancy between views, and achieved promising results.

In [24], a Multimodal Deep Auto-encoder was proposed,

which took the two views as input and outputted two views

too, so as to learn shared representation of both views.

In [30], a Multimodal Deep Botlzman Machine (DBM)

was proposed to jointly model the distribution over two

views. In [3], Deep Canonical Correlation Analysis (DC-

CA) was proposed to learn complex nonlinear transforma-

tions for each of the two views so that the resulting rep-

resentations are highly linearly correlated. As evaluated,

DCCA performs better than Kernel CCA [2][22]. Specif-

ically for the face recognition across view, e.g. pose and

illumination, [37] proposed a convolutional-like deep neu-

ral network to learn the face identity-preserving features, in

which all views are reconstructed to a common view, i.e. the

canonical view. Furthermore, [38] proposed a Multi-view

Perceptron (MVP) to untangle the identity and view fea-

tures, and in the meanwhile infer a full spectrum of multi-

pose images given a single 2D face image.

All these methods [24][30][3][37][38] employ the deep

neural network to model the view distribution and achieved

quite promising performance benefited from the favorable

ability of non-linearly modeling. However, they are all un-

supervised methods, so generally need a successive super-

vised feature extraction or classifier inducing a better per-

formance for classification or recognition.

Over all speaking, much of the research has well ex-

amined how to deal with the view-discrepancy for recogni-

tion or classification across view. However, they are linear

which cannot well hand the challenging non-linear scenar-

ios, unsupervised deep approaches which are incapable of

recognition, or kernelized supervised methods which may

get suck with the out-of-sample problem. To cope with al-

l these challenges, we propose an explicitly non-linear and

supervised method, named as Multi-view Deep Network.

Our proposed Multi-view Deep Network (MvDN) con-

siders the view-discrepancy and discriminancy simultane-

ously through a deep architecture, resulting in a discrimi-

nant and view-invariant representation shared between mul-

tiple views. Specifically, our proposed MvDN consists of

two sub-networks, the view-specific sub-network and the

common sub-network shared by all views. As the loss func-

tion, the Rayleigh quotient objective of samples from all

views is employed to ensure the discriminancy of the whole
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network. As a result, the feature representation from the

topmost layers of MvDN is robust to view variations, and

also discriminative.

In the following, Section 2 presents the formulation of

Multi-view Deep Network followed by the optimization and

some discussions, and Section 3 evaluates the MvDN on

two databases, followed by a conclusion.

2. Multi-view Deep Network (MvDN)

In this section, we firstly introduce the overview of the

proposed Multi-view Deep Network (MvDN) method, and

then present the formulation of MvDN, followed by the op-

timization and some discussions.

2.1. Overview

The problem this work mainly attempts to deal with

is recognition or classification across view. To deal with

this problem, the proposed MvDN seeks for a discriminan-

t and view-invariant representation shared between multi-

ple views. Specifically, MvDN consists of two types of

sub-networks, the view-specific sub-networks and the com-

mon sub-network, as shown in Figure 1. The view-specific

sub-networks fi|
v
i=1

are expected to reduce the discrepancy

between that view and the commonality of all views. The

commonality of all views is enforced by the following com-

mon sub-network gc with the Rayleigh quotient objective.

The common sub-network is shared by all views in a

multiplex way, which means that the common sub-network

gc is connected to each view-specific sub-network fi inde-

pendently. As a result, the common sub-network can extrac-

t a view-invariant representation for any single input view.

The Fisher loss is calculated with the samples of all views,

which ensures the discriminancy and view-invariancy of the

representation from the common sub-network.

2.2. Formulation

For clear description in the following, we first define

some notations. In the whole text, upper-case and lower-

case characters represent the matrices and vectors respec-

tively. Given v views, the j-th sample of i-th view is de-

noted as xi
j ∈ R

pi×1, and all the ni samples of i-th view

are denoted as Xi = [xi
1
,xi

2
, · · · ,xi

ni
] ∈ R

pi×ni . The cor-

responding class label is denoted as Li = [li
1
, li

2
, · · · , lini

],
where lij ∈ {1, 2, 3, · · · , c} representing the class label of

sample xi
j . Different views contains samples from the same

classes but in different views.

