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Abstract

The probabilistic principal component analysis (PPCA)

is built upon a global linear mapping, with which it is in-

sufficient to model complex data variation. This paper pro-

poses a mixture of bilateral-projection probabilistic princi-

pal component analysis model (mixB2DPPCA) on 2D da-

ta. With multi-components in the mixture, this model can

be seen as a ‘soft’ cluster algorithm and has capability of

modeling data with complex structures. A Bayesian infer-

ence scheme has been proposed based on the variation-

al EM (Expectation-Maximization) approach for learning

model parameters. Experiments on some publicly avail-

able databases show that the performance of mixB2DPPCA

has been largely improved, resulting in more accurate re-

construction errors and recognition rates than the existing

PCA-based algorithms.

1. Introduction

Principle Component Analysis (PCA) [3] is one of pop-

ular dimensionality reduction methods widely used in im-

age analysis [9, 11], pattern recognition [8, 14] and machine

learning [13] for data analysis. It can be derived under al-

gebraic framework. However, algebraic models don’t have

flexibility of providing confidence information of the mod-

el when dealing with noisy data. This is due to the absence

of an associated probability density or generative model in

algebraic framework.

To compensate the algebraic PCA drawbacks, Tipping

and Bishop [19] firstly proposed a probabilistic PCA mod-

el, called PPCA. Under the probabilistic framework, PPCA

takes advantage of Bayesian learning and inference by com-

bining the likelihood with appropriate priors. As a result,

the observed data are regarded as random variables, gener-

ated from a set of latent random variables which follow the

Gaussian distribution of zero mean and identity covariance,

with additive noises following a Gaussian distribution with

zero mean and an isotropic covariance. Under such a proba-

bilistic learning framework, the model parameters in PPCA

can be easily solved by the maximum likelihood estimation

(MLE). Much progress has been made based on PCA and

PPCA in the last couple of decades [2, 5].

PPCA and standard PCA methods can be interpreted in

many ways, one of which assumes that the observed high-

dimensional data are generated from their low-dimensional

factors through a linear model with the corruption of Gaus-

sian noise. So those algorithms essentially use a linear mod-

el for representing the entire data in a low dimensional sub-

space. It may be insufficient to model data with large vari-

ation caused by, for example, pose, expression and lighting

in face recognition. Thus the application scope of PPCA

and PCA-based methods is necessarily somewhat limited

by its global linearity assumption. An alternative improv-

ing paradigm is to model the complex manifold with a mix-

ture of local linear PPCA sub-models. Thus the single PCA

model could be extended to a mixture of such sub-models.

A number of ‘mixture of PPCA’ have been proposed in

literature. The first work was done by Ghahramani and Hin-

ton [7]. They presented an exact Expectation-Maximization

(EM) algorithm for fitting the parameters of the mixture of

factor analyzers. By constraining the error covariance to

be a diagonal matrix whose elements are usually equal, the

mixture of factor analyzers became the mixture of PPCA

[20]. Bishop and Tipping [4] extended the mixture of PP-

CA model to achieve a hierarchical mixture model. Su and

Dy [17] introduced an automated hierarchical mixture of P-

PCA algorithm, which utilizes the integrated classification

likelihood as a criterion for splitting and stopping the addi-

tion of hierarchical levels. Kim et al. [12] proposed a fast

and sub-optimal selection method of model order such as

the number of mixture components and the number of PCA
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bases for the PCA mixture model, consisting of a combina-

tion of many PCAs. In addition, under the assumption of

the Student-t distribution, the related research includes the

mixture model of Student-t components [15], which actual-

ly is a generalized mixture of Gaussian model without con-

sidering subspace structures, and more recent work such as

the robust subspace mixture model [16], in which both the

likelihood and the latent variables were supposed to follow

the Student-t distribution and the EM algorithm was applied

to the model. In 2005, Archambeau [1] discussed the robust

models in the context of finite mixture models, and a similar

work for the mixture of the robust Laplacians was presented

in [6]. These mixture models are important as it enables one

to model nonlinear relationships by aligning a collection of

such local models.

