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Abstract

In group activity recognition, the temporal dynamics of

the whole activity can be inferred based on the dynamics

of the individual people representing the activity. We build

a deep model to capture these dynamics based on LSTM

(long short-term memory) models. To make use of these ob-

servations, we present a 2-stage deep temporal model for

the group activity recognition problem. In our model, a

LSTM model is designed to represent action dynamics of

individual people in a sequence and another LSTM model

is designed to aggregate person-level information for whole

activity understanding. We evaluate our model over two

datasets: the Collective Activity Dataset and a new vol-

leyball dataset. Experimental results demonstrate that our

proposed model improves group activity recognition perfor-

mance compared to baseline methods.

1. Introduction

What are the people in Figure 1 doing? This question

can be answered at numerous levels of detail – in this paper

we focus on the group activity, a high-level answer such

as “team spiking acivity”. We develop a novel hierarchical

deep model for group activity recognition.

A key cue for group activity recognition is the spatio-

temporal relations among the people in the scene. Deter-

mining where individual people are in a scene, analyzing

their image appearance, and aggregating these features and

their relations can discern which group activity is present.

A volume of research has explored models for this type

of reasoning [4, 21, 27, 1]. However, these approaches

have focused on probabilistic or discriminative models built

upon hand-crafted features. Since they rely on shallow

hand crafted feature representations, they are limited by

their representational abilities to model a complex learning

task. Deep representations have overcome this limitation

and yielded state of the art results in several computer vi-

sion benchmarks [18, 33, 16].

∗Equal Contribution

Figure 1: Group activity recognition via a hierarchical

model. Each person in a scene is modeled using a temporal

model that captures his/her dynamics, these models are in-

tegrated into a higher-level model that captures scene-level

activity.

A naive approach to group activity recognition with a

deep model would be to simply treat an image as an holis-

tic input. One could train a model to classify this image

according to the group activity taking place. However, it

isn’t clear if this will work given the redundancy in the

training data: with a dataset of volleyball videos, frames

will be dominated by features of volleyball courts. The

differences between the different classes of group activities

are about spatio-temporal relations between people, beyond

just global appearance. Forcing a deep model to learn in-

variance to translation, to focus on the relations between

people, presents a significant challenge to the learning al-

gorithm. Similar challenges exist in the object recognition

literature, and research often focuses on designing pooling

operators for deep networks (e.g. [36]) that enable the net-

work to learn effective classifiers.

Group activity recognition presents a similar challenge

– appropriate networks need to be designed that allow the

learning algorithm to focus on differentiating higher-level
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classes of activities. Hence, we develop a novel hierarchical

deep temporal model that reasons over individual people.

Given a set of detected and tracked people, we run temporal

deep networks (LSTMs) to analyze each individual person.

These LSTMs are aggregated over the people in a scene

into a higher level deep temporal model. This allows the

deep model to learn the relations between the people (and

their appearances) that contribute to recognizing a particular

group activity.

The main contribution of this paper is the proposal of

a novel deep architecture that models group activities in

a principled structured temporal framework. Our 2-stage

approach models individual person activities in its first

stage, and then combines person level information to rep-

resent group activities. The model’s temporal representa-

tion is based on the long short-term memory (LSTM): re-

current neural networks such as these have recently demon-

strated successful results in sequential tasks such as im-

age captioning [9] and speech recognition [10]. Through

the model structure, we aim at constructing a representa-

tion that leverages the discriminative information in the hi-

erarchical structure between individual person actions and

group activities. The model can be used in general group

activity applications such as video surveillance, sport ana-

lytics, and video search and retrieval.

To cater the needs of our problem, we also propose a new

volleyball dataset that offers person detections, and both the

person action label, as well as the group activity label. The

camera view of the selected sports videos allows us to track

the players in the scene. Experimentally, the model is effec-

tive in recognizing the overall team activity based on recog-

nizing and integrating player actions.

This paper is organized as follows. In Section 2, we

provide a brief overview of the literature related to activity

recognition. In Section 3, we elaborate details of the pro-

posed group activity recognition model. In Section 4, we

tabulate the performance of approach, and end in Section 5

with a conclusion of this work.

2. Related Work

Human activity recognition is an active area of research,

with many existing algorithms. Surveys by Weinland et

al. [40] and Poppe [26] explore the vast literature in activ-

ity recognition. Here, we will focus on the group activ-

ity recognition problem and recent related advances in deep

learning.

