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Abstract

In this paper, we propose a new framework for 3D track-

ing by detection based on fully volumetric representations.

On one hand, 3D tracking by detection has shown robust

use in the context of interaction (Kinect) and surface track-

ing. On the other hand, volumetric representations have

recently been proven efficient both for building 3D features

and for addressing the 3D tracking problem. We leverage

these benefits by unifying both families of approaches into

a single, fully volumetric tracking-by-detection framework.

We use a centroidal Voronoi tessellation (CVT) representa-

tion to compactly tessellate shapes with optimal discretiza-

tion, construct a feature space, and perform the tracking

according to the correspondences provided by trained ran-

dom forests. Our results show improved tracking and train-

ing computational efficiency and improved memory perfor-

mance. This in turn enables the use of larger training

databases than state of the art approaches, which we lever-

age by proposing a cross-tracking subject training scheme

to benefit from all subject sequences for all tracking situa-

tions, thus yielding better detection and less overfitting.

1. Introduction

3D visual shape tracking aims to recover the temporal

evolution of a 3D template shape using visual information.

It finds applications in many domains including computer

vision, graphics, medical imaging, and has proven success-

ful for marker-less motion capture in recent years. A stan-

dard tracking process consists in an alternation of the fol-

lowing two steps. First, finding associations from each

primitive of the observed data, e.g. 3D points acquired from

camera systems, to corresponding primitives of the template

3D surface, typically based on the proximity in Euclidean

∗The first two authors contribute equally to this paper.

template observations

Figure 1: We represent 3D shapes using centroidal Voronoi

tessellations. The volumetric cells of the observations are

matched to cells of the template.

space (ICP) [5] or a feature space. Second, given such as-

sociations, recompute the pose of the template under the

constraint of a deformation model, typically based on kine-

matic skeletons [14, 20, 24, 27], or the piecewise-rigid as-

sumption [2, 8], among others.

Recently, a number of alternative approaches and en-

hancements have been explored for both stages indepen-

dently. On one hand, progress has been made in the defor-

mation stage by introducing volumetric deformation models

instead of purely surface-based ones. Thanks to its inherent

local volume preservation property, this strategy has shown

significantly improved robustness to various tracking situ-

ations, such as shape folding and volume bias of observed

shapes. On the other hand, alternatives have also been pro-

posed for the association problem by discovering them dis-

criminatively using machine learning techniques [21, 24].

This in turn yields the possibility for 3D tracking techniques

that are robust to partial tracking failure, while also improv-

ing the rate of convergence. Although surface-based fea-

tures are used in many cases to describe local shapes and

construct the associations, volumetric features have proven

to be a promising direction for 3D shape description with

surface-based templates [16], which we generalize to a fully

volumetric pipeline.
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In this paper, we propose a unified volumetric pipeline,

where the shape representation, deformation model, feature

description, and primitive association are all built on a sin-

gle volumetric representation, the centroidal Voronoi tessel-

lation (CVT) [11]. Specifically, the observed and template

shapes are all tessellated as a set of uniform and anisotropic

cells (see Fig. 1), which bring benefits at all stages and yield

a volumetric representation of regular cell shape and con-

nectivity with controllable cell complexity.

While benefiting from local volume preservation proper-

ties inherent to this representation and the associated de-

formation model, we leverage the configurations of cells

to build volumetric distance fields which we use to con-

struct our volumetric feature space. On this basis, we pro-

pose a full framework to register a template shape to an

observed shape, as two generic CVT cell sets. Because

features are expressed in the volume, the proposed method

is well suited to obtain fully volumetric detections, in turn

helping the volumetric template tracking to be more robust.

Thanks to its significantly low memory footprint, we use the

representation to propose a multi-template learning frame-

work, where large training sets can be assembled from mul-

tiple tracked action sequences for several human subjects.

Specifically, every different subject’s template is mapped to

a generic, subject-agnostic template where the actual learn-

ing takes place, to benefit all subsequent tracked subjects.

This framework consequently yields better or comparable

detection and tracking performance than current state of the

art 3D temporal tracking or tracking by detection methods.