The aforementioned models are concerned with vecto-

rial data. In order to apply these methods to 2D data, a

typical workaround way is to vectorize 2D data. Vectoriz-

ing 2D data not only results in very high-dimensional data,

causing the problem of the curse of dimensionality [23], but

also ignores valuable information on the spatial relation-

ship among 2D data. Instead of using vectorization, PCA

approaches for two-dimensional data (2DPCA) have been

proposed [22, 24, 26], to generally extract features of 2D

data under the assumption of Gaussian noises. Ju et al. [10]

proposed a probabilistic 2DPCA model to deal with outlier

noises by using Laplacian distribution. This model benefits

outlier detection. Wang et al. [21] extended the probabilis-

tic 2DPCA to a mixture of local probabilistic 2DPCA mod-

els (MP2DPCA). MP2DPCA offers a tempting prospect of

being able to model data with complex variation.

MP2DPCA model regards each row vector of the 2D

data as an observed sample and uses all rows to train the

mixture model, resulting in mean vectors from the mix-

ture model. This is essentially a unilateral projection based

scheme, where only one side multiplication is taken into

account. The unilateral scheme usually preserves the cor-

relation information among the row/column vectors of the

images and more parameters are needed to well represent

an image. To tackle these problems, a bilateral-projection

scheme is favored. In this study, our intention is to propose

a mixture of bilateral-projection-based probabilistic 2DP-

CA (mixB2DPPCA) model. Different from MP2DPCA,

we regard each 2D images as observed samples in their

natural shape and reduce 2D dimensionality directly. The

mixB2DPPCA has two major advantages: 1) The model

makes use of structured information of 2D data and can be

easily extended for high order tensorial data. All the al-

gorithm derivations remain without major difficulties. 2)

mix2DPPCA carries over all the advantages of the mixture

of PPCA.

The remainder of the paper is organized as follows.

In Section 2, the mixture of bilateral-projection two-

dimensional probabilistic PCA model is introduced. The

variational approximation approach for solving the model

is presented in Section 3. In Section 4, some experimen-

tal results are conducted to evaluate the performance of the

proposed model. Finally, conclusions are summarized in

Section 5.

2. Mixture of Bilateral-Projection 2DPPCA

Model (mixB2DPPCA)

In this section, we introduce the mixture of bilateral-

projection probabilistic 2DPCA model. For the purpose, we

introduce several notations. Let X = {X1,X2, ...,XN} be

N independent and identical random samples with values

in R
p×q . For n = 1, ..., N , we suppose that sample Xn

is generated independently from a mixture of K underlying

components with unknown probabilities π1, π2, ..., πK ,

p(Xn|Bn) =

K∑

k=1

πkN (Xn|LkB
(k)
n RT

k +Mk, σkI, σkI)

(1)

where Mk ∈ R
p×q is the mean matrix, πks satisfy πk > 0

and
∑K

k=1 πk = 1, and Lk ∈ R
p×r and Rk ∈ R

q×c are the

row and column loading matrices with r ≤ p, c ≤ q. Note

that Mk, Lk and Rk are associated with each component

of mixture model. B
(k)
n ∈ R

r×c is the latent variable core

of Xn associated with k-th matrix-variate Gaussian compo-

nent [18, Sec 3.3] with σ2
k as residual variance.

Like [3], we introduce a K-dimensional binary random

variable z having a 1-of-K representation in which a par-

ticular element zk is equal to 1 and all other elements are

equal to 0. That is, zk ∈ {0, 1} and
∑K

k=1 zk = 1. The

distribution of z is defined by

p(zk = 1, zk′ = 0, k
′

6= k) := πk,

which can be written as

p(z) =
K∏

k=1

πzk
k .

Thus the conditional distribution of Xn given a particu-

lar value for zn and B
(k)
n is the matrix-variate Gaussian

p(Xn|znk = 1,B(k)
n ) = N (Xn|LkB

(k)
n RT

k +Mk, σkI, σkI).