Group Activity Recognition: Group activity recogni-

tion has attracted a large body of work recently. Most pre-

vious work has used hand-crafted features fed to structured

models that represent information between individuals in

space and/or time domains. Lan et al. [23] proposed an

adaptive latent structure learning that represents hierarchi-

cal relationships ranging from lower person-level informa-

tion to higher group-level interactions. Lan et al. [22] and

Ramanathan et al. [27] explore the idea of social roles, the

expected behaviour of an individual person in the context

of group, in fully supervised and weakly supervised frame-

works respectively. Choi and Savarese [3] have unified

tracking multiple people, recognizing individual actions, in-

teractions and collective activities in a joint framework. In

other work [5], a random forest structure is used to sample

discriminative spatio-temporal regions from input video fed

to 3D Markov random field to localize collective activities

in a scene. Shu et al. [30] detect group activities from aerial

video using an AND-OR graph formalism. The above-

mentioned methods use shallow hand crafted features, and

typically adopt a linear model that suffers from representa-

tional limitations.

Sport Video Analysis: Previous work has extended

group activity recognition to team activity recognition in

sport footage. Seminal work in this vein includes Intille

and Bobick [13], who examined stochastic representations

of American football plays. Siddiquie et al. [31] proposed

sparse multiple kernel learning to select features incorpo-

rated in a spatio-temporal pyramid. Morariu et al. [24]

track players, infer part locations, and reason about tempo-

ral structure in 1-on-1 basketball games. Swears et al. [35]

used the Granger Causality statistic to automatically con-

strain the temporal links of a Dynamic Bayesian Network

(DBN) for handball videos. Direkoglu and O’Connor [8]

solved a particular Poisson equation to generate a holis-

tic player location representation. Kwak et al. [20] opti-

mize based on a rule-based depiction of interactions be-

tween people.

Deep Learning: Deep Convolutional Neural Networks

(CNNs) have shown impressive performance by unifying

feature and classifier learning and the availability of large

labeled datasets. Successes have been demonstrated on a

variety of computer vision tasks including image classifica-

tion [18, 33] and action recognition [32, 16]. More flexi-

ble recurrent neural network (RNN) based models are used

for handling variable length space-time inputs. Specifically,

LSTM [12] models are popular among RNN models due

to the tractable learning framework that they offer when it

comes to deep representations. These LSTM models have

been applied to a variety of tasks [9, 10, 25, 38]. For in-

stance, in Donahue et al. [9], the so-called Long term Recur-

rent Convolutional network, formed by stacking an LSTM

on top of pre-trained CNNs, is proposed for handling se-

quential tasks such as activity recognition, image descrip-

tion, and video description. In Karpathy et al. [15], struc-

tured objectives are used to align CNNs over image regions

and bi-directional RNNs over sentences. A deep multi-

modal RNN architecture is used for generating image de-

scriptions using the deduced alignments.

In this work, we aim at building a hierarchical struc-
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tured model that incorporates a deep LSTM framework to

recognize individual actions and group activities. Previous

work in the area of deep structured learning includes Tomp-

son et al. [37] for pose estimation, and Zheng et al. [42]

and Schwing et al. [29] for semantic image segmentation.

In Deng et al. [7] a similar framework is used for group

activity recognition, where a neural network-based hier-

archical graphical model refines person action labels and

learns to predict the group activity simultaneously. While

these methods use neural network-based graphical repre-

sentations, in our current approach, we leverage LSTM-

based temporal modelling to learn discriminative informa-

tion from time varying sports activity data. In [41], a new

dataset is introduced that contains dense multiple labels per

frame for underlying action, and a novel Multi-LSTM is

used to model the temporal relations between labels present

in the dataset.

Datasets: Popular datasets for activity recognition in-

clude the Sports-1M dataset [15], UCF 101 database [34],

and the HMDB movie database [19]. These datasets started

to shift the focus to unconstrained Internet videos that con-

tain more intra-class variation, compared to a constrained

dataset. While these datasets continue to focus on indi-

vidual human actions, in our work we focus on recogniz-

ing more complex group activities in sport videos. Choi et

al. [4] introduced the Collective Activity Dataset consisting

of real world pedestrian sequences where the task is to find

the high level group activity. In this paper, we experiment

with this dataset, but also introduce a new dataset for group

activity recognition in sport footage which is annotated with

player pose, location, and group activities to encourage sim-

ilar research in the sport domain.