For any sample xi
j from ith view, its representation

from MvDN yi
j is generated by passing through the ith

view-specific sub-network and following the common sub-

network successively, formulated as below:

yi
j = gc

(

fi
(

xi
j

))

. (1)

In Eq. (1), fi, i.e. the sub-network specific to the ith view,

is responsible for eliminating the particular information of

ith view, and gc, i.e. the common sub-network shared by

all views, further extracts the discriminant representation

shared by all views. With the view-invariant feature rep-

resentation yi
j , the samples of different views can be effec-

tively compared for recognition or classification. Generally,

the two sub-networks is designed with non-linear activation

function so as to characterize the challenging discrepancy

between views, e.g. sigmoid, tanh, ReLU, etc. Besides,

each of the two sub-networks can contain one or more lay-

ers resulting in a deep architecture of MvDN.

To ensure that the representation yi
j from MvDN is dis-

criminant and robust to view discrepancy, the Rayleigh quo-

tient of samples from all views is employed as the objective

function as follows:

[g∗

c , f
∗

1
, · · · , f∗v ] = arg min

gc,f1,··· ,fv
Tr

(

S
y
W

S
y
B

)

, (2)

where Tr(·) denotes the trace of a matrix, S
y
W denotes the

within-class scatter of samples from all v view, and S
y
B de-

notes the between-class scatter of samples from all v views.

The within-class scatter and between-class scatter in Eq.

(2) are both calculated with samples from all views, mean-

ing that not only the view-discrepancy but also the intra-

view and inter-view discriminancy are considered, inducing

a discriminant and view-invariant representation shared be-

tween all views. More detailed illustration will be given in

the following.

The within-class scatter S
y
W is calculated as below:

S
y
W =

c
∑

k=1

v
∑

i=1

nki
∑

j=1

(

yi
jk − µk

) (

yi
jk − µk

)T
, (3)

where yi
jk representing the jth sample of ith view of kth

class, and nki representing the number of samples in ith

view of kth class. µk is the mean of kth class, calculated

as µk = 1

nki

∑v
i=1

∑nki

j=1
yijk. Eq. (3) can be equivalently

reformulated as below with a scale of γ:

S
y
W =γ

c
∑

k=1

v
∑

i,i′=1

nki
∑

j,j′=1

(

yi
jk − yi′

j′k

)(

yi
jk − yi′

j′k

)T

,

(4)

As seen, the within-class scatter S
y
W calculated from sam-

ple of all view not only ensures the closeness of samples

from the same class and same view (i.e. when i = i′), but

also ensures the closeness of sample from the same class

but different views (i.e. when i 6= i′). In other words, mini-

mizing the within-class scatter S
y
W ensures the closeness of

samples from the same class regardless of the view.

Similarly, the between-class scater S
y
B is calculated as

below:

S
y
B =

∑c

k=1

nk (µk − µ) (µk − µ)
T
, (5)
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where nk =
∑v

i=1
nki is the number of samples from all

views in kth class, µk is the mean of the kth class defined

as in Eq. (3), and µ is the mean of all samples from al-

l views, calculated as µ = 1

n

∑c
k=1

∑v
i=1

∑nki

j=1
yijk with

n =
∑c

k=1
nk. In Eq. (5), the between-class scatter is com-

puted with samples from all views, and as so it can maxi-

mize the distance of different classes regardless of view.

As in Eq. (3), the within-class scatter enforces the sam-

ples of different view but from the same class close to each

other so as to obtain a view-invariant representation shared

between all views. Furthermore, as in Eq. (3) and Eq. (5),

the within-class scatter and between-class scatter consider

both the intra-view discriminancy and inter-view discrimi-

nancy can achieve a discriminant representation. Therefore,

maximizing the between-class scatter and minimizing the

within-class scatter calculated from samples of all view si-

multaneously as in Eq. (2) can result in a discriminant and

view-invariant representation shared between all views.

2.3. Optimization

Following the most existing works of deep learning, we

employ the gradient descent to optimize the multi-view

deep network in Eq. (2). In the following, we will give

the details about how to conduct the gradient descent for the

Fisher loss, the common sub-network, and the view-specific

sub-networks respectively.

Overall speaking, the whole MvDN is optimized by the

gradient descent following the chain rule, i.e. firstly com-

pute the loss of objective, and then prorogate the loss to each

layer so as to compute the gradient of each layer, and finally

employ gradient descent to update the whole network.