Generally we have

p(Xn|zn,B
(k)
n ) =

K∏

k=1

N (Xn|LkB
(k)
n RT

k+Mk, σkI, σkI)
znk .

In this model setting, the parameters are Θ =
{πk,Mk,Lk,Rk, σ

2
k}(k = 1, ..,K), and the latent vari-

ables are zn and B
(k)
n (n = 1, ..., N).
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To develop a generative Bayesian model, we define a

matrix-variate Gaussian prior p(B
(k)
n ) over the latent vari-

able with zero-mean unit-covariance, defined as

p(B(k)
n ) = N (0, Ir, Ic) =

(
1

2π

) rc

2

·exp{−
1

2
tr(B(k)T

n B(k)
n )}.

Hence the joint log-likelihood of the observed data set

for such a mixture model is:

L =

N∑

n=1

K∑

k=1

znk ln{πkp(Xn,B
(k)
n )}.

3. Variational Approximation for

mixB2DPPCA Model

We employ the Expectation Maximization (EM) algo-

rithm to solve for model parameters Θ. To maximize the

log-likelihood of mixB2DPPCA, we take the expectation of

L with respect to the posterior distribution of both B
(k)
n and

znk, i.e.,

〈L〉 =
N∑

n=1

K∑

k=1

〈znk〉{lnπk −
pq

2
lnσ2

k −
1

2
tr(〈B(k)T

n B(k)
n 〉)

−
1

2σ2
k

tr(Xn −Mk)
T (Xn −Mk)

+
1

σ2
tr((Xn −Mk)

TLk〈B
(k)
n 〉RT

k )

−
1

2σ2
tr(〈B(k)T

n LT
kLkB

(k)
n 〉RT

kRk), (2)

where 〈·〉 denotes the expectation.

In E-step, we update Q-distributions of all hidden vari-

ables B
(k)
n and znk with the current fixed parameter values

for Θ. In M-step, maximizing the function 〈L〉 with respect

to the model parameters Θ, we can obtain ‘new’ values for

these parameters.

3.1. Variational E-step

3.1.1 Update the Posterior Distribution of znk

Suppose γnk := 〈znk〉 and it is actually the posterior prob-

ability of k-mixture generating data point Xn. By using the

same strategy for the mixture Gaussian model [3], we can

obtain

γnk =
πkp(Xn|k)

p(Xn)
, (3)

where p(Xn|k) is the k-the component, representing the

marginal distribution for the observed data Xn over the la-

tent variable. In our case, the marginal distribution of Xn is

obtained by integrating out the latent variable B
(k)
n :

p(Xn|k) =

∫
p(Xn|B

(k)
n )p(B(k)

n )dB(k)
n .

Different from the vectorial PPCA, we note that the

marginal distribution of the observed data Xn is in general

no longer a matrix-variate Gaussian. Thus it is difficult to

work with p(Xn|k) directly. Let xn := vec(Xn), now we

can work with p(xn|k) instead of p(Xn|k). Fortunately, the

marginal distribution of xn is a multivariate Gaussian dis-

tribution when taking the special matrix-variate Gaussian

prior B
(k)
n ∼ N (0, Ir, Ic). Let mk = vec(Mk), we can

obtain

p(xn|k) ∼ N (mk,Ck),

where the observation covariance model is specified by

Ck = (RkR
T
k )⊗(LkL

T
k )+σ2

kI. We refer readers to [3, 18]

for more details. Then the denominator in (3) becomes

p(xn) =

K∑

k=1

πkp(xn|k).