3. Proposed Approach

Our goal in this paper is to recognize activities per-

formed by a group of people in a video sequence. The input

to our method is a set of tracklets of the people in a scene.

The group of people in the scene could range from players

in a sports video to pedestrians in a surveillance video. In

this paper we consider three cues that can aid in determining

what a group of people is doing:

• Person-level actions collectively define a group activ-

ity. Person action recognition is a first step toward rec-

ognizing group activities.

• Temporal dynamics of a person’s action is higher-

order information that can serve as a strong signal for

group activity. Knowing how each person’s action is

changing over time can be used to infer the group’s

activity.

• Temporal evolution of group activity represents how

a group’s activity is evolving over time. For example,

in a volleyball game a team may move from defence

phase to pass and then attack.

Many classic approaches to the group activity recog-

nition problem have modeled these elements in a form

of structured prediction based on hand crafted features

[39, 28, 23, 22, 27]. Inspired by the success of deep learn-

ing based solutions, in this paper, a novel hierarchical deep

learning based model is proposed that is potentially capable

of learning low-level image features, person-level actions,

their temporal relations, and temporal group dynamics in a

unified end-to-end framework.

Given the sequential nature of group activity analysis,

our proposed model is based on a Recurrent Neural Net-

work (RNN) architecture. RNNs consist of non-linear units

with internal states that can learn dynamic temporal behav-

ior from a sequential input with arbitrary length. Therefore,

they overcome the limitation of CNNs that expect constant

length input. This makes them widely applicable to video

analysis tasks such as activity recognition.

Our model is inspired by the success of hierarchical

models. Here, we aim to mimic a similar intuition using

recurrent networks. We propose a deep model by stacking

several layers of RNN-type structures to model a large range

of low-level to high-level dynamics defined on top of people

and entire groups. We describe the use of these RNN struc-

tures for individual and group activity recognition next.

3.1. Temporal Model of Individual Action

Given tracklets of each person in a scene, we use long

short-term memory (LSTM) models to represent temporally

the action of each individual person. Such temporal infor-

mation is complementary to spatial features and is critical

for performance. LSTMs, originally proposed by Hochre-

iter and Schmidhuber [12], have been used successfully for

many sequential problems in computer vision. Each LSTM

unit consists of several cells with memory that stores infor-

mation for a short temporal interval. The memory content

of a LSTM makes it suitable for modeling complex tempo-

ral relationships that may span a long range.

The content of the memory cell is regulated by several

gating units that control the flow of information in and out

of the cells. The control they offer also helps in avoiding

spurious gradient updates that can typically happen in train-

ing RNNs when the length of a temporal input is large. This

property enables us to stack a large number of such layers

in order to learn complex dynamics present in the input in

different ranges.

We use a deep Convolutional Neural Network (CNN) to

extract features from the bounding box around the person

in each time step on a person trajectory. The output of the

CNN, represented by xt, can be considered as a complex

image-based feature describing the spatial region around a
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person. Assuming xt as the input of an LSTM cell at time

t, the cell activition can be formulated as :

it = σ(Wxixt +Whiht−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

ot = σ(Wxoxt +Whoht−1 + bo) (3)

gt = φ(Wxcxt +Whcht−1 + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ gt (5)

ht = ot ⊙ φ(ct) (6)

Here, σ stands for a sigmoid function, and φ stands for

the tanh function. xt is the input, ht ∈ RN is the hidden

state with N hidden units, ct ∈ RN is the memory cell,

it ∈ RN , ft ∈ RN , ot ∈ RN , and, gt ∈ RN are input gate,

forget gate, output gate, and input modulation gate at time t

respectively. ⊙ represents element-wise multiplication.

When modeling individual actions, the hidden state ht

could be used to model the action a person is performing

at time t. Note that the cell output is evolving over time

based on the past memory content. Due to the deployment

of gates on the information flow, the hidden state will be

formed based on a short-range memory of the person’s past

behaviour. Therefore, we can simply pass the output of the

LSTM cell at each time to a softmax classification layer1 to

predict individual person-level action for each tracklet.

The LSTM layer on top of person trajectories forms the

first stage of our hierarchical model. This stage is designed

to model person-level actions and their temporal evolu-

tion. Our training proceeds in a stage-wise fashion, first

training to predict person level actions, and then pasing the

hidden states of the LSTM layer to the second stage for

group activity recognition, as discussed in the next section.

