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Abstract

Images of scenes have various objects as well as abun-

dant attributes, and diverse levels of visual categorization

are possible. A natural image could be assigned with fine-

grained labels that describe major components, coarse-

grained labels that depict high level abstraction, or a set of

labels that reveal attributes. Such categorization at differ-

ent concept layers can be modeled with label graphs encod-

ing label information. In this paper, we exploit this rich in-

formation with a state-of-art deep learning framework, and

propose a generic structured model that leverages diverse

label relations to improve image classification performance.

Our approach employs a novel stacked label prediction neu-

ral network, capturing both inter-level and intra-level label

semantics. We evaluate our method on benchmark image

datasets, and empirical results illustrate the efficacy of our

model.

1. Introduction

Standard image classification is a fundamental problem

in computer vision – assigning category labels to images. It

can serve as a building block for many different computer

vision tasks including object detection, visual segmenta-

tion, and scene parsing. Recent progress in deep learn-

ing [18, 29, 30, 31] significantly improved classification

performance on large scale image datasets [25, 37, 1, 20].

Approaches typically assume image labels to be semanti-

cally independent and adapt either a multi-class or binary

classifier to label images. In recent work [2, 5], deep learn-

ing methods that take advantage of label relations have been

proposed to improve image classification performance.

However, in realistic settings, these label relationships

could form a complicated graph structure. Take Figure 1

as an example. Various levels of interpretation could be

formed to represent such an image. This image of a base-

ball scene could be described as an outdoor image at coarse
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Figure 1. This image example has visual concepts at various lev-

els, from sports field at high level to baseball and person at lower

level. Our model leverages label relations and jointly predicts lay-

ered visual labels from an image using a structured inference neu-

ral network. In the graph, colored nodes correspond to the labels

associated with the image, and red edges encode label relations.

level, or with a more concrete concept such as sports field,

or with even more fine-grained labels such as batter’s box

and objects such as grass, bat, person.

Models that incorporate semantic label relationships

could be utilized to generate better classification results.

The desiderata for these models include the ability to model

label-label relations such as positive or negative correlation,

respect multiple concept layers obtainable from sources

such as WordNet, and to handle partially observed label data

– given a subset of accurate labels for this image, infer the

remaining missing labels.

The contribution of this paper is in developing a struc-

tured inference neural network that permits modeling com-

plex relations between labels, ranging from hierarchical to

within-layer dependencies. We do this by defining a net-
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work in which a node is activated if its corresponding label

is present in an image. We introduce stacked layers among

these label nodes. These encode layer-wise connectivity

among label classification scores, representing dependency

from top-level coarse labels to bottom-level fine-grained la-

bels. Activations are propagated bidirectionally and asyn-

chronously on the label relation graph, passing information

about the labels within or across concept layers to refine the

labeling for the entire image.

We have evaluated our method on three image classifi-

cation datasets (AWA dataset [20], NUS-WIDE dataset [1]

and SUN397 dataset [37]). Experimental results show a

consistent and significant performance gain with our struc-

tured label relation model compared with baseline and re-

lated methods.

2. Related Work

Multi-level labeling of images has been addressed in a

number of frameworks. In this section we review rele-

vant work within probabilistic, max-margin, multi-task, and

deep learning.

Structured label prediction with external knowledge:

Structured prediction approaches exist [32, 34], in which

a set of class labels are predicted jointly under a fixed loss

function. Traditional approaches learn graph structure as

well as associated weights that best explain the training

data (e.g., [3]). When external knowledge of label relations

(e.g., a taxonomy) is available, it is beneficial to integrate

this knowledge to guide the traditional supervised learning

systems. For example, Grauman et al. [8] and Hwang et

al. [11] took the WordNet category taxonomy to improve

visual recognition. Johnson et al. [14] and McAuley and

Leskovec [22] used metadata from a social network to im-

prove image classification. Ordonez et al. [24] leveraged

associated image captions (words of “naturalness”) to esti-

mate entry-level labels of visual objects.

Multi-label classification with label relations: Traditional

multi-label classification cannot avoid predicting an image

as both cat and dog, or an image as carnation but not flower.