After getting γnk, we update the estimated mean matri-

ces Mk’s and mixing proportions πk’s, respectively, by

πk =
1

N

N∑

n=1

γnk and Mk =

∑N

n=1 γnkXn∑N

n=1 γnk
. (4)

3.1.2 Update the Posterior Distribution of B
(k)
n

In computing the posterior distribution of B
(k)
n , we en-

counter a difficulty as the posteriori distribution of B
(k)
n giv-

en Xn

p(B(k)
n |Xn,Lk,Rk, σ

2) ∝ p(Xn|B
(k)
n ,Lk,Rk, σ

2)p(B(k)
n )

is also in general not a matrix-variate Gaussian. To get a

tractable posterior in the variational EM, we restrict the ap-

proximated variational distribution to be a matrix-variate

Gaussian N (B
(k)
n |Q

(k)
n ,T

(k)
n ,S

(k)
n ) to approximate the

true posterior with the mean Q
(k)
n in size r × c and covari-

ances T
(k)
n ≻ 0 of size r × r and S

(k)
n ≻ 0 of size c × c,

respectively. For mixB2DPPCA model, it follows as a natu-

ral extension of a single 2DPPCA. So the parameters Q
(k)
n ,

T
(k)
n and S

(k)
n can be estimated through the maximization of

a single likelihood function. Particularly, the derived formu-

las for estimating these parameters are given by, see more

details in [26],

T(k)
n = cσ2

k[tr(R
T
kRkS

(k)
n )LT

kLk + σ2
ktr(S(k)

n )Ir]
−1

S(k)
n = rσ2

k[tr(L
T
kLkT

(k)
n )RT

kRk + σ2
ktr(T(k)

n )Ic]
−1

and each Q
(k)
n needs to satisfy

LT
kLkQ

(k)
n RT

kRk + σ2
kQ

(k)
n = LT

k (Xn −Mk)Rk.
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To solve this we need to make a vectorization on both sides

and solve a linear equation

(RT
kRk ⊗ LT

kLk + σkI⊗ σkI)vec(Q(k)
n ) = y(k)

n (5)

with respect to vec(Q
(k)
n ), where

y(k)
n = vec(LT

k (Xn −Mk)Rk),

then reshape vec(Q
(k)
n ) back to get Q

(k)
n .

As we assume the approximated posterior distribution of

B
(k)
n is matrix-variate Gaussian, so we can get 〈B

(k)
n 〉 =

Q
(k)
n and the following second-order expectations:

〈B(k)T
n B(k)

n 〉 = Q(k)T
n Q(k)

n + S(k)
n tr(T(k)

n ) (6)

〈B(k)T
n LT

kLkB
(k)
n 〉 = Q(k)T

n LT
kLkQ

(k)
n + S(k)

n tr(T(k)
n LT

kLk)
(7)

〈B(k)
n RT

kRkB
(k)T
n 〉 = Q(k)

n RT
kRkQ

(k)T
n +T(k)

n tr(S(k)
n RT

kRk)
(8)

3.2. Variational M-step

In the M-step, we fix all the distributions over the hidden

variables and gather all the terms containing parameters Lk,

Rk and σ2
k in (2) to maximize them respectively. It turns out

that:

Lk =[

N∑

n=1

γnk(Xn −Mk)Rk〈B
(k)
n 〉T ]

× [

N∑

n=1

γnk〈B
(k)
n RT

kRkB
(k)T
n 〉]−1 (9)

Rk =[

N∑

n=1

γnk(Xn −Mk)
TLk〈B

(k)
n 〉]

× [
N∑

n=1

γnk〈B
(k)T
n LT

kLkB
(k)
n 〉]−1 (10)

and

σ2
k =

1

pqNk

{
N∑

n=1

γnktr(Xn −Mk)
T (Xn −Mk)

− 2

N∑

n=1

γnktr(Rk〈B
(k)
n 〉TLT

k (Xn −Mk)

+
N∑

n=1

γnktr(〈B(k)T
n LT

kLkB
(k)
n 〉RT

kRk)} (11)

where Nk =
∑

n γnk.

The overall variational EM algorithm is to alternate be-

tween E-step and M-step. The final variational EM algo-

rithm is summarized in Algorithm 1.

Algorithm 1 Variational EM algorithm for mixB2DPPCA.