2. Related work

3D tracking by detection. The tracking by detec-

tion strategy applied to human skeletal poses estimation

(Kinect) [22] has shown robustness to tracking failure and

reasonable convergence efficiency in real-world applica-

tions. It was first transposed to the problem of 3D shape

tracking through the work of Taylor et al. [24] and presented

similar targeted benefits, with the initial intention to substi-

tute ICP-based optimization. The method achieves this goal

by learning the mapping from input 3D points from depth

sensors, to the human template surface domain, termed the

Vitruvian manifold. This yields discriminative associations

that replace the step of proximity search in ICP-based track-

ing methods. Variants of this work have explored chang-

ing the entropy function used to train random forests from

the body-part classification entropy to the variance on sur-

face embeddings for better data separation [20], or replac-

ing surface-based features with 3D volume features com-

puted on a voxel grid in a local coordinate frame [16].

Both increase the precision by finishing convergence with

an ICP-based loop after the discriminative association stage.

All these methods are nevertheless based on surface points,

thus relying on heterogeneous shape representations, defor-

mation models, target primitives and feature spaces. Our

proposal builds a unified framework for all these purposes

and takes advantage of volumetric tracking strategies as de-

scribed below. Also, we introduce a multi-template strategy,

where a template is assigned to each subject and mapped to

a generic template, allowing to learn from all subject mo-

tions sequences for the benefit of any subsequent subject

tracking task.

3D volumetric tracking. While many visual tracking

techniques employ skeletons [14, 27] or surface-based rep-

resentations [2, 17], volume-based representations have also

been proposed to address various issues. On one hand,

topology changes or online surface reconstructions are bet-

ter handled if surfaces are implicitly represented in volumes

as e.g. truncated signed distance field (TSDF) [13, 19, 18],

with high memory cost due to regular grids storing empty

space information. On the other hand, volumetric tech-

niques have also been devised for robustness in long term

tracking, as a way to alleviate the so-called candy-wrapper

artifacts, namely, collapsing surfaces in animations. With-

out explicitly tessellating surface interiors, Zhou et al. [30]

introduce internal nodes to construct a volumetric graph and

preserve the volumes by enforcing Laplacian constraints

among them. Instead, Budd et al. [7] and De Aguiar et

al. [10] perform a constrained tetrahedralization on surfaces

to create interior edges. Allain et al. [1] generate internal

points by CVT decomposition and thereby propose a gener-

ative tracking strategy that yields high quality performance.

These techniques are nevertheless based on ICP-variants,

whereas we aim at detecting associations discriminatively.

3D features. In many cases, surface-based features are

used for recognition or shape retrieval, such as heat ker-

nel signatures (HKS) [23] and wave kernel signatures

(WKS) [3]. Both exploit the Laplacian-Beltrami opera-

tor, the extension of the Laplacian operator to surface em-

beddings. These features are nonetheless known for their

lack of resilience to artifacts present in noisy surface ac-

quisitions, especially significant topology changes. Mesh-

HoG [29] and SHOT [25] attach a local coordinate frame

at each point to achieve invariant representations and reach

better performance for noisy surfaces. More detailed re-

views can be found in [6] and [15] for triangular surfaces

and point clouds, respectively. In the context of discrimina-

tive 3D tracking, depth difference features have been used to

build random forests on depth data [22, 24]. One common

trait of the aforementioned features is that the computation

involves only surface points. Huang et al. [16] show that

features can be built based on local coordinate frames in a

regular-grid volume. However, these features are only com-

puted on surface vertices and do not address the need for

fully volumetric correspondences as proposed in our work.
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3. Preliminaries and method overview

Given a volumetric domain Ω defined by a shape in R
3,

CVT is a clipped Voronoi tessellation of Ω which holds the

property that the seed location of each cell coincides with

its center of mass. Cells are of regular size and shapes as in

Fig. 1. A surface is expressed as the border of Ω, i.e. ∂Ω.