Using external knowledge of label relations, Deng et al. [2]

proposed a representation, the HEX graph, to express and

enforce exclusion, inclusion and overlap relations between

labels in multi-label classification. This model was further

extended for “soft” label relations using the Ising model by

Ding et al. [5].

Structured model with convolutional neural networks

(CNNs): Structured deep models extend traditional CNNs

to applications of structured label prediction, for which

the CNN model is found insufficient to learn implicit con-

straints or structures between labels. Structured deep learn-

ing therefore jointly learns a structured model with the

CNN framework. For example, for human pose estimation,

Tompson et al. [33] take the CNN predictions as unary po-

tentials for body parts and feed them to a MRF-like spatial

model, which further learns pairwise potentials of part rela-

tions. Schwing and Urtasun [28] proposed a structured deep

network by concatenating a densely connected MRF model

to a CNN for semantic image segmentation, in which the

CNN provides unary potentials as the MRF model imposes

smoothness. Deng et. al. [4] proposed a recurrent network

that jointly performs message passing-style inference and

learns graph structure for group activity recognition.

Our work combines these lines of work. We take the

WordNet taxonomy as our external knowledge, expressing

it as a label relation graph, and learning the structured la-

bels within a deep network framework. Our contribution is

in proposing a learning and inference algorithm that facili-

tates knowledge passing in the deep network based on label

relations.

Multi-task joint learning: Multi-task learning follows the

same spirit of structured label prediction, with the dis-

tinction that the outputs of multiple (different but related)

tasks are estimated. Common jointly modeled tasks in-

clude segmentation and detection [19, 35], segmentation

and pose estimation [16], or segmentation and object clas-

sification [21]. An emerging topic of joint learning is in im-

age understanding and text generation by leveraging intra-

modal correspondences between visual and human lan-

guage [17, 15].

Our work can be naturally extended to multi-task learn-

ing, for which each layer of our model represents one task

and the labels do not necessarily form a layered structure.

Notably, we can improve existing multi-task learning meth-

ods by importing knowledge of intra-task label relations.

3. Method

Our model jointly classifies images in a layered label

space with external label relations. The goal is to lever-

age the label relations to improve inference over the layered

visual concepts.

We build our model on top of a state-of-the-art deep

learning platform: given an image, we first extract CNN

features from Krizhevsky et al. [18] as visual activations at

each concept layer. Concept layers are stacked from fine-

grained to coarser levels. Label relations are defined be-

tween consecutive layers and form a layered graph. Infer-

ence over the label relation graph is inspired by the recent

success of Recurrent Neural Networks (RNNs) [10, 27],

where we treat each concept layer as a timestep of a RNN.

We connect neighboring timesteps to reflect the inter-layer

label relations, while capturing intra-layer relations within

each timestep. The label activations are propagated bidi-

rectionally and asynchronously in the label relation graph

to refine labeling for the given image. Figure 2 shows an

overview of our classification pipeline.

We denote the collection of training images as {Ii}Ni=1,
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Figure 2. The label prediction pipeline. Given an input image, we extract CNN features at the last fully connected layer as activation (in

blue box) at different visual concept layers. We then propagate the activation information in a label (concept) relation graph through our

structured inference neural network (in red box). The final label prediction (in green box) is made from the output activations (in yellow

box) obtained after the inference process.

each with ground-truth label in every concept layer. We

denote the labels of image Ii as {yit}
T
t=1, where T is the

total number of concept layers. And each concept layer t

has nt labels. The CNN framework of Krizhevsky et al. [18]

transforms each image Ii into a 4096-dimensional feature

vector, denoted as CNN(Ii).

3.1. Learning Framework

It is straightforward to build an image classification

model, by adding a loss layer on top of the CNN features

for each concept layer. Specifically, the activations on con-

cept layer t are computed as

xi
t = Wt · CNN(Ii) + bx,t, (1)

where Wt ∈ R
nt×4096 and bx,t ∈ R

nt×1 are linear trans-

formation parameters and biases to classify the nt labels

at concept layer t. Note that xi
t ∈ R

nt×1 provides visual

activation depending purely on the image Ii. To generate

label-specific probabilities, we can simply apply a sigmoid

function (i.e., σ(z) = 1
1+e−z ) on the elements of xi

t.

