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Abstract

As a key component in many computer vision system-

s, optical flow estimation, especially with large displace-

ments, remains an open problem. In this paper we present

a simple but powerful matching method works in a coarse-

to-fine scheme for optical flow estimation. Inspired by the

nearest neighbor field (NNF) algorithms, our approach,

called CPM (Coarse-to-fine PatchMatch), blends an effi-

cient random search strategy with the coarse-to-fine scheme

for optical flow problem. Unlike existing NNF techniques,

which is efficient but the results is often too noisy for optical

flow caused by the lack of global regularization, we propose

a propagation step with constrained random search radius

between adjacent levels on the hierarchical architecture.

The resulting correspondences enjoys a built-in smoothing

effect, which is more suited for optical flow estimation than

NNF techniques. Furthermore, our approach can also cap-

ture the tiny structures with large motions which is a prob-

lem for traditional coarse-to-fine optical flow algorithms.

Interpolated by an edge-preserving interpolation method

(EpicFlow), our method outperforms the state of the art on

MPI-Sintel and KITTI, and runs much faster than the com-

peting methods.

1. Introduction

Optical flow has traditionally been, and continues to be,

one of the most fundamental components in many vision

tasks. There has been abundant literature on this topic,

while obtaining a reliable optical flow for real-world videos

remains a challenging problem caused mainly by motion

discontinuities, large displacements, and occlusions.

Since the pioneering work by Horn and Schunck [11]

who formulated the optical flow estimation as a problem

of energy minimization, many effective approaches have e-

merged for improving the performance with complex mo-

tions [5, 26, 29]. Though combined with a coarse-to-fine

scheme, such approaches still often failed to estimate large
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(a) EpicFlow [24] (b) CPM-Flow

(c) MDPFlow2 [29] (d) Ground truth

Figure 1. Comparison of state-of-the-art flow methods. In addition

to the sharp motion boundaries which is similar to EpicFlow, our

CPM-Flow can survive in the case of tiny structures with large

motions (like the leg of the character and the bar of the weapon)

which is usually a problem.

displacements introduced by fast motion, which is caused

by the propagation of errors from coarser levels to the finest

level, especially in the case of tiny structures with large mo-

tions (see Figure 1(c)).

The visual similarity between two image regions is the

most important clue for large optical flow estimation. Re-

cently, optical flow interpolated from sparse descriptor

matching correspondences directly has shown great success

for large displacements, especially with significant occlu-

sions [24]. While the results is mainly constrained by the

efficiency and accuracy of the matching techniques.

In contrast, as a core component in image editing and

scene correspondence [18], the nearest neighbor field (NN-

F) is closely related to optical flow estimation. The objec-

tive of NNF computation is to find one or more nearest (vi-

sually similar) neighbors for every patch in a given image a-

gainst another image. The main challenge in this procedure

is the computational complexity. Through the seminal work

called PatchMatch [4] and the improved methods [15, 10],

the efficiency of computing NNF has advanced remarkably.

The core idea behind this boost is random search and propa-

gation between neighbors. While with a different objective

from optical flow estimation, the computed NNF is often
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Figure 2. Response maps of some reference patches on the target

image with different patch size. Left column consists of the two

consecutive images and the zoomed version from top to bottom.

Right column is the responses of the patches in the left-bottom

with size 4×4, 8×8 and 32×32 from top to bottom respectively.

We can see that the response maps with larger patch size are more

discriminative.

very noisy from the viewpoint of motion, especially in the

criteria of edge preservation and spatial smoothness for e-

valuating an optical flow results, which is mainly caused by

the lack of global regularization.

In this study, we propose a matching method combin-

ing a random search strategy with a coarse-to-fine scheme

for optical flow with large displacements. A key observa-

tion is that matching correspondences with larger patch size

are often more discriminative (see Figure 2). After the con-

struction of the pyramids, we can use the matching corre-

spondences from higher levels of the pyramids as a guid-

ance for the matching process on lower levels. While as

in DeepMatching[27], constructing the response maps of

each reference patch on the target image at each level of

the pyramid is time-consuming. We introduce a propaga-

tion procedure between the adjacent levels from top to bot-

tom, which avoids the construction of the whole response

maps. With random search strategy like in PatchMatch [4]

on each level, our approach, CPM (Coarse-to-fine Patch-

Match), interpolated using EpicFlow[24] outperforms the

original EpicFlow and also most state of the art (see Figure

1).

We make the following contributions: 1) We propose

CPM matching, a novel coarse-to-fine matching scheme

based on combination of random search and propagation

between hierarchical levels. We show that it is robust to

larger displacements and more suited for optical flow com-

pared with NNF methods. 2) We propose a fast approximate

structure for the matching process, which avoids finding the

matching of every pixels and leads to a significant speed-up

with controllable accuracy. 3) We show the effectiveness

and efficiency of our matching approach by achieving state-

of-the-art flow accuracy but running much faster than other

competing methods on MPI-Sintel [6] and KITTI [9, 21].

2. Related Work

We do not review the entire literature on optical flow and

only discuss the related literature. We refer to publications

like [26, 2] for a detailed overview of optical flow method-

s based on the classic variational minimization framework

first proposed in [11].

Our method is closely related to NNF estimation. The

efficiency of computing NNF has advanced remarkably

through the work [4, 15, 10], while the results is often too

noisy from the viewpoint of motion. Nevertheless, many

efforts have been made to estimate the optical flow based

on the NNF: Chen et al. [7] used the computed NNF as a

hint for motion segmentation before variational optimiza-

tion. Bao et al. [3] adapted the PatchMatch algorithm to

optical flow using an edge-preserving patch-matching mea-

surement. However, they still often failed in the case of

large displacements, especially with significant occlusion-

s. Bailer et al. [1] proposed a similar pipeline to ours to

handle the noisiness of NNF. However, their method relies

on a dedicated hierarchical structure and many complicated

techniques for ambiguity handling.