Let S denote the set of all cell centroids. Both the tem-

plate shape ΩM and the observed data ΩY are expressed by

their CVT samplings, SM and SY with locations M ⊂ ΩM

and Y ⊂ ΩY using the method in [28]. We adopt a volu-

metric deformation framework [1] that groups cells into K

clusters, each having a rigid transformation Tk ∈ SE(3).

The collection of all transformations, T = {Tk}
K

k=1
, en-

codes the pose of the shape. As a result, the problem

amounts to estimating the best T̂ such that the deformed

template cells M(T̂) resembles Y as much as possible.

Matching cells i ∈ SY with cells s ∈ SM is therefore an

indispensable task. To this end, each point in Y is first

mapped to the template domain ΩM , where the closest point

in M is sought as the correspondence (as represented by the

green line in Fig. 3). This mapping r : R3 → R
3 is ac-

counted for by a regression forest which is learned off-line

with many pre-tracked CVTs (§ 4.1). Given the detected

associations, the best pose T̂ is estimated using an EM-ICP

algorithm (§ 4.2).

4. Learning and tracking

4.1. Learning

We explain in this section how to learn the mapping

r : R
3 → R

3 from the observation domain to the tem-

plate domain with a regression forest [9], which is a set of

T binary decision trees. An input cell is first described as a

feature vector f in § 4.1.1. Taking f as input, during train-

ing each tree learns the split functions that best separate data

recursively at branch nodes, while during testing the cell is

routed through each tree, reaching T leaves that store statis-

tics (a mode in R
3 in our case) as predictions (§ 4.1.2). We

first discuss the scenario with one single template and then

generalize to multiple ones in § 4.1.3.

4.1.1 Feature

The feature f we use for building trees is designed with sev-

eral principles in mind. In order to be discriminative for

shape matching, our feature should be able to characterize

the local neighborhood of any point of the volumetric shape.

This rules out the descriptors that rely on surface normals

such as SHOT [25]. For time and memory efficiency of

forest training and prediction, we want our feature vector

coefficients to be computable separately. This requirement

is not met by the descriptors that rely on unit length normal-

ization. In order to be able to match any deformed pose with
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Figure 2: Right: the distance field defined by a CVT sam-

pling S , where each cell stores the distance d(s, ∂Ω). Blue

to red colors means from close to far. Red dot: cell center s

to be described. Left: illustration of our feature f . L = 5 in

this toy example. See text for more explanations.

the template, we would like our feature to be pose-invariant.

Therefore, we build it on the Euclidean distance from cell

centroids s to the surface ∂Ω: d(s, ∂Ω) = minp∈∂Ω d(s, p)
because it naturally encodes the relative location with re-

spect to the surface and it is invariant to rotations, transla-

tions and quasi-invariant to changes of poses. Finally, our

feature needs to be robust to the topological noise present

in the input data.

Given a distance field defined by a CVT sampling S , our

feature is similar in spirit to Haar feature in the Viola-Jones

face detector [26], except that the rectangular neighborhood

is replaced with a sphere. As visualized in Fig. 2, we open

an L-layer spherical support region in the Euclidean space

around each cell. An L-dimensional vector u is defined ac-

cordingly, where each element ul is the sum of the distances

of all cells falling within layer l. The feature value is the lin-

ear combination of all ul, with coefficients cl chosen from a

set C = {−1, 0, 1}. Formally, suppose c are L-dimensional

vectors whose elements are the bootstrap samples of C. Let

c
κ denote one particular instance of c, i.e., cκ ∈ CL . The

feature value is then expressed as an inner product: u⊤
c
κ,

corresponding to one feature attribute κ. We consider all

possible c
κ and also take the distance d itself into account.

f is hence a vector of (3L + 1) dimensions, where 3L is the

cardinality of CL and each element fκ is defined as:

fκ ,

{

u
⊤
c
κ =

∑

l c
κ
l ul, κ < 3L , cκl ∈ {−1, 0, 1}

d(s, ∂Ω), κ = 3L
.

(1)

Since each dimension fκ is computation-wise indepen-

dent, f is suitable for decision forests, which select fea-

ture channels κ randomly to split the data during training.