Step 1: Feed forward and calculate the loss. For each

of the v views, the samples of Xi are fed forward to the

MvDN as in Eq. (1), and the output of the MvDN is denoted

as Yi, with Yi = [yi
1
,yi

2
, · · · ,yi

ni]. Then based on the

samples of all views Y = [Y1,Y2, · · · ,Yv], the loss of

the whole network is calculated as in Eq. (2), denoted as

J = Tr
(

S
y

W

S
y

B

)

.

Step 2: Gradient of the loss layer. As the loss J is

directly calculated with the output of the MvDN, there is

no parameter involved, so we firstly need to calculate the

gradient of J with respect to Y.

According to [14], the gradient of Fisher loss can be cal-

culated as follows:

∂Tr
(

XTA1X
XTA2X

)

∂X

=− 2A2X
(

XTA2X
)−1 (

XTA1X
) (

XTA2X
)−1

+ 2A1X
(

XTA2X
)−1

(6)

According to [35], the within-class scatter matrix S
y
W , the

total scatter matrix S
y
T , and the between-class scatter matrix

S
y
B can be reformulated as below:

S
y
W = Y

(

I−

c
∑

k=1

1

nk

ekekT

)

YT = YAWYT , (7)

S
y
T = Y

(

I−
1

n
eeT

)

YT = YATY
T , (8)

S
y
B = S

y
T − S

y
W = YABY

T (9)

with AB = AT − AW . Here, I ∈ R
n×n is an identity

matrix, e is an n-dimensional vector with all elements as 1,

and ek is an n-dimensional vector with ek(i) = 1 if the ith

sample of Y belongs to kth class.

With Eq. (10), Eq.(7) and Eq. (9), the gradient of J w.r.t.

Y can be calculated as follows:

∂J

∂Y
=− 2ABY

T
(

YABY
T
)−1(

YAWYT
)(

YABY
T
)−1

+ 2AWYT
(

YABY
T
)−1

(10)

Step 3: Gradient of common sub-network gc. De-

note the output of the view-specific sub-network, i.e. the

input of the common sub-network, as zij = fi(x
i
j). The

Zi =
[

zi
1
, zi

2
, · · · , zini

]

and Z = [Z1,Z2, · · · ,Zv] denote

the output of the view-specific sub-network for samples of

ith view and all views respectively.

With the gradient of the loss J as in Eq. (10), nextly ac-

cording to the chain rule we can compute ∂Y
∂gc

(the gradient

of Y w.r.t. the common sub-network gc) to update the gc

afterwards. Besides, we also need compute ∂Y
∂Z

(the gradi-

ent of Y w.r.t. Z) to propagate the loss to its next layers, i.e.

the view-specific sub-network.

The common sub-network can include one or more lay-

ers, and each layer can be non-linear by using a non-linear

activation function, e.g. the sigmoid, tanh, or relu. The gra-

dient of ∂Y
∂gc

and ∂Y
∂Z

w.r.t. different activation functions

can be easily computed according to the ‘UFLDL Tutorial’

website [23].

Step 4: Gradient of view-specific sub-network fi.
∂Y
∂Z

computes the gradient of Y w.r.t. to all views sam-

ples of Z1,Z2, · · · ,Zv , i.e. ∂Y
∂Z

=
[

∂Y
∂Z1

, ∂Y
∂Z2

, · · · , ∂Y
∂Zv

]

.

As Zi|
v
i=1

are computed from different view-specific sub-

networks. Therefore, the loss can be propagated indepen-

dently, and the gradient of each view-specific sub-network

fi can be calculated independently too. Similarly, the gradi-

ent of ∂Zi

∂fi
w.r.t. different activation functions can be easily

computed according to the ‘UFLDL Tutorial’ website [23].

Step 5: MvDN update via gradient descent. Let

us denote the parameter of the whole MvDN as θ =
[gc, f1, f2, · · · , fv]. At the iteration t + 1, the network pa-

rameters are updated through the Limited-memory BFGS
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(L-BFGS) optimization algorithm, with the gradient calcu-

late as follows:

△θt =
[

△θtgc ,△θtf1 ,△θtf2 , · · · ,△θtfv
]

△θtgc =
∂J

∂Y
·
∂Y

∂gc

△θtfi =
∂J

∂Y
·
∂Y

∂Zi

·
∂Zi

∂fi
, i = 1, 2, · · · , v.