This classification model does not accommodate label

relations within or across concept layers. To leverage the

benefit of label relations, we adopt an RNN-like inference

framework. In the following, we first describe a top-down

inference model, then a bidirectional inference model, and

lastly propose our Structured Inference Neural Network, the

SINN.

3.1.1 Top-Down Inference Neural Network

Our model is inspired by the recent success of RNNs [9, 26],

which make use of dynamic sequential information in learn-

ing. RNNs are called recurrent models because they per-

form the same computation for every timestep, with the

input dependent on the current inputs and previous out-

puts. We apply a similar idea to our layered label prediction

problem: we consider each concept layer as an individual

timestep, and model the label relations within and across

concept layers in the recurrent learning framework.

Specifically, at each timestep t, we compute an image

Ii’s activations ait ∈ R
nt×1 based on two terms: ait−1 ∈

R
nt−1×1, which are the activations from the last timestep

t − 1, and xi
t ∈ R

nt×1, which are the activations from

Eq. (1). The message passing process is defined as:

ait = Vt−1,t · a
i
t−1 +Ht · x

i
t + ba,t, (2)

where Vt−1,t ∈ R
nt×nt−1 are the inter-layer model param-

eters capturing the label relations between two consecutive

concept layers in top-down order, Ht ∈ R
nt×nt are the

intra-layer model parameters to account for the label rela-

tions within each concept layer, and ba,t ∈ R
nt×1 are the

model biases. A sigmoid function can be applied to ait to

obtain label-specific prediction probabilities for image Ii.

Note that the inference process in Eq. (2) is different

from the standard RNN learning: Eq. (2) unties Vt−1,t and

Ht in each timestep, while the standard RNNs learn the

same V and H parameters over and over on all timesteps.

To learn the model parameters V ’s and H’s, we apply a

sigmoid function function σ on the activations ait, and min-

imize the logistic cross-entropy loss with respect to V ’s and

H’s:

E({ait}) =

N
∑

i=1

T
∑

t=1

nt
∑

y=1

(

1(yit = y) · log
(

σ(ait)
)

+ 1(yit 6= y) · log
(

1− σ(ait)
)

)

, (3)

where 1(z) is an indicator function which returns 1 if z is

true and 0 otherwise.

3.1.2 BINN: Bidirectional Inference Neural Network

It makes more sense to model bidirectional inferences, as a

concept layer is related to the two connected layers equally
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well. Therefore, we adopt the idea of bidirectional recur-

rent neural network [27], and propose the following bidi-

rectional inference model:

−→a i
t =

−→
V t−1,t ·

−→a i
t−1 +

−→
H t · x

i
t +
−→
b t, (4)

←−a i
t =

←−
V t+1,t ·

←−a i
t+1 +

←−
H t · x

i
t +
←−
b t, (5)

ait =
−→
U t ·
−→a i

t +
←−
U t ·
←−a i

t + ba,t. (6)

where Eqs. (4) and (5) proceed as top-down propaga-

tion and bottom-up propagation, respectively, and Eq. (6)

aggregates the top-down and bottom-up messages into final

activations for label prediction. Here
−→
U t ∈ R

nt×nt and
←−
U t ∈ R

nt×nt are aggregation model parameters, and we

use the arrows→ and← to indicate the directions of label

propagation

As in the top-down inference model, the bidirectional in-

ference model captures both inter-layer and intra-layer label

relations in the model parameters V ’s and H’s. For inter-

layer relations, we connect a label in one concept layer to

any label in its neighboring concept layers. For intra-layer

relations, we model fully-connected relations within each

concept layer. The model parameters V ’s, H’s and U ’s

are learned by minimizing the cross-entropy loss defined in

Eq. (3).

3.1.3 SINN: Structured Inference Neural Network

The fully connected bidirectional model is capable of rep-

resenting all types of label relations. In practice, however,

it is hard to train a model on limited data due to the large

number of free parameters. To avoid this problem, we use a

structured label relation graph to restrict information prop-

agation.