Being derived from d(s, ∂Ω), f inherits the invariance to

rigid-body motions. In addition, we normalize distances by

their standard deviation in one surface, achieving scale in-

variance to a certain extent. However, f is not invariant to

pose changes as the contained cells in each layer vary with

poses. Although considering geodesic spherical supports

instead of Euclidean ones would overcome this issue and
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Figure 3: The schematic flowchart of the multi-template

learning framework. Red arrows: mappings gµ that asso-

ciate the indices from each subject-specific template Sµ to

the common template Ŝ . Mt
µ are the temporal evolutions of

each template. Blue: training; green: prediction.

yield quasi-invariance to pose changes, the resulting feature

would be highly sensitive to topological noise. Thus, we

keep the Euclidean supports and let forests take care of the

variations caused by pose changes in learning.

4.1.2 Training and prediction

The aim of forests is to map an observed cell to the template

domain ΩM , typically chosen to be in the rest pose. Given

a set of CVTs corresponding to the template ΩM deformed

in various poses, we associate each cell s ∈ SM to its loca-

tions at the rest pose, denoted as x0
s ∈ M

0, forming a pool

of sample-label pairs
{

(s,x0
s)
}

as the dataset. Suppose DN

is the set of samples arriving at a certain branch node. The

training process is to partition DN recursively into two sub-

sets DL and DR by simple thresholding on a chosen feature

channel. Our splitting candidate φ = (κ, τ) is therefore the

pair of thresholds τ and feature attribute indices κ in Eq. 1.

In branch nodes, many candidates φ are randomly gener-

ated and the one that maximizes the information gain G,

φ∗ = argmaxφ G(φ), is stored for the later prediction use.

We use the typical definition of information gain:

G(φ) = H(DN )−
∑

i∈{L,R}

|Di(φ)|

|DN |
H(Di(φ)), (2)

where H is the entropy, measured as the variance in Eu-

clidean space, i.e. H = σ2. We do not apply the more

sophisticated measure [20] because (1) our continuous la-

bels x0
s lie in a volumetric domain Ω and (2) templates are

usually chosen in canonical T or A poses. The Euclidean

approximation holds more naturally here than in [16, 20],

where the regression is performed along the surface mani-

fold. The tree recursively splits samples and grows until one

of the following stopping criteria is met: (1) it reaches the

maximum depth, or (2) the number of samples |DN | is too

small. A mean-shift clustering is performed in a leaf node

to represent the distributions of x0
s as a set of confidence-

weighted modes L = {(m, ω)}. m ∈ R
3 is the mode

location and ω is a scalar weight.

In the prediction phase, a cell i ∈ SY traverses down the

trees and lands on T leaves containing different collections

of modes: {L1 · · · LT }. The final regression output ri is the

cluster centroid with largest weight obtained by performing

mean-shift on them. Each observed cell then gets a closest

cell p in the reference SM : p = argmins∈SM

∥

∥ri − x
0
s

∥

∥

2
.

The correspondence pair (i, p) serves as input to the volu-

metric deformation framework described in § 4.2.

4.1.3 Multi-template learning

The above training scenario requires deformed CVTs of

consistent topology such that one can easily assign each cell

sample s a continuous label which is its rest-pose position

x
0
s. It hence applies only to one template. However, the

amount of training data for one single template is often lim-

ited because a fully volumetric shape and pose modeling

framework is still an open challenge. To avoid over-fitting,

the rule of thumb is to incorporate as much variation as pos-

sible into training. This motivates us to devise an alternative

strategy that learns across different CVT topologies.

Given U distinct CVT templates: {Sµ}
U
µ=1

1, whose tem-

poral evolutions are recovered with the method in [1], re-

sulting in a collection of different templates deformed in

various poses: {{Mt
1} · · · {M

t
U}} as our dataset. To in-

clude all of them into training, we take one generic template

Ŝ as the reference. Intuitively, if there exists a mapping g

that brings each cell s ∈ Sµ to a new cell g(s) = ŝ ∈ Ŝ , one

only needs to change the template-specific labels x0
s to the

corresponding x
0

ŝ, which are common to all templates, and

the training process in § 4.1.2 can again be applied. In other

words, we align topologies by matching every template Sµ

to Ŝ . Fig. 3 depicts this multi-template learning scheme.