(11)

Here, J,Y,gc, fi, and Zi are all calculated from the net-

work in the tth iteration.

2.4. Discussions

Differences from CCA, MCCA and PLS. CCA [10],

MCCA [27], and PLS [28] are all unsupervised and linear

approaches. Among them, CCA and PLS can only deal

with two-view problem, so usually the pair-wise strategy

is employed for multiple views. MCCA can naturally deal

with multi-view problem. In contrast, our MvDN is not on-

ly non-linear and supervised, but also can be applicable for

multi-view problem.

Differences from MvDA, GMA and CDFE. Compared

with CCA-like methods, MvDA [13], GMA [29] and CDFE

[19] are supervised. Generally, they can achieve better per-

formance benefited from the considering of discriminancy.

However, they are all linear methods, which may be hard to

well characterize challenging view discrepancy. In contrast,

our MvDN is non-linear and discriminative.

Differences from Kernel CCA [2]. There are general

theories on CCA, so if having some idea of the underlying

distribution, we can easily select proper kernel functions to

transform it to a new distribution that is suitable for CCA

forming an effective KCCA. In most real-world problems,

however, we barely have any idea of the underlying distri-

bution, and it will be difficult to design a favorable kernel

function. In contrast, our MvDN equipped with deep neu-

ral work can automatically be optimized to form a proper

distribution for CCA or Fisher objective. Besides, kernel

methods suffer from scalability issue, while deep learning

methods including our MvDN naturally scale to large-scale

problems benefited from the explicit non-linear mapping.

Although deep neural network does not have sophisticated

theories yet, there are lots of works about how to design an

effective network, e.g. those from Geoffrey Hinton, Yann

LeCun, Yoshua Bengio, etc. Moreover, our MvDN is dis-

criminative, while KCCA is not.

Differences from DCCA, FIP and MVP. To model

challenging view variations, DCCA [3], FIP [37] and MVP

[38] propose to employ the deep neural network to capture

the highly non-linear discrepancy between views, and have

achieved promising performance. However, they are un-

supervised, and with a risk of discarding the discriminan-

cy. Take DCCA for example, the deep network may over-

fit a given dataset with sacrificing the discriminancy. On

the contrary, our MvDN is supervised, and it simultaneous-

ly considers discriminancy as well as the view discrepancy,

which can ensure a representation that is robust to view dis-

crepancy and also discriminant. Besides, FIP and MVP are

designed especially for face recognition across pose, which

is inapplicable for the general cross-view problem when the

dimension of each view is different. On the contrary, DC-

CA and our MvDN is applicable even the dimension of each

view is different.

Differences from a vanilla CNN. A vanilla CNN taking

all samples from multiple views as one view may be ap-

plicable for cross-view problems with homogeneous view

representations (e.g. cross-pose), but will fail in general het-

erogenous cross-view problems where each view is of dif-

ferent dimensionality. Contrastly, our MvDN is general for

more than 2 views, even for heterogenous views.

Overall speaking, the existing methods for cross-view

recognition problem are unsupervised linear approaches,

supervised linear approaches, unsupervised deep non-linear

approaches, or implicitly kernel-based supervised non-

linear approaches. Differently, our multi-view deep net-

work is a supervised and explicitly deep non-linear ap-

proach, which can efficiently characterize more challeng-

ing view discrepancy for a better discriminant and view-

invariant representation shared between multiple views.

3. Experiments

In this section, we evaluate the proposed MvDN and a

few existing methods on two cross-view face recognition

tasks, i.e., face recognition across pose on MultiPIE [9],

and face recognition across feature type on FRGC [26] and

LFW [12] datasets. The existing methods of CCA [10], KC-

CA [2], MCCA [27], PLS [28], MvDA [13], GMA [29],

FIP [37] and MVP [38] are evaluated. For the experiments

on MultiPIE and FRGC, the face images are cropped into

64x80 with manually labeled eye locations, and for exper-

iments on LFW, the face images are cropped into 80x120.

The intensity is used as the feature in all experiments unless

otherwise stated. To reduce the feature dimension, Princi-

pal Component Analysis (PCA) is applied for each view,

and the reduced dimension is set as 200, 300 and 400 on

MultiPIE, FRGC and LFW respectively to preserve more

than 95% energy.