Initialize: Training set X = {Xn}
N
n=1; Initialize all of

model parameters Θ and covariance matrices T
(k)
n and

S
(k)
n , n = 1, ..., N and k = 1, ...,K.

1: for t = 1 to T do

2: Variational E-step:

• Iterate the mean matrix Q
(k)
n based on (5) and

update the second-order expectations based on

(6), (7) and (8).

• Update each γnk, mixing proportions πk and

mean matrices Mk based on (3) and (4).

3: Variational M-step:

• Maximize objective function 〈L〉 with respect

to each elements Lk, Rk and σ2
k based on (9),

(10) and (11).

4: end for

Define the average reconstruction error

e(t) =

√∑N

n=1 ‖Xn − X̂
(t)
n ‖2F

N
(12)

where X̂n = Lk′B
(k′)
n RT

k′ + Mk′ with k′ =
argmaxk{γnk} the reconstructed image.

Algorithm 1 may terminate either a given maximum it-

erative number T is achieved or the following condition is

satisfied,

|e(t)− e(t+ 1)| ≤ ǫ (13)

where ǫ is a given error tolerance.

3.3. The ReducedDimensionality Representation
for a New Sample

In order to obtain the reduced-dimensionality representa-

tion for a given sample, we should solve for the latent vari-

able cores. From the probabilistic perspective, the posterior

mean Q
(k)
new := 〈B

(k)
new|Xnew〉 can be seen as the reduced-

dimensionality representation, which is a r × c feature ma-

trix and given by solving a linear equation

(RT
kRk ⊗ LT

kLk + σkI⊗ σkI)vec(Q(k)
new) = y(k)

new

with respect to vec(Q
(k)
new), where

y(k)
new = vec(LT

k (Xnew −Mk)Rk),

then reshape vec(Q
(k)
new) back to get Q

(k)
new. At the same

time, we can compute the corresponding γnew,k, i.e., the

44465



posterior probability of k-th component generating the new

sample, given by

γnew,k =
p(Xnew|k)πk

p(Xnew)
.

We find the largest γnew,k (k = 1, ...,K) from which the

most appropriate local 2DPPCA model can be identified for

the new sample. That is, a natural choice is to assign the

new sample to a cluster with the largest posterior probabili-

ty.

4. Experimental Results and Analysis

In this section, we conduct several experiments on some

public databases to assess the proposed mixB2DPPCA

model. These experiments are designed to evaluate the per-

formance of the proposed mix2DPPCA in reconstruction

and recognition by comparing with existing models and al-

gorithms.

The relevant PCA algorithms that can be fairly compared

against our proposed mixB2DPPCA are GLRAM (Gener-

alized Low Rank Approximations of Matrices) [25], PSOP-

CA (Probabilistic Second-Order PCA) [27], mixture of PP-

CA [20] with the code from http://www.science.uva.

nl/˜jverbeek. Because the zero-noise PSOPCA model

and GLRAM have the same stationary point [27], we only

compare with GLRAM.

4.1. Data Preparation and Experiment Setting

All of the experiments are conducted on the following

four public available datasets:

• A subset of handwritten digits images from the M-

NIST database (http://yann.lecun.com/exdb/

mnist).

• The Yale face database (http://vision.ucsd.

edu/content/yale-face-database).

• The AR face database (http://rvl1.ecn.purdue.

edu/aleix/aleix_face_DB.html).

• The FERET face database (http://www.itl.nist.

gov/iad/humanid/feret/feret_master.html).

The subset of handwritten digits images is selected from

MNIST database, which contains 1000 digital images with

100 images of each digit. All images are in grayscale and

have a uniform size of 28× 28 pixels.

The Yale face database contains 15 individuals, with 11

images for each individual. The images were captured un-

der different illumination and expression conditions. The

images are all 100× 100 pixels with 256 grey levels. In the

experiments, we randomly select 6 images of each person as

the training samples, and use the remaining images to form

the testing sample set. All images are scaled to a resolution

of 64× 64 pixels.