We use structured label relations of positive correlation

and negative correlation as prior knowledge to refine the

model. Here is the intuition: since we know that office

is an indoor scene, beach is an outdoor scene, and indoor

and outdoor are mutually exclusive, a high score on indoor

should increase the probability of label office and decrease

the probability of label beach. Labels that are not semanti-

cally related, e.g. motorcycle and shoebox, should not af-

fect each other. The structured label relations can be ob-

tained from semantic taxonomies, or by parsing WordNet

relations [23]. We describe the details of extracting label

relations in Section 4.

We introduce the notation V +, V −, H+ and H− to ex-

plicitly capture structured label relations in between and

within concept layers, where the superscripts + and − in-

dicate positive and negative correlation, respectively. These

model parameters are masked metrics capturing the label

relations. Instead of learning full parametrized metrics of

V +, V −, H+ and H−, we freeze some elements to be zero

if there is no semantic relation between the corresponding

labels. For example, V + models the positive correlation in

between two concept layers: only the label pairs that have

positive correlation have learnable model parameters, while

the rest are zeroed out to remove potential noise. A similar

setting goes to V −, H+ and H−. Figure 3 shows an exam-

ple positive correlation graph and a negative graph between

two layers.

Class

Zebra

Leopard

Cat

Hound

Attributes

Fast

Striped

Spotted

Domestic

Positive Correlation

Negative Correlation

Figure 3. An example showing the model parameters V + and V
−

between the animal layer and the attribute layer. Green edges in

the graph represent positive correlation, and red edges represent

negative correlation.

To implement the positive and negative label correlation,

we propose the following structured message passing pro-

cess:

−→a i
t = γ(

−→
V +

t−1,t ·
−→a i

t−1) + γ(
−→
H+

t · x
i
t) (7)

−γ(
−→
V −

t−1,t ·
−→a i

t−1)− γ(
−→
H−

t · x
i
t) +
−→
b t,

←−a i
t = γ(

←−
V +

t+1,t ·
←−a i

t+1) + γ(
←−
H+

t · x
i
t) (8)

−γ(
←−
V −

t+1,t ·
←−a i

t+1)− γ(
←−
H−

t · x
i
t) +
←−
b t,

ait =
−→
U t ·
−→a i

t +
←−
U t ·
←−a i

t + ba,t. (9)

Here γ(·) stands for a ReLU activation function. It is es-

sential for SINN as it enforces that activations from positive

correlation always make positive contribution to output ac-

tivation and keeps activations from negative correlation as

negative contribution (notice the minus signs in Eqs (7) and

(8)). To learn the model parameters V ’s, H’s, and U ’s, we

optimize the cross-entropy loss in Eq. (3).

3.2. Label Prediction

Now we introduce the method of predicting labels in test

images with our model. As the model is trained with mul-

tiple concept layers, it is straightforward to recognize a la-

bel at each concept layer for the provided test image. This

mechanism is called label prediction without observation

(the default pipeline shown in Figure 2).
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SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

Figure 4. The label prediction pipeline with partial observation. The pipeline is similar to Figure 2 except that we now have a partial

observation that this image is outdoor man-made. The SINN is able to take the observed label into consideration and improve the label

predictions in the other concept layers.

A more interesting application is to make predictions

with partial observations – we want to predict labels in one

concept layer given labels in another concept layers. Fig-

ure 4 illustrates the idea. Given an image shown in the left

side of Figure 4, we have more confidence to predict it as

batter box once we know it is an outdoor image with at-

tribute sports field.

To make use of the partially observed labels in our SINN

framework, we need to transform the observed binary labels

into soft activation scores for SINN to improve the label pre-

diction on the target concept layers. Recall that SINN min-

imizes cross-entropy loss which applies sigmoid functions

on activations to generate label confidences. Thus, we re-

verse this process by applying the inverse sigmoid function

on the binary ground-truth labels to obtain activations. For-

mally, we define the activation a obtained from a ground-

truth label y as:

g(y) =

{

log 1
1−(y+ǫ) , if y = 0,

log 1
1−(y−ǫ) , if y = 1.

(10)

Note that we put a small perturbation ǫ on the ground-truth

label y for numerical stability. In our experiments, we set

ǫ = 0.001.