3.2. Hierarchical Model for Group Activity Recog­
nition

At each time step, the memory content of the first LSTM

layer contains discriminative information describing the

subject’s action as well as past changes in his action. If

the memory content is correctly collected over all people in

the scene, it can be used to describe the group activity in the

whole scene.

Moreover, it can also be observed that direct image-

based features extracted from the spatial domain around a

person carries a discriminative signal for the ongoing activ-

ity. Therefore, a deep CNN model is used to extract com-

plex features for each person in addition to the temporal

features captured by the first LSTM layer.

At this moment, the concatenation of the CNN features

and the LSTM layer represent temporal features for a per-

son. Various pooling strategies can be used to aggregate

these features over all people in the scene at each time step.

1More precisely, a fully connected layer fed to softmax loss layer.

The output of the pooling layer forms our representation for

the group activity. The second LSTM network, working on

top of the temporal representation, is used to directly model

the temporal dynamics of group activity. The LSTM

layer of the second network is directly connected to a clas-

sification layer in order to detect group activity classes in a

video sequence.

Mathematically, the pooling layer can be expressed as

the following:

Ptk = xtk ⊕ htk (7)

Zt = Pt1 ⋄ Pt2 ... ⋄ Ptk (8)

In this equation, htk corresponds to the first stage LSTM

output, and xtk corresponds to the AlexNet fc7 feature, both

obtained for the kth person at time t. We concatenate these

two features (represented by ⊕) to obtain the temporal fea-

ture representation Ptk for kth person. We then construct the

frame level feature representation Zt at time t by applying a

max pooling operation (represented by ⋄) over the features

of all the people. Finally, we feed the frame level repre-

sentation to our second LSTM stage that operates similar

to the person level LSTMs that we described in the pre-

vious subsection, and learn the group level dynamics. Zt,

passed through a fully connected layer, is given to the input

of the second-stage LSTM layer. The hidden state of the

LSTM layer represented by h
group
t carries temporal infor-

mation for the whole group dynamics. h
group
t is fed to a

softmax classification layer to predict group activities.

3.3. Implementation Details

We trained our model in two steps. In the first step, the

person-level CNN and the first LSTM layer are trained in

an end-to-end fashion using a set of training data consist-

ing of person tracklets annotated with action labels. We

implement our model using Caffe [14]. Similar to other

approaches [9, 7, 38], we initialize our CNN model with

the pre-trained AlexNet network and we fine-tune the whole

network for the first LSTM layer. 9 timesteps and 3000 hid-

den nodes are used for the first LSTM layer and a softmax

layer is deployed for the classification layer in this stage.

After training the first LSTM layer, we concatenate the

fc7 layer of AlexNet and the LSTM layer for every person

and pool over all people in a scene. The pooled features,

which correspond to frame level features, are fed to the sec-

ond LSTM network. This network consists of a 3000-node

fully connected layer followed by a 9-timestep 500-node

LSTM layer which is passed to a softmax layer trained to

recognize group activity labels.

For training all our models (that include both the base-

line models and both the stages of the two-stage model), we

follow the same training protocol. We use a fixed learning

rate of 0.00001 and a momentum of 0.9. For tracking sub-
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Figure 2: Our two-stage model for a volleyball match. Given tracklets of K-players, we feed each tracklet in a CNN, followed

by a person LSTM layer to represent each player’s action. We then pool over all people’s temporal features in the scene. The

output of the pooling layer is feed to the second LSTM network to identify the whole teams activity.

jects in a scene, we used the tracker by Danelljan et al. [6],

implemented in the Dlib library [17].

4. Experiments

In this section, we evaluate our model by comparing

our results with several baselines and previously published

works on the Collective Activity Dataset [4] and our new

volleyball dataset. First, we describe our baseline mod-

els. Then, we present our results on the Collective Activity

Dataset followed by experiments on the volleyball dataset.

4.1. Baselines

The following baselines are considered in all our experi-

ments:

1. Image Classification: This baseline is the basic

AlexNet model fine-tuned for group activity recogni-

tion in a single frame.

2. Person Classification: In this baseline, the AlexNet

CNN model is deployed on each person, fc7 features

are pooled over all people, and are fed to a softmax

classifier to recognize group activities in each single

frame.

3. Fine-tuned Person Classification: This baseline is

similar to the previous baseline with one distinction.