The AR face database contains over 4,000 color images

corresponding to 126 subjects. There are variations of facial

expressions, illumination conditions, and occlusions (sun

glasses and scarf) with each person. Each individual con-

sists of 26 frontal view images taken in two sessions (sepa-

rated by 2 weeks), where each session has 13 images. Fig-

ure 1 shows the 26 images of one subject. In the experi-

ments, we select 30 subjects (15 man and 15 women), and

only use the non-occluded 14 images (i.e., the first seven

face images of each row in Figure 1). The first seven of

each subject are used for training and the last seven for test-

ing. All images are cropped and resized to 50× 40 pixels.

FERET database includes 1400 images of 200 differen-

t subjects, with 7 images per subject. In the experiments,

we select 50 subjects randomly. Five images of each sub-

ject are used for training and the remained images are used

for testing. All images are cropped and resized to 32 × 32
pixels.

In experiments, the initial mixing proportions are set to

πk = 1/K and the initial loading matrices Lk and Rk are

given randomly. Besides, we choose randomly K samples

as mean matrices Mk of the mixture gaussian model and set

all σ2
k = 1.

4.2. Reconstruction Performance

In this section, we test reconstruction error of the pro-

posed mixB2DPPCA model (1). Applying the proposed

model, all digital images can be softly grouped into K clus-

ters, each of which is modelled by a local B2DPPCA. From

all the trained γnk, the most appropriate local B2DPPCA

for a given sample can be found. Then we use the most

appropriate local B2DPPCA to reconstruct the initial digit

image, that is:

X̂n = Lk′ ∗Q(k′)
n ∗RT

k′ +Mk′ ,

where k
′

represents the k
′

-th local B2DPPCA which most

appropriate to the sample Xn. After obtaining all recon-

structed digit images X̂n, we can using the equation (12) to

compute the average reconstruction error.

Next we compare the reconstruction error of different al-

gorithms on three databases. In all algorithms, we set the

iterative number is T = 50 and the reduced dimension is

r = c = 4.

4.2.1 Reconstruction Error on Digit Image Set

We use the given digital image subset in Section 4.1 as train-

ing set. In this phase, we compare the reconstruction error

of the training set.

Figure 2 shows the average reconstruction error of the

relevant algorithms. From left to right, the component num-
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Figure 1: Twenty-six face examples of one subject from AR database. The first row is from the first session, and the second

row images are from the second session.
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Figure 2: Average reconstruction error versus iteration number with the components number K = 2, K = 5 and K = 10
from the left to right.

ber is K = 2, K = 5 and K = 10 respectively. First-

ly, from these three sub-figures, we can see that the recon-

struction error of GLRAM algorithm has no change. This

is because GLRAM has no relationship with K. Besides,

GLRAM works by iteratively computing the leading eigen-

vectors of the left and right one-sided sample covariance

matrices. Thus GLRAM convergent in five steps and the

change of reconstruction error is not obvious in the figure.

Secondly, fixing the same number of reduced dimension,

the performance of our proposed mixB2DPPCA is better

than GLRAM. From the view of compression, decoded im-

ages from our algorithm have higher quality for the com-

pression ratio of 49 : 1. It illustrates that mixB2DPPCA

can correctly identify data according to clusters. When K
becomes larger, the mixB2DPPCA outperform the mixture

of PPCA in terms of reconstruction errors.

The reconstructed images of different methods are

shown in Fig. 3 with K = 10. The first row shows four

original images. The second, third and fourth rows are the

reconstructed images by GLRAM, mixture of PPCA and

mixB2DPPCA, respectively. It can be found that the pro-

posed mixB2DPPCA has better reconstruction outcomes,

while the results of other two methods show a little degra-

dation.

4.2.2 Reconstruction Error on Yale and AR Databases

In this experiment, we compare the reconstruction error on

Yale and AR databases.