3.3. Implementation Details

To optimize our learning objective, we use stochastic

gradient descent with mini-batch size of 50 images and mo-

mentum of 0.9. For all training runs, we apply a two-stage

policy as follows. In the first stage, we fixed pre-trained

CNN networks, and train our SINN with a learning rate of

0.01 with fixed-size decay step. In the second stage, we set

the learning rate as 0.0001 and fine-tune the CNN together

with our SINN. We set the gradient clipping threshold to be

25 to prevent gradient explosion. The weight decay value

for our training procedure is set to 0.0005.

In the computation of visual activations from the CNN,

as different experiment datasets describe different semantic

domains, we adopt different pretrained CNN models: Im-

ageNet pretrained model [13] for experiments 4.1 and 4.2,

placenet pretrained model [38] for experiment 4.3.

4. Experiments

We tested our method on three large-scale bench-

mark image datasets: the Animals with Attributes dataset

(AwA) [20], the NUS-WIDE dataset [1], and the SUN397

dataset [37]. Each dataset has different concept layers and

label relation graphs. Experimental results show that (1) our

method effectively boosts classification performance using

the label relation graphs; (2) our SINN model consistently

outperforms baseline classifiers and related methods in all

experiments; and (3) particularly, the SINN model achieves

significant performance gain with partial human labels.

Dataset and Label relation generation The AwA dataset

contains an 85-attribute layer, a 50-animal-category layer

and a 28-taxonomy-term layer. We extract the label rela-

tions from the WordNet taxonomy knowledge graph [8, 11,

12]. The NUS-WIDE dataset is composed of Flickr images

with 81 object category labels, 698 image group labels from

image metadata, and 1000 noisy tags collected from users.

We parse WordNet to obtain label similarity, and threshold

the soft similarity values into positive and negative correla-

tion for the label graph. The SUN397 dataset has a typical

hierarchical structure in label space, with 397 fine-grained

scene categories on the bottom layer, 16 general scene cate-

gories on middle layer, and 3 coarsest categories on the top.

Here the label relations are also extracted from WordNet.

Baseline. For each experiment, we compare our full method

(CNN + SINN) with the baseline method: CNN + logistic

regression. With further specifications, we may have extra

baseline methods, such as CNN + BINN, CNN + logistic

regression + extra tags, etc. We also compare our method
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with related state-of-the-art methods.

Evaluation metrics. We measure classification perfor-

mance by mean average precision (mAP ) in all compar-

isons. mAP is a widely used metric for label-based re-

trieval and ranking. It measures the averaged performance

over all label categories. In addition to mAP , we also

adopted various metrics for special cases.

In the case of NUS-WIDE, the task is multi-label classi-

fication. We adopt the setting of [14] and report mAP per

label (mAPL) and mAP per image (mAPI ) for easy com-

parison. For comparison with related works ( [22, 7, 14])

on NUS-WIDE, we also compute the per image and per la-

bel precisions and recalls. We abbreviate these metrics as

PrecL for precision per label, PrecI for precision per im-

age, RecL for recall per label, and RecI for precision per

image.

For AwA and SUN397, we also compute the multi-class

accuracy (MCAcc) and the intersection-over-union accu-

racy (IoUAcc). MCAcc is a standard measurement for im-

age classification problems. It averages per class accuracies

as the final result. IoUAcc is a common prediction mea-

surement for multi-label classification, based on the ham-

ming distance of predicted labels to ground-truth labels.

4.1. AwA: Layered Prediction with Label Relations

This experiment demonstrates the label prediction capa-

bility of our SINN model and the effectiveness of adding

structured label relations for label prediction. We run each

method five times with five random splits – 60% for training

and 40% for test. We report the average performance as well

as the standard deviation of each performance measure.

Note that there is very little related work with lay-

ered label prediction on AwA. The most relevant one is

work by Hwang and Sigal [12] on unified semantic em-

bedding (USE). The comparison is not strictly fair, as the

train/test splits are different. Further, we include our BINN

model without specifying the label relation graphs (see Sec-

tion 3.1.2) as a baseline method in this experiment, as it can

verify the performance gain in our model from including

structure. The results are in Table 1.