The AlexNet model on each player is fine-tuned to

recognize person-level actions. Then, fc7 is pooled

over all players to recognize group activities in a scene

without any fine-tuning of the AlexNet model. The

rational behind this baseline is to examine a scenario

where person-level action annotations as well as group

activity annotations are used in a deep learning model

that does not model the temporal aspect of group ac-

tivities. This is very similar to our two-stage model

without the temporal modeling.

4. Temporal Model with Image Features: This baseline

is a temporal extension of the first baseline. It exam-

ines the idea of feeding image level features directly to

a LSTM model to recognize group activities. In this

baseline, the AlexNet model is deployed on the whole

image and resulting fc7 features are fed to a LSTM

model. This baseline can be considered as a reimple-

mentation of Donahue et al. [9].

5. Temporal Model with Person Features: This base-

line is a temporal extension of the second baseline:

fc7 features pooled over all people are fed to a LSTM

model to recognize group activities.

6. Two-stage Model without LSTM 1: This baseline is

a variant of our model, omitting the person-level tem-

poral model (LSTM 1). Instead, the person-level clas-

sification is done only with the fine-tuned person CNN.

7. Two-stage Model without LSTM 2: This baseline is

a variant of our model, omitting the group-level tem-

poral model (LSTM 2). In other words, we do the fi-

nal classification based on the outputs of the temporal

models for individual person action labels, but without

an additional group-level LSTM.

4.2. Experiments on the Collective Activity Dataset

The Collective Activity Dataset [4] has been widely used

for evaluating group activity recognition approaches in the

1975



computer vision literature [1, 7, 2]. This dataset consists of

44 videos, eight person-level pose labels (not used in our

work), five person level action labels, and five group-level

activities. A scene is assigned a group activity label based

on the majority of what people are doing. We follow the

train/test split provided by [11]. In this section, we present

our results on this dataset.

Method Accuracy

B1-Image Classification 63.0

B2-Person Classification 61.8

B3-Fine-tuned Person Classification 66.3

B4-Temporal Model with Image Features 64.2

B5-Temporal Model with Person Features 62.2

B6-Two-stage Model without LSTM 1 70.1

B7-Two-stage Model without LSTM 2 76.8

Two-stage Hierarchical Model 81.5

Table 1: Comparison of our method with baseline methods

on the Collective Activity Dataset.

Method Accuracy

Contextual Model [23] 79.1

Deep Structured Model [7] 80.6

Our Two-stage Hierarchical Model 81.5

Cardinality kernel [11] 83.4

Table 2: Comparison of our method with previously pub-

lished works on the Collective Activity Dataset.

In Table 1, the classification results of our proposed ar-

chitecture is compared with the baselines. As shown in

the table, our two-stage LSTM model significantly outper-

forms the baseline models. An interesting comparison can

be made between temporal and frame-based counterparts

including B1 vs. B4, B2 vs. B5 and B3 vs. our two-stage

model. It is interesting to observe that adding temporal in-

formation using LSTMs improves the performance of these

baselines.

Table 2 compares our method with state of the art meth-

ods for group activity recognition. The performance of our

two-stage model is comparable to the state of the art meth-

ods. Note that only Deng et al. [7] is a previously published

deep learning model. We postulate that there would be a

significant improvement in the relative performance of our

model if we had a larger dataset for recognizing group activ-

ities. In contrast, the cardinality kernel approach [11] out-

performed our model. It should be noted that this approach

works on hand crafted features fed to a model highly opti-

mized for a cardinality problem (i.e. counting the number

of actions in the scene) which is exactly the way group ac-

tivities are defined in this dataset.

4.2.1 Discussion

The confusion matrix obtained for the Collective Activity

Dataset using our two-stage model is shown in Figure 3.

We observe that the model performs almost perfectly for

the talking and queuing classes, and gets confused between

crossing, waiting, and walking. Such behaviour is perhaps

due to a lack of consideration of spatial relations between

people in the group, which is shown to boost the perfor-

mance of previous group activity recognition methods: e.g.

crossing involves the walking action, but is confined in a

path which people perform in orderly fashion. Therefore,

our model that is designed only to learn the dynamic proper-

ties of group activities often gets confused with the walking

action.

It is clear that our two-stage model has improved perfor-

mance with compared to baselines. The temporal informa-

tion improves performance. Further, finding and describing

the elements of a video (i.e. persons) provides benefits over

utilizing frame level features.

Figure 3: Confusion matrix for the Collective Activity

Dataset obtained using our two-stage model.