Although various approaches for matching surface ver-

tices exist, only a handful of works discuss matching vox-

els/cells. Taking skinning weights as an example, we

demonstrate in the following how to adapt a surface de-

scriptor to CVTs. Note that the goal of this paper is not

to propose a robust local 3D descriptor. With proper mod-

ifications, other descriptors can be used as well for shape

matching.

Generalized skinning weights. Skinning weights are

originally used for skeleton-based animations, aiming to

blend the transformations of body parts (bones). Usually

coming as a side product of the skeleton-rigging process [4],

it is a vector w of B -dimensions, each corresponding to a

human bone b and B is the number of bones. The non-

negative weight wb indicates the dependency on that part

and is normalized to sum up to one, i.e.
∑

b wb = 1. As

such, a skinning weight vector w is actually a probability

mass function of body parts, offering rich information about

1The template suffix M is dropped to keep notations uncluttered.
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(a) (b) 

side view top view 

Figure 4: (a): illustration of our strategy adapting skinning

weights to CVT cells. Distances d(s, ∂Ω) are reflected in

normalizations. (b): result of matching two templates.

vertex locations. To extend it from surface vertices to CVT

cells, we first relax the unity-summation constraint as w is

not used to average transformations of bones but only as a

descriptor here. The intuition behind the adaptation is that,

a CVT cell should have bone dependencies similar to the

closest surface point. Therefore, for a cell whose distance

to the surface is d, its skinning weight is simply the one

of its closest surface point2, scaled by ed. Note that this

does not violate the unity-summation constraint for surface

vertices as their distance d is still zero. We illustrate this

concept in Fig. 4(a). The mapping g is then determined by

searching for the nearest neighbor in the skinning weight

space: g(s) = argminŝ∈Ŝ ‖wŝ −ws‖2.

In practice, we use Pinocchio [4] to computes skin-

ning weights, extend them from surface vertices to CVT

cells, and match all cells to those of the common template

Ŝ . The resulting skeletons are not used in our method.

Fig. 4(b) visualizes one example of matching results. Our

approach yields reasonable matches, regardless of the dif-

ference in body sizes. Due to the descriptiveness of skin-

ning weights, symmetric limbs are not confused. Note that

this computation is performed only between user-specific

templates Sµ and the generic one Ŝ off-line once. Input data

SY cannot be matched this way, because rigging a skeleton

for shapes in arbitrary poses remains a challenging task.

4.2. Tracking

We elaborate in this section on how to apply our regres-

sion forest to track a sequence of temporally inconsistent

observations. The current state-of-the-art 3D shape track-

ing methods usually employ non-rigid ICP algorithms [2].

Instead of performing an extensive search over all possible

associations, we directly use the correspondence pair (i, p)
detected by the forest as initializations. This results in a

faster pose estimation. We adopt the CVT-based deforma-

tion framework proposed in [1]. However, the approach we

describe can easily be adapted to other ICP variants.

2When the shortest distance does not exactly correspond to a vertex but

to a point in the middle of a triangle, we use barycentric coordinates as the

coefficients to linearly combine the skinning weights of the three vertices.

4.2.1 Bayesian tracking

Bayesian tracking such as [2] consists in maximizing the

a posteriori probability P (T|Y) of the pose parameters T

given the observations Y . It can be further simplified as

P (T|Y) ∝ P (T,Y) = P (T) ·P (Y|T), where the defor-

mation prior P (T) discourages the implausible poses and

the likelihood term P (Y|T) expresses the compatibility

between the observations and the pose estimate T. Since

maximizing a probability P (·) is equivalent to minimizing

− logP , it leads us to the following problem:

T̂ = argmin
T

(− logP (T)− logP (Y|T)) . (3)

In EM-ICP algorithms [8], the conditional likelihood

P (Y|T) is expressed by introducing a set of latent selec-

tion variables {ki}i that explicitly associate the cell ki of

the deformed template model to the observed cell i.