Results. Table 1 shows that our method outperforms the

baseline methods (CNN + Logistics and CNN + BINN

variants) as well as the USE method, in terms of each

concept layer and each performance metric. It validates

the efficacy of our proposed model for image classifica-

tion. Note that for the results in Table 1, we did not fine-

tune the first seven layers of CNN [18] for fairer compar-

ison with Hwang and Sigal [12] (which only makes use

of DECAF features [6]). Fine-tuning the first seven CNN

layers further improves IoUAcc at each concept layer to

86.06± 0.72 (28 taxonomy terms), 69.17± 1.00 (50 an-

imal classes), 88.22± 0.38 (85 attributes), and mAPL to

94.17± 0.55 (28 taxonomy terms), 83.12± 0.69 (50 ani-

mal classes), 96.72± 0.20 (85 attributes), respectively.

4.2. NUS­WIDE: Multi­label Classification with
Partial Human Labels of Tags and Groups

This experiment shows our model’s capability to use

noisy tags and structured tag-label relations to improve

multi-label classification. The original NUS-WIDE dataset

consists of 269,648 images collected from Flickr with 81

ground-truth concepts. As previous work used various eval-

uation metrics and experiment settings, and there are no

fixed train/test splits, it is hard to make direct comparisons.

Also note that a fraction of previously used images are un-

available now due to Flickr copyright.

In order to make our result as comparable as possible,

we tried to set up the experiments according to previous

work. We collected all available images and discard images

with missing labels as previous work did [14, 7], and got

168,240 images of the original dataset. To make our result

comparable with [14], we use 5 random splits with the same

train/test ratio as [14] – there are 132,575 training images

and 35,665 test images in each split.

To compare our method with [22, 14], we also used the

tags and metadata groups in our experiment. Different from

their settings, instead of augmenting images with 5000 tags,

we only used 1000 tags, and augment the image with 698

group labels obtained from image medatada to form a three-

layer group-concept-tag graph. Instead of using the tags

Concept Layer Method MCAcc IoUAcc mAPL

28 taxonomy terms

CNN + Logistics - 80.41± 0.09 90.16± 0.10

CNN + BINN - 79.85± 0.13 89.92± 0.07

CNN + SINN - 84.47± 0.3884.47± 0.3884.47± 0.38 93.00± 0.2993.00± 0.2993.00± 0.29

50 animal classes

USE [12] + DECAF [6] 46.42± 1.33 - -

CNN + Logistics 78.44± 0.27 62.75± 0.26 78.35± 0.19

CNN + BINN 79.00± 0.43 62.80± 0.25 78.88± 0.35

CNN + SINN 79.36± 0.4379.36± 0.4379.36± 0.43 66.60± 0.4366.60± 0.4366.60± 0.43 81.19± 0.1481.19± 0.1481.19± 0.14

85 attributes

CNN + Logistics - 81.29± 0.10 93.29± 0.12

CNN + BINN - 80.64± 0.13 93.04± 0.13

CNN + SINN - 86.92± 0.1886.92± 0.1886.92± 0.18 96.05± 0.0796.05± 0.0796.05± 0.07

Table 1. Layered label prediction results on the AwA dataset.
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Ground Truth: reflection buildings water sky

CNN+Logistic: reflection water sky

Our Predictions: bridge water reflection

Ground Truth: sky water ocean beach

CNN+Logistic: water sky ocean

Our Predictions:  water sky tower

Ground Truth: flowers person street

CNN+Logistic: town buildings person

Our Predictions:person window street

Ground Truth: railroad

CNN+Logistic: statue buildings person

Our Predictions:  railroad person sky

Ground Truth: rainbow clouds sky

CNN+Logistic: clouds water sky

Our Predictions: rainbow clouds sky

Ground Truth: food water

CNN+Logistic: food plants flower

Our Predictions: food plants water

Ground Truth:  animal grass water dog

CNN+Logistic: grass person animal

Our Predictions: water animal dog

Ground Truth: clouds animal

CNN+Logistic: sky animal grass

Our Predictions: clouds sky animal

Ground Truth: buildings clouds sky

CNN+Logistic: cityscape clouds sky

Our Predictions: buildings clouds sky

Ground Truth: temple person water

CNN+Logistic: boats water window

Our Predictions: buildings temple water

Figure 5. Visualization results (best viewed in color). We pick up 10 representative images from NUS-WIDE, and visualize the predicted

labels of our method compared with CNN + Logistics. Under each image, we provide the ground-truth labels for ease of reference, and list

the top-3 highest scoring predicted labels for each compared method. Correct predictions are marked in blue and incorrect predictions are

in red. Failure cases are shown in the rightmost column.