3.1. Face recognition across pose

Face recognition across view angle endeavors to recog-

nize the probe images from one view angle by comparing

them with the gallery images that are from another view

angle. Face recognition across pose is evaluated on Multi-

PIE dataset by taking each pose as one view. The MultiPIE

dataset [9] contains images of 337 subjects under various

poses, illuminations and expressions.
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Table 1. Evaluation of face recogntion across view angle on the MultiPIE dataset.

Methods -90◦ -75◦ -60◦ -45◦ -30◦ -15◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Average

PLS 0.319 0.775 0.892 0.934 0.883 0.981 0.981 0.934 0.906 0.873 0.723 0.268 0.789

MCCA 0.409 0.742 0.822 0.723 0.685 0.920 0.906 0.798 0.747 0.779 0.714 0.376 0.718

PLS+LDA 0.380 0.798 0.869 0.944 0.920 0.995 0.986 0.967 0.883 0.850 0.709 0.319 0.802

MCCA+LDA 0.488 0.662 0.817 0.887 1.00 1.00 1.00 0.995 0.831 0.803 0.676 0.568 0.811

MvDA 0.568 0.723 0.845 0.920 0.967 1.00 1.00 0.991 0.897 0.864 0.714 0.559 0.837

GMA 0.526 0.732 0.845 0.901 1.00 1.00 1.00 1.00 0.906 0.859 0.718 0.573 0.838

MvDN (Ours) 0.704 0.822 0.883 0.911 0.991 1.00 1.00 0.991 0.930 0.911 0.798 0.709 0.887

Table 2. Performance of MvDN with different neurons for the second layer from last in the common-subnetwork on the MultiPIE dataset.

Neurons -90◦ -75◦ -60◦ -45◦ -30◦ -15◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Average

400 0.695 0.812 0.887 0.897 0.972 0.995 1.000 0.972 0.892 0.878 0.779 0.676 0.871

600 0.695 0.793 0.850 0.897 0.981 1.000 1.000 0.991 0.887 0.887 0.803 0.695 0.873

800 0.723 0.822 0.873 0.897 0.986 0.995 1.000 0.981 0.878 0.864 0.808 0.690 0.876

1000 0.747 0.808 0.873 0.901 0.977 0.995 1.000 0.977 0.897 0.869 0.812 0.737 0.883

1200 0.704 0.822 0.883 0.911 0.991 1.00 1.00 0.991 0.930 0.911 0.798 0.709 0.887

1400 0.751 0.836 0.878 0.897 0.981 1.000 1.000 0.986 0.916 0.897 0.831 0.737 0.892

1600 0.723 0.840 0.859 0.892 0.977 0.991 1.000 0.977 0.892 0.878 0.798 0.732 0.880

1800 0.676 0.822 0.864 0.916 0.991 1.000 1.000 0.986 0.906 0.869 0.798 0.695 0.877

Specifically, a subset including images from all subject-

s at 13 poses (-90◦, -75◦, -60◦, -45◦, -30◦, -15◦, 0◦, 15◦,

30◦, 45◦, 60◦, 75◦, 90◦) under no flush illumination from

4 collecting sessions is selected as the evaluation dataset.

This evaluation dataset is divided into 13 subsets according

to view angle. For each view angle, 708 randomly selected

images of the first 229 subjects are used for training, and

213 randomly selected images of the remaining 108 sub-

jects are used for testing. For training data, all 13 poses are

divided into only 3 views, i.e. [-90◦, -45◦], [-30◦, 30◦], and

[45◦, 90◦], to simulate a challenging scenario. In the pro-

cess of testing, the view of 0◦ is used as the gallery, and

the rest 12 views are used as the probe. All methods are

evaluated in terms of rank-1 recognition rate.

For CCA, MCCA, PLS and MvDA, the main parame-

ter is the dimension of the projected representation, and we

tune the dimension with step of 50 to report a best result.

For GMA, following the suggestions in [29] we set µ = 1,

γ = trace ratio, tune the λ in [0.1 500], and tune the di-

mension of the projected representation also in step of 50

to report the best result. In our MvDN, each of the three

view-specific sub-networks consists of one input layer with

200 neurons(i.e. the PCA dimension) and one hidden layer

with 300 neurons equipped with ReLU activation function,

and the common sub-network consists of one hidden layer

with 1200 neurons equipped with ReLU activation function

followed by a linear hidden layer with 200 neurons, result-

ing in a four-layer deep network including the input layer.