The prior on the latent association variables is usually

uniform, which means that an observed point can be asso-

ciated to any template point with the same probability. This

leads to a long exhaustive search among all possible asso-

ciations and produces a high number of residuals, slowing

down the EM-ICP algorithms. Moreover, it is the source of

wrong associations that guides the optimization to subopti-

mal local minimum.

4.2.2 EM-ICP with forest predictions

With a small number of possible associations provided by

forests, our algorithm averts the need for an exhaustive

search, and therefore highly decreases the running time of

each optimization iteration. Moreover, it removes a lot of

wrong association hypotheses. We integrate the predictions

from the forest as a prior on the selection variable k. The se-

lection variable ki (for the observed cell i) follows a proba-

bility distribution where only the cell predicted by the forest

has a non-zero probability.

Usually the forest outputs only one prediction per cell,

which is at the mode with higher weight resulting from the

mean-shift algorithm. However, because of the symmetry,

the good match is often not the mode with highest weight.

Thus, it makes sense to consider several modes instead of

one in the prediction phase. The robust scheme described

in the next section will usually select the good one.

4.2.3 Robustness

The detection forest sometimes outputs wrong correspon-

dences, either due the symmetry of human bodies (left-right

confusion) or other detection errors (e.g. hand-foot confu-

sion). Therefore, the ICP algorithm needs to be robust to

wrong correspondences. We achieve this goal by using a
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Template / #Vertex / #Cell Sequence Frames

Ballet / 6844 / 5000
Seq1 [1] 500
Seq2 936

Goalkeeper / 5009 / 5000
SideJump [1] 150
UpJump [2] 239

Thomas / 5000 / 4998
Seq1 1500
Seq2 1400

Table 1: Sequences used in our experiments. For each sub-

jects, the training set is the random 250 tracked CVTs sam-

pled from first sequences and testing on the unseen second

sequence. Unreferenced sequences are the ones proposed in

this paper.

noisy observation model [8], where the noise variance is es-

timated by an EM algorithm.

5. Experimental results

We validate our approach with numerous multi-view se-

quences, whose profiles are summarized in Table 1. For

each frame, a coarse visual hull is reconstructed by a shape-

from-silhouette method [12], followed by [28] to draw CVT

samplings (raw CVTs). Given a CVT template, we then per-

form an EM-ICP based method [1] on the raw CVTs to re-

cover temporal coherent volumetric deformations (tracked

CVTs). We evaluate our method in two aspects: detection

accuracy (§ 5.1) and tracking results (§ 5.2). Unless other-

wise specified, we follow the experimental protocol below.

Experimental protocol. We first explain the settings

common to two experiments. For each subject, up to 250
tracked CVTs are randomly chosen from the first sequence

as the training dataset, while the second sequences are com-

pletely left out for testing. We open L = 8 sphere layers for

the feature computation. Each tree is grown with 30% boot-

strap samples randomly chosen from the dataset and trees

are grown up to depth 20.

Two experiments, however, differ in the input data for

testing. To evaluate the quality of estimated associations,

we feed the tracked CVTs into forests due to the availability

of ground truth indices (§ 5.1), whereas raw CVTs are used

as the input for tracking experiments in § 5.2. Some distinct

experimental settings of the two are exposed in Table 2.

5.1. Matching

The contributions of CVT on improving the correspon-

dences detection are evaluated with two experiments. First,

we follow the learning framework in [16] but replace their

voxel-based features with ours in § 4.1.1, denoted as CVT-

feature. Next, we further change the regression domain

3More precisely, forests in § 5.1 are all single-template based except

for the one in “multi-template learning” paragraph.