Figure 4 shows the average reconstruction error of al-

l the algorithms: (a) on the Yale database and (b) on the

AR database. The component number is K = 5 and the

reduced dimensionality is (r, c) = (4, 4). It is obvious that

the reconstruction error of mixB2DPPCA on testing set has

reduced greatly than other algorithms.

Figure 5 shows some reconstructed images of differen-

t algorithms on Yale database. The first row is four o-

riginal images. The last three rows are the corresponding

images reconstructed by mixture of PPCA, GLRAM and

mixB2DPPCA. It can be shown that the results of our algo-

rithm have better visual effect than that of GLRAM. Besides

we can also see that although the face images reconstructed

by mixture of PPCA are relatively clear, they don’t match

the same original images visually. The reconstructed im-

ages on AR database are shown in Figure 6. The first row

shows five original images in the test set and the last three
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r, c GLRAM
K = 4 K = 6 K = 8

mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA

2 0.6133 0.5760±0.0401 0.6400±0.0267 0.6237±0.0219 0.6720±0.0210 0.6519±0.0124 0.6693±0.0250

4 0.7067 0.6376±0.0222 0.7173±0.0197 0.6642±0.0245 0.7146±0.0180 0.6613±0.0201 0.7200±0.0089

6 0.7200 0.6480±0.0289 0.7200±0.0154 0.6506±0.0186 0.7187±0.0203 0.6480±0.0283 0.7320±0.0160

8 0.7200 0.6786±0.0117 0.7240±0.0227 0.6560±0.0265 0.7187±0.0262 0.6640±0.0233 0.7347±0.0160

Table 1: Recognition accuracy of GLRAM, mixture of PPCA and mixB2DPPCA training on the Yale database

r, c GLRAM
K = 6 K = 8 K = 10

mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA

4 0.5714 0.5328±0.0220 0.6671±0.0333 0.5595±0.0214 0.7000±0.0371 0.5752±0.0297 0.7244±0.0381

6 0.6857 0.6252±0.0242 0.7867±0.0138 0.6343±0.0236 0.8017±0.0291 0.6613±0.0182 0.7576±0.0366

8 0.7190 0.7004±0.0190 0.8116±0.0231 0.7100±0.0246 0.8211±0.0246 0.7133±0.0222 0.8357±0.0237

Table 2: Recognition accuracy of GLRAM, mixture of PPCA and mixB2DPPCA training on the AR database

Figure 3: Original images and reconstructed images: The

first row shows four original digital images. The sec-

ond, third and fourth rows are the reconstructed images by

GLRAM, mixture of PPCA and mixB2DPPCA, respective-

ly.

rows are the reconstructed images from three models.

From the reconstruction experiments, we can conclude

that mixB2DPPCA generally outperforms global linear 2D-

PCA algorithms in terms of reconstruction errors. It demon-

strates that the classification of training set in advanced is

important for the performance of feature extraction.

4.3. Recognition Performance

In this section, we compare the recognition perfor-

mances of GLRAM, mixture of PPCA and mixB2DPCA

on Yale, AR and FERET face databases. These algorithm-

s can be used for extracting features of facial images from

the training samples, respectively, and then a nearest neigh-

bor classifier (1-NN) is used to find the most-similar face

from the training samples for a querying face. In our exper-

0 10 20 30 40 50
6.5

7

7.5

8

8.5

Iteration Number

A
v
e

ra
g

e
 R

e
c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r

 

 

K=5,mixB2DPPCA

GLRAM

K=5, mixture of PPCA

(a)

0 10 20 30 40 50
3.5

4

4.5

Iteration Number

A
v
e
ra

g
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

 

 
K=5,mixB2DPPCA

GLRAM

K=5, mixture of PPCA

(b)

Figure 4: Average reconstruction error versus iteration

number with the components number K = 5 on Yale

database (a) and AR database (b).

iments, the distance measure between two sets of feature

matrices Bn1
and Bn2

, is defined as

dist =

K∑

k=1

‖B(k)
n1

−B(k)
n2

‖F .

where Bn = [B
(1)
n , ...,B

(K)
n ] represents the combination

of K latent variable cores related with n-th sample1. In all

algorithms, we set maximum iteration number is 50 and ǫ
is 1E-3. We repeat the procedure 10 times, and the mean

values and relevant variances are reported in Tables 1 to 3.