That is, fi is a 200-300 network, and gc is 300-1200-200

network, where the input layer of gc is also the output of

fi with 300 neurons. The neurons of the last layer should

be smaller than the number of classes to ensure the S
y
W and

S
y
B non-singular.

The evaluation results are shown in Table 1. As seen, the

MCCA and PLS performs the worst, e.g. the rank-1 recog-

nition rate is only about 26%∼40% for recognition between

90◦ and 0◦, which is mainly due to no consideration of su-

pervised information. So, a straightforward idea is to apply

a supervised method after them. In this work we apply the

Linear Discriminant Analysis (LDA) [4] after the MCCA

and PLS, denoted as MCCA+LDA and PLS+LDA respec-

tively. As expected it perform better than both MCCA and

PLS. However, as MCCA/PLS and LDA are learnt separate-

ly, some discriminancy may be lost in MCCA/PLS which

cannot be recalled in the following LDA. Furthermore, the

Table 3. Performance of face recognition across view angle

on MultiPIE with 7 poses.

Methods -45◦ -30◦ -15◦ 15◦ 30◦ 45◦

CCA[11] 0.732 0.959 1.00 0.999 0.961 0.688

KCCA(RBF)[3] 0.801 0.977 0.999 1.00 0.979 0.717

FIP+LDA[36]∗ 0.934 0.964 1.00 0.985 0.956 0.898

MVP+LDA[37]∗ 0.934 1.00 1.00 1.00 0.993 0.956

MvDN(Ours) 0.991 0.995 1.00 1.00 0.991 0.976
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MvDA and GMA perform better than MCCA+LDA, which

are benefited from the simultaneous consideration of the

view discrepancy and discriminancy. MvDA and GMA

are linear, so we tried to make them non-linear for a bet-

ter performance via the kernel trick, however we hardly

got a promising result. Moreover, our MvDN performs the

best, with significant improvement even up to 13% for large

pose, e.g. 90◦. This is because that the pose varies non-

linearly, especially for large degree, leading to much more

challenging view discrepancy, so the existing linear meth-

ods, e.g. MvDA and GMA, are unable to model so large

discrepancy, while our MvDN is flexible to model high non-

linearity effectively, benefited from the advantages of the

deep network. Another observation is that the improvement

of MvDN compared to the existing methods becomes larger

as the view discrepancy expands, further demonstrating the

good robustness of MvDN to view discrepancy.
We also compare the proposed MvDN with the deep un-

supervised methods FIP and MVP in Table 3. The meth-

ods including CCA , KCCA and our MvDN are evaluated

following the same protocol as [37][38], i.e. the first 200

subjects are used for training and the rest 137 are used for

testing, but with much less sample per subject. The results

of FIP and MVP are directly from [37] and [38] for refer-

ence and thus are marked with superscript of ∗ in Table 3.

Besides, we evaluate the performance of MvDN w.r.t.

the number of neurons in the common-subnetwork. For the

MvDN on this dataset, the second from the last is actually

the first layer in the common sub-network gc, and this layer

captures the variations from all views serving as the bases

of the representation in last layer of gc. So, the final perfor-

mance is essentially influenced by this layer which heavily

depends on the number of neurons. Therefore, we mainly

investigate the number of neurons in the second layer from

last. The results are shown in Table. 2, and the averaged

rank-1 recognition rate is also shown in Figure 2. As seen,

MvDN can achieve a better performance even if with only

400 neurons in the second layer from last, and can achieve

a further improvement with more neurons, e.g. 1200, 1400.

However, it begins to degenerate when the number of neu-

rons is too large to overfit.

Figure 2. Averaged recognition rate of MvDN with different neu-

rons for the 1st in the common-subnetwork on MultiPIE dataset.

3.2. Face recognition across feature type

In some scenarios, different types of feature are favor-

able for different views. For example, in scenario of images

vs. video, intensity and covariance of intensity are preferred

for representing the images and videos respectively, or dif-

ferent lighting pre-processing are preferred for different im-

ages. In these scenarios, classification is conducted across

feature type. To simulate face recognition across feature

type, we firstly conduct experiment on the Face Recognition

Grand Challenge (FRGC) [26] with two views, i.e. intensi-

ty feature (64x80=5120 dim) as one view and Local Binary

Pattern (LBP) [1] feature (8850 dim) as another view.