Sect. Forest T Testing data

§ 5.1
template-

20
1. tCVTs of seq1 (Tr)

specific3 2. unseen tCVTs of seq2 (Te)

§ 5.2
multi-

50 unseen rCVTs of seq2
template

Table 2: Different experimental settings in two sections.

tCVTs stand for tracked CVTs while rCVTs represent raw

CVTs.

from surfaces to volumes, as described in § 4.1.2 (fullCVT).

We test on the tracked CVTs and report the results on all

frames of training sequences (Tr) and testing ones (Te). The

drop between them is a natural phenomenon for every ma-

chine learning algorithm and indicates the ability to gener-

alize. If the Euclidean distances between the predicted cell

index and the ground truth are smaller than a certain thresh-

old, it is considered as correct.

Single-template learning. To align the experimental set-

ting, here the regression forests are subject-specific and con-

sist of only T = 20 trees. Fig. 5 shows the percentage of

correct matches in varying thresholds for Thomas and Bal-

let. Since CVTfeature and [16] are regressing to surfaces

whereas fullCVT regresses to volumes, we normalize the x-

axis by the average edge length of templates to yield fair

comparisons. While the results of CVTfeature are compa-

rable to [16] (green vs. red or orange), fullCVT attains the

improved accuracies (blue vs. red or green), demonstrating

the advantages of our fully volumetric framework. Some

visual results of the fullCVT approach on raw CVT input

are shown in Fig. 7.

Discussion. It is worth a closer analysis to compare our

approach against [16]. Compared to volumes of regular

grids, CVT is certainly a more memory-efficient way to de-

scribe 3D shapes. In practice, [16] describes each mesh

with 1503 voxels, while we need only 5k cells4. Conse-

quently, [16] is not able to include a sufficient amount of

training shapes, leading to a major drawback that forests

are limited to one single subject and learn merely pose vari-

ations. To further decrease the needed number of training

meshes, [16] exploits skeletal poses to cancel the global

orientation. This in turn makes every mesh in the train-

ing dataset face the same direction. During tracking the

input data has to be re-oriented likewise using the esti-

mated skeletal poses from the last frame. Our approach,

on the other hand, considers distance fields of CVTs which

is naturally invariant to rotations and hence does not require

re-orientations. We anyway compare to [16] in both set-

4Further note that [16] stores a 3D vector in each voxel, whereas we

store a scalar in each CVT cell. So the ratio is 3× 150
3 to 5k.
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(b) Ballet

Figure 5: Cumulative matching accuracy of different ap-

proaches. The x-axis is normalized with respect to the aver-

age edge length of the templates. The number of trees T is

20 in this experiment. Dashed and solid lines are accuracies

on training (Tr) and testing (Te) sequences respectively.

tings. Orange curves in Fig. 5 shows the results with re-

orientation, which is better than the proposed strategy in

Ballet. Nonetheless, without re-orienting data, the accuracy

drops substantially during testing (compare red to orange).

The efficiency on memory and the invariance of our features

are two determining reasons why the presented method is

better than [16] and needs just one forest for different sub-

jects in the following experiment.

Multi-template learning. We use the sequences of Goal-

keeper to verify the advantages of the multi-template learn-

ing strategy in § 4.1.3. It is a particularly difficult dataset

because motions in the testing sequence UpJump have little

overlap with those in the training SideJump. We report in

Fig. 6 the correctness of correspondences in fullCVT set-

ting. Both curves represent the accuracy on testing Up-

Jump sequence. The blue curve corresponds to a forest only

trained with Goalkeeper tracked CVTs, whereas the green

curve corresponds to a forest trained with tracked CVTs of

Ballet and Thomas. For both forests, UpJump sequence is

unseen during training. Compared with the forest of the

blue curve, the one of the green curve is trained with twice

the amount of meshes from different subjects, and yet it

leads to better prediction accuracy on unseen testing poses.

This suggests that including more variation of motions in-

deed results in better generalization to unseen data. It also

confirms the necessity and efficacy of our multi-template

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 5 10 15 20

%
 o

f 
co

rr
e

ct
 m

a
tc

h
e

s 
 

Max allowed Euclidean distance to GT / avgEdgeLength 

UpJump (Goalkeeper)

UpJump (Thomas+Ballet)

Figure 6: Cumulative matching accuracy of single and

multi-template strategy on Goalkeeper.

strategy. We anyway point out that due to the lack of ad-

equate amount of training data, these encouraging prelimi-

nary results need to be confirmed on datasets consisting of

more subjects and sequences.