Table 1 shows the recognition rates of three feature

extraction algorithms: GLRAM, mixture of PPCA and

mixB2DPPCA training on Yale database. The mean val-

ues and relevant variances are reported for the cases of

the reduced dimension (r, c) = (2, 2), (4, 4), (6, 6) and

(8, 8). For the mixture of PPCA and mixB2DPPCA, we

also computed the recognition rates for the different com-

ponent number K (K = 4, 6, 8), shown in Table 1. First-

1A more accurate way is to use γn1k
γn2k

to weight the individual

distance.
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r, c GLRAM
K = 6 K = 8 K = 10

mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA

4 0.5000 0.4620±0.0315 0.6070±0.0427 0.4690±0.0470 0.6210±0.0326 0.4840±0.0316 0.5900±0.0429

6 0.5300 0.5140±0.0206 0.6733±0.0541 0.5350±0.0283 0.6467±0.0343 0.5320±0.0297 0.6644±0.0328

8 0.5400 0.5440±0.0298 0.6900±0.0458 0.5610±0.0159 0.6945±0.0526 0.5580±0.0187 0.6770±0.0593

10 0.5500 0.5910±0.0460 0.6890±0.0455 0.5720±0.0364 0.6960±0.0599 0.5970±0.0336 0.7100±0.0573

Table 3: Recognition accuracy of GLRAM, mixture of PPCA and mixB2DPPCA training on the FERET database

Figure 5: Original and reconstructed images (in the Yale

database): The first row is original images. The second,

third and fourth rows are the reconstructed images by mix-

ture PPCA, GLRAM and mixB2DPPCA, respectively.

Figure 6: Original and reconstructed images (in the AR

database): The first row is original images. The sec-

ond, third and fourth rows are the reconstructed images by

GLRAM, mixture PPCA and mixB2DPPCA, respectively.

ly, from the table we can see that the recognition rates of

the mixture of PPCA and mixB2DPPCA have a little fluc-

tuation compared with GLRAM. This may be caused by

the uncertainty of probability. Secondly, compared with

GLRAM, the mean recognition rates of mixB2DPPCA al-

gorithm have obviously improved. The bold figures are the

best results in the comparison.

Table 2 shows the recognition rates of the above three al-

gorithms training on AR database. The reduced dimensions

are (r, c) = (4, 4), (6, 6) and (8, 8) and component number-

s are K = 6, 8, 10, respectively. From the table we can see

that the mean recognition rates of mixB2DPPCA algorithm

have better improvement over the other two algorithms.

Table 3 shows the recognition rates on FERET database.

The reduced dimensions are (r, c) = (4, 4), (6, 6), (8, 8)
and (10, 10), and the component numbers are K = 6, 8, 10,

respectively. In this case, both the mixture of PPCA and

the proposed mixB2DPPCA produce slightly larger vari-

ances, however the mean recognition rates have risen great-

ly. GLRAM is relatively more robust.

5. Conclusions

In this paper, we proposed a mixture of bilateral-

projection probabilistic PCA model for feature extraction

and dimensionality reduction. Different from the standard

PCA which is a global dimension reduction model, this

model employs the mixture of matrix-variate Gaussian to

model local linear sub-models. All the parameters in the

resulting probabilistic model can be estimated through the

maximization of the likelihood function. The new model

not only makes good use of spatial (structural) information

of 2D data but also can softly group data into a given num-

ber of clusters. The performance of feature extraction of the

proposed method generally outperforms other existing 2D

algorithms in terms of reconstruction error and recognition

rate. The approach used in this paper can be readily extend-

ed to higher order tensorial data and other non-Gaussian

noise models can also be integrated into the model such.
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