as sparse binary input features (as in [22, 14]), we convert

them to observed labels and feed them to our model.

The baselines for comparison are as follows. As our

usual baseline, we extract features from a CNN pretrained

on ImageNet [25] and train a logistic classifier on top of it.

In addition, we set up a group of baselines that make use

of the groups and tags as binary indicator feature vectors

for logistic regression. These baselines serve as the con-

trol group to evaluate the quality of metadata we used in

SINN. Next, a stronger baseline that uses both CNN output

and metadata vector with logistic classifier was evaluated.

This method has a similar setting as that of the state-of-art

method by Johnson et al. [14], with difference in visual fea-

ture (CNN on image in our method versus CNN on image

neighborhood) and tag feature (1k tag vector versus 5k tag

vector).

We report our results on this dataset with two settings

for our SINN, the first using 1k tags as the only observa-

tions to a bottom level of the relation graph. This method

provides a good comparison to the tag neighborhood + tag

vector [14], as we did not use extra information other than

tags. In the second setting, we make both group and tag lev-

els observable to our SINN, which achieves the best perfor-

mance. We also compared our results with that of McAuley

et al. [22], Gong et al. [7]. The results are summarized in

Table 2. Note that we did not report our performance with

fine-tuning the first seven layers of the CNN in this table,

so as to make direct comparison of structured inference on

SINN with our baseline method CNN + Logistics. Fine-

tuned CNN with SINN improves mAPL to 70.01 ± 0.40
and mAPI to 83.68± 0.13.

Results. Table 2 shows that our proposed method outper-

forms all baseline methods and existing approaches (e.g.,

[14, 7, 22]) by a large margin. Note that the results are

not directly comparable due to different settings in train/test

splits. However, the results show that, by modeling la-

Method mAPL mAPI RecL PrecL RecI PrecI

Graphical Model [22] 49.00 - - - - -

CNN + WARP [7] - - 35.60 31.65 60.49 48.59

5k tags + Logistics [14] 43.88± 0.32 77.06± 0.14 47.52± 2.59 46.83± 0.89 71.34± 0.16 51.18± 0.16

Tag neighbors + 5k tags [14] 61.88± 0.36 80.27± 0.08 57.30± 0.44 54.74± 0.63 75.10± 0.20 53.46± 0.09

CNN + Logistics 46.94± 0.47 72.25± 0.19 45.03± 0.44 45.60± 0.35 70.77± 0.21 51.32± 0.14

1k tags + Logistics 50.33± 0.37 66.57± 0.12 23.97± 0.23 47.40± 0.07 64.95± 0.18 47.40± 0.07

1k tags + Groups + Logistics 52.81± 0.40 68.04± 0.12 25.54± 0.24 49.26± 0.15 65.99± 0.15 48.13± 0.05

1k tags + Groups + CNN + Logistics 54.67± 0.57 77.81± 0.22 50.83± 0.53 49.36± 0.30 75.38± 0.16 54.61± 0.09

1k tags + CNN + SINN 67.20± 0.60 81.99± 0.14 59.82± 0.12 57.02± 0.57 78.78± 0.13 56.84± 0.07

1k tags + Groups + CNN + SINN 69.24± 0.4769.24± 0.4769.24± 0.47 82.53± 0.1582.53± 0.1582.53± 0.15 60.63± 0.6760.63± 0.6760.63± 0.67 58.30± 0.3358.30± 0.3358.30± 0.33 79.12± 0.1879.12± 0.1879.12± 0.18 57.05± 0.0957.05± 0.0957.05± 0.09