Face Recognition Grand Challenge (FRGC) [26] is a

large-scale face recognition evaluation system. It presents

six challenging experiments along with data corpus of

50,000 recordings, taken under both controlled and uncon-

trolled conditions. We follow the protocol of the challeng-

ing Experiment 4 to evaluate our approach. In standard Ex-

periment 4, training set consists of 12,776 images of 222

subjects, the target set consists of 16,028 controlled images,

and the query set consists of 8,014 uncontrolled images. In

our experiments, we randomly select 50% of the training

images for training, and 25% of the target and query images

for testing, i.e. 6388 training images, 4007 target images,

and 2004 query images.

For training images, both intensity and LBP feature are

available, each type of feature as one view. For target im-

ages, only intensity feature is provided, and for query im-

ages, only LBP feature is provided. So, the task is to do

face verification between the target and query images with

different type of features respectively. The performance is

measured in terms of ROC curve.

Similarly as that in the experiment on MultiPIE, CCA,

CCA+LDA, PLS, MvDA and GMA is tuned to report the

best result. In our MvDN, each of two view-specific sub-

networks fi is a 300-300 network, and the common sub-

network gc is a 300-1000-200 network.

All methods are evaluated in Figure 3. The same conclu-

sion can be obtained as that on the face recognition across

pose. The unsupervised CCA and PLS perform the worst

followed by CCA+LDA. Furthermore, MvDA and GMA

perform much better. Finally, the proposed MvDN performs

the best, with a significant improvement, benefited from the

deep non-linear and discriminant architecture.

Following the protocol on FRGC, we further compare

the linear and deep methods on a more challenging dataset

LFW [12]. The LFW is a large data set consisting of

13,233 uncontrolled images from 5,749 individuals. On this

dataset, only those subjects with more than 1 image are em-

ployed. Among these subjects sorted according to the num-

ber of images of each subject, the first 1000 subjects are

used for testing, one image of each subject as target and the

rest as query. The rest 680 subjects are used for training.
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Figure 3. Face verification across feature type on FRGC dataset in

terms of ROC.

In total, there are 1000 images from 1000 subjects in the

Target set, 1221 images from the same 1000 subjects in the

Query set, 6943 images from the rest 680 subjects in the

Training set. We conduct experiment on the LFW with two

views, i.e. intensity feature (120x80=9600 dim) as one view

and LBP feature (8850 dim) as another view. For training

images, both intensity and LBP feature are available, each

type of feature as one view. For target images, only inten-

sity feature is provided, and for query images, only LBP

feature is provided. Same as that on FRGC, the task is to do

face verification between the target and query images with

different type of features respectively. The performance is

measured in terms of ROC curve.

The evaluation results are as shown in Figure 4. In Fig-

ure 4, the linear methods for evaluation include CCA, GMA

and MvDA, denoted in dashed lines. For the deep methods

we attempt to evaluate the Deep CCA, Deep GAM and our

MvDN which share similar objective as the linear methods.

However, we cannot get a reasonable performance for Deep

CCA even with the authors’ released code, so we instead

evaluate the Kernel CCA. Besides, as GMA has no deep

version, we extend it as Deep GMA following our MvDN

scheme, i.e., replace the objective in our MvDN with the G-

MA objective but with the same deep architecture. As can

be seen, both MvDN and Deep GMA perform much better

than the linear MvDA and GMA, and our MvDN outper-

forms Deep GMA, demonstrating the effectiveness of our

deep multi-view scheme.

4. Conclusions and Future Works

In this work, we propose a multi-view deep network,

which attempts to learn a discriminant and view-invariant

representation shared between multiple views. The MvDN

consist of two sub-networks, the view-specific sub-network

that endeavors to eliminate the discrepancy between each

Figure 4. Face verification across feature type on LFW dataset in

terms of ROC.

view and the commonality, and the common sub-network

with the Fisher loss further aims for a discriminant and

view-invariant representation. As evaluated, the proposed

MvDN achieves quite promising performance, with signifi-

cant improvement. In future, we will explore how to extend

this framework for feature fusion.
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