5.2. Tracking

We perform several experiments to evaluate our whole

tracking-by-detection algorithm and compare with previous

approaches using two quantitative metrics. We also show

its resilience to large pose changes and its generalization

capacities on an unknown subject.

Unlike § 5.1, here we apply the multi-template strategy

in § 4.1.3 to train one universal regression forest, with Goal-

keeper chosen as the common template Ŝ . Training T = 50
trees up to depth 20 where each one is grown with around

200 CVTs (approximately one million samples) takes about

15 hours on a 24-core Intel Xeon CPU machine. For each

subject, we track the testing sequence, which is not part of

the training set. Tracking inputs are raw CVTs which have

no temporal coherence. Correspondences are predicted by

the forest and fed into the volumetric deformation frame-

work described in § 4.2. The number of clusters K is 250
for Ballet and Goalkeeper and 150 for Thomas. Some visual

results are shown in Fig. 8 and in the supplemental video5.

With the help of regression forests, our approach is able to

discover volumetric associations even in challenging poses

found in Thomas and deform the templates successfully.

Ballet 

Goalkeeper Thomas 

Figure 8: Qualitative tracking results. Gray: input observed

visual hulls; purple: deformed templates.

5https://hal.inria.fr/hal-01300191
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(a) Ballet (b) Goalkeeper (c) Thomas 

Figure 7: Qualitative matching results on the raw CVTs. Templates are displayed at the upper left corner. Best viewed in pdf.
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Figure 9: Tracking results of Thomas dataset at low frame

rate.

Quantitative evaluation and comparison. We evaluate

the tracking results with two complementary metrics: sil-

houette overlap error, which measures the consistency be-

tween the shape and observed silhouettes, and marker loca-

tion error (using marker-based motion capture data), which

sparsely evaluates the surface pose. Numerical results,

which can be found in the supplemental paper, show simi-

lar or improved results with respect to volumetric ICP-based

tracking [1] and surface-based tracking by detection [16].

Tracking at low frame rate. One of the expected ben-

efits of our framework over purely ICP-based methods is

improved resilience with large pose changes. We test this

assertion by tracking the Thomas sequence at low frame rate

(5fps). Figure 9 shows how our method recovers from track-

ing failures while [1] does not. This improvement is con-

firmed by the median silhouette overlap pixel error, which

we found to be twice lower with our method (10054 pixels

compared to 19998 pixels).

Testing with a new subject. We tested the generaliza-

tion capacities of our framework with a subject (Dancer

dataset [2]) which is not in the training data. For this pur-

pose, one can either select an existing template from the

training sequences, or build a template model by matching

one of the samples from the test sequence to the common

reference model using skinning weights, as we do in multi-

template training. We use the latter, which is more subject

specific and can be expected to yield better results. Most

poses are correctly tracked in our experiment (see Fig. 10).

Not unexpectedly for this type of approach, some failures

occur on more complex poses unseen in training data and

would probably be improved with a larger training set.
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Figure 10: Tracking results with a new subject, Dancer

dataset. Input mesh (left) and tracked mesh (right).

6. Conclusion

In this paper, we present a fully volumetric tracking-

by-detection framework. Centroidal Voronoi tessellation is

chosen to be the unified representation used in feature com-

putations, predicting domains, and deformation models.

Such informative and consistent representations have shown

better detected correspondences than other discriminative

strategies. We further devise a multi-template learning strat-

egy to enrich the training variation. This leads to one

single forest for different subjects and yields cross-subject

learning of discriminative associations. The method opens

several research directions, and thanks to low memory-

footprint characteristics, it can be tested on much larger

training sets for discriminative 3D tracking in the future.

The methodology can easily be transposed to other volu-

metric features emphasizing other discriminative character-

istics.
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