4.3. Experiments on the Volleyball Dataset

In order to evaluate the performance of our model for

team activity recognition on sport footage, we collected a

new dataset based on publicly available YouTube volleyball

videos. We annotated 1525 frames that were handpicked

from 15 videos with seven player action labels and six team

activity labels. We used frames from 2/3rd of the videos

for training, and the remaining 1/3rd for testing. The list of

action and activity labels and related statistics are tabulated

in Tables 3 and 4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Visualizations of the generated scene labels using our model. Green denotes correct classifications, red denotes

incorrect. The incorrect ones correspond to the confusion between different actions in ambiguous cases (h and j examples),

or in the left and right distinction (i example).

From the tables, we observe that the group activity labels

are relatively more balanced compared to the player action

labels. This follows from the fact that we often have peo-

ple present in static actions like standing compared to dy-

namic actions (setting, spiking, etc.). Therefore, our dataset

presents a challenging team activity recognition task, where

we have interesting actions that can directly determine the

group activity occur rarely in our dataset. The dataset will

be made publicly available to facilitate future comparisons
2.

In Table 5, the classification performance of our pro-

posed model is compared against the baselines. Similar

to the performance in the Collective Activity Dataset, our

two-stage LSTM model outperforms the baseline models.

2https://github.com/mostafa-saad/

deep-activity-rec
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Group No. of

Activity Class Instances

Right set 229

Right spike 187

Right pass 267

Left pass 304

Left spike 246

Left set 223

Table 3: Statistics of

the group activity la-

bels in the volleyball

dataset.

Action Average No. of

Classes Instance per Frame

Waiting 0.30

Setting 0.33

Digging 0.57

Falling 0.21

Spiking 0.28

Blocking 0.58

Others 9.22

Table 4: Statistics of

the action labels in the

volleyball dataset.

However, compared to the baselines, the performance gain

using our model is more modest. This is likely because we

can infer group activity in volleyball by using just a few

frames. Therefore, in the volleyball dataset, our baseline B1

is closer to the actual model’s performance, compared to the

Collective Activity Dataset. Moreover, explicitly modeling

people is necessary for obtaining better performance in this

dataset, since the background is rapidly changing due to a

fast moving camera, and therefore it corrupts the temporal

dynamics of the foreground. This could be verified from the

performance of our baseline model B4, which is a tempo-

ral model that does not consider people explicitly, showing

inferior performance compared to the baseline B1, which

is a non-temporal image classification style model. On the

other hand, baseline model B5, which is a temporal model

that explicitly considers people, performs comparably to the

image classification baseline, in spite of the problems that

arise due to tracking and motion artifacts.

Method Accuracy

B1-Image Classification 46.7

B2-Person Classification 33.1

B3-Fine-tuned Person Classification 35.2

B4-Temporal Model with Image Features 37.4

B5-Temporal Model with Person Features 45.9

B6-Our Two-stage Model without LSTM 1 48.8

B7-Our Two-stage Model without LSTM 2 49.7

Our Two-stage Hierarchical Model 51.1

Table 5: Comparison of the team activity recognition per-

formance of baselines against our model evaluated on the

volleyball dataset.

In both datasets, an observation from the tables is that

while both LSTMs contribute to overall classification per-

formance, having the first layer LSTM (B7 baseline) is rel-

atively more critical to the performance of the system, com-

pared to the second layer LSTM (B6 baseline).

All the reported experiments use max-pooling as men-

tioned above. However, we also tried both sum and average

pooling, but their performance was consistently lower com-

pared to their max-pooling counterpart.

Figure 5: Confusion matrix for the volleyball dataset ob-

tained using our two-stage hierarchical model.

4.3.1 Discussion

Figures 4 and 5 show visualizations of our detected activ-

ities and the confusion matrix obtained for the volleyball

dataset using our two-stage model. From the confusion ma-

trix, we observe that our model generates consistently ac-

curate high level action labels. Nevertheless, our model has

some confusion between set and pass activities, as these ac-

tivities often may look similar.

5. Conclusion

In this paper, we presented a novel deep structured archi-

tecture to deal with the group activity recognition problem.

Through a two-stage process, we learn a temporal repre-

sentation of person-level actions and combine the represen-

tation of individual people to recognize the group activity.

We also created a new volleyball dataset to train and test

our model, and also evaluated our model on the Collective

Activity Dataset. Results show that our architecture can im-

prove upon baseline methods lacking hierarchical consider-

ation of individual and group activities using deep learning.
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