Table 2. Results on NUS-WIDE. We measure precision PreL, PreI and recall RecL, RecI with n = 3 labels for each image.
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Concept Layer Method MCAcc IoUAcc mAPL

3 coarse scene categories

CNN + Logistics - 83.67± 0.18 95.19± 0.07

CNN + BINN - 83.63± 0.24 95.19± 0.03

CNN + SINN - 85.95± 0.4485.95± 0.4485.95± 0.44 96.40± 0.1896.40± 0.1896.40± 0.18

16 general scene categories

CNN + Logistics - 64.30± 0.27 83.30± 0.19

CNN + BINN - 63.40± 0.35 82.93± 0.14

CNN + SINN - 66.46± 1.1066.46± 1.1066.46± 1.10 84.97± 0.9684.97± 0.9684.97± 0.96

397 fine-grained scene categories

Image features + SVM [37, 36] 42.70 - -

CNN + Logistics 57.86± 0.3857.86± 0.3857.86± 0.38 35.97± 0.37 55.31± 0.30

CNN + BINN 57.52± 0.29 35.44± 1.02 55.57± 0.63

CNN + SINN 57.60± 0.38 37.71± 1.1337.71± 1.1337.71± 1.13 58.00± 0.3358.00± 0.3358.00± 0.33

Table 3. Layered label prediction results on the SUN397 dataset.

bel relations between tags, groups and concepts, our model

achieves dramatic improvement on visual prediction.

We visualize some results in Figure 5 showing exemplars

on which our method improves over baseline predictions.

4.3. SUN397: Improving Scene Recognition with
and without partially Observed Labels

We conducted two experiments on the SUN397 dataset.

The first experiment is similar to the study on AwA: we ap-

plied our model to layered image classification with label

relations, and compare our model with CNN + Logistics

and CNN + BINN baselines, as well as a state-of-the-art

approach [37, 36]. For fair comparison, we used the same

train/test split ratio as [37, 36], where we have 50 training

and test images in each of the 397 scene categories. To mi-

grate the randomness in sampling, we also repeat the exper-

iment 5 times and report the average performance as well as

the standard deviations. The results are summarized in Ta-

ble 3, showing that our proposed method again achieves a

considerable performance gain over all the compared meth-

ods.

In the second experiment, we considered partially ob-

served labels from the top (coarsest) scene layer as input to

our inference framework. In other words, we assume we

know whether an image is indoor, outdoor man-made, or

outdoor natural. We compare the 397 fine-grained scene

recognition performance in Table 4. We compare to a set

of baselines, including CNN + Logistics + Partial Labels,

Method MCAcc mAPL

Image features + SVM [37, 36] 42.70 -

CNN + Logistics 57.86± 0.38 55.31± 0.30

CNN + BINN 57.52± 0.29 55.57± 0.63

CNN + SINN 57.60± 0.38 58.00± 0.33

CNN + Logistics + Partial Labels 59.08± 0.27 56.88± 0.29

CNN + SINN + Partial Labels 63.46± 0.1863.46± 0.1863.46± 0.18 64.63± 0.2864.63± 0.2864.63± 0.28

Table 4. Recognition results on the 397 fine-grained scene cat-

egories. Note that the last two compared methods make use of

partially observed labels from the top (coarsest) scene layer, i.e.,

indoor, outdoor man-made, and outdoor natural.

that considers the partial labels as an extra binary indicator

feature vector for logistic regression. Results show that our

method combined with partial labels (i.e., CNN + SINN +

Partial Labels) improves over baselines, exceeding the sec-

ond best by 4% MCAcc and 6% mAPL.

5. Conclusion

We have presented a structured inference neural network

(SINN) for layered label prediction. Our model makes use

of label relation graphs and concept layers to augment in-

ference of semantic image labels. Beyond this, our model

can be flexibly extended to consider partially observed hu-

man labels. We borrow the idea of RNNs to implement our

SINN model, and combine it organically with an underlying

CNN visual output. Experiments on three benchmark im-

age datasets show the effectiveness of the proposed method

in standard image classification tasks. Moreover, we also

demonstrate empirically that label prediction is further im-

proved once partially observed human labels are fed into the

SINN.
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