Also inspired by PatchMatch [4], Li et al. [17] proposed

a PatchMatch belief propagation to estimate the optical flow

which was formulated as a labeling problem. Yang et al.

[30] proposed a piecewise parametric model for optical flow

estimation. In contrast, we tackle the optical flow problem

through a nonparametric matching.

As an important milestone regarding the integration of

matching and optical flow, Brox and Malik [5] introduced

a descriptor matching term to the classic variational mini-

mization framework of optical flow. Furthermore, Xu et al.

[29] proposed an extended coarse-to-fine framework that in-

tegrates matching to refine the flow at each level. However,

due to the sparsity of the matching and the requirement of

accurate initialization of the variational minimization, they

still usually fail in the case of small details with motion larg-

er than its own scale. To handle the sparsity of descriptor

matching, Leordeanu et al. [16] extended sparse matching

to dense matching with a locally affine constraint. For ef-

ficiency, Wulff et al. [28] introduced a basis of flow, and

obtained the flow directly from the combination of the ba-

sis of the flow infered from a sparse descriptor matching.

However, the quality is not satisfactory. Revaud et al. [24]

introduced an edge-preserving interpolation framework for

optical flow based on a matching algorithm termed Deep-

Matching [27]. However, the interpolation results is mainly

constrained by the efficiency of DeepMatching. Closely re-

lated to our method, Kim et al. [14] and Hur et al. [12]

also investigated hierarchical matching, but their methods

requires inexact inference using loopy belief propagation.
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Figure 3. Overview of the proposed CPM algorithm. Given two images, we construct the pyramids and process from top to bottom. On

each level, the initial matching correspondences is propagated with random search after a fixed number of times, and the results of each

level is used as a initialization of the next lower level. The results after the propagation on the finest level is our matching results.

3. Coarse-to-fine PatchMatch

In this section, we present our matching framework, CP-

M, and discuss its main features. Our matching method

builds upon a hierarchical architecture, and works in a

coarse-to-fine (top-down) scheme. An overview of CPM

Matching is given in Figure 3. We first detail the matching

procedure on one level of the pyramid in Section 3.1, and

then describe the hierarchical structures of our approach as

well as the propagation step between the levels in Section

3.2.

3.1. Basic Matching

Considering the nature of smoothness of optical flow

compared with the NNF, we define our goal of matching

is to find the best correspondence of some seeds rather than

every pixel of the image for efficiency. Formally, given two

images I1, I2 ⊂ R2 and a collection of seeds S = {sm} at

position {p(sm)}, our goal is to determine the flow of each

seed f(sm) = M(p(sm))−p(sm) ∈ R2, where M(p(sm))
is the corresponding matching position in I2 for seed sm in

I1. In our method, the seeds are the cross points of the reg-

ular image grid with a spacing of d pixels. Then there’s

only one seed in every d × d non-overlapping block. We

will show that this fast approximation results in a signifi-

cant speed-up with controllable accuracy.

Adopting the regular image grid, we obtain a default

neighbor system according to the spatially adjacency of the

seeds on the image grid. Like PatchMatch, neighborhood

propagation and random search is performed iteratively in

an interleaved manner after some flow initialization of each

seed (detailed in Section 3.2).

Seeds are examined in scan order on odd iterations and

in reverse scan order on even iterations. For a current seed

sm, we denote its set of spatially adjacent seed neighbors

that is already examined in current iteration as Nm. Flow

values are propagated from neighbor seeds to current seed if

they have already been examined in current iteration. That

is

f(sm) = arg min
f(si)

(C(f(si))), si ∈ {sm} ∪ Nm (1)

where C(f(·)) denote the match cost between patch cen-

tered at p(sm) in I1 and patch centered at p(sm) + f(·) in

I2. We will discuss the computation of match cost in Sec-

tion 3.3.

After the preceding propagation step, a random search

as in PatchMatch [4] is performed for the current seed sm.

We attempt to improve f(sm) by testing some candidate

flow around the current best flow. As in [4], a sequence of

random flow sampled around the current best flow f(sm)
of each seed sm is evaluated at an exponentially decreasing

scope started from a maximum search radius. The ratio α
between the two consecutive search scopes is fixed to 1/2.

Let n the number of iteration numbers. After n times of

iteration, we stop our matching process. In practice a fixed

iteration number works well.

3.2. Coarse­to­fine Scheme

Our basic matching is similar to PatchMatch [4] which

is very noisy without global regularization. Similarly, our

basic matching contains many outliers arising from the am-

biguity of small patches. A common way to handle the am-

biguity of small patches is increasing the size of the patches,

while this often leads to less accurate matches.

We introduce a simple but powerful hierarchical archi-

tecture with propagation from top to bottom to handle this

problem. First, we construct a pyramid with k levels for

both I1 and I2 with a downsampling factor η (in our exper-

iments, we fix η = 0.5). We denote the lth level of pyramid

of Ii as I li , i ∈ {1, 2}, l ∈ {0, 1, . . . , k − 1}. The bottom

level of the pyramids I01 and I02 are the raw images. Our

goal now is to find the matches of every seeds in I01 against

I02 .
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We construct seeds on each level, and we define {sl} the

seeds at position {p(sl)} on the lth level as the downscaled

version from the raw seeds in I01 , that is:

{p(sl)} = η · {p(sl−1)}, l ≥ 1 (2)

The seeds on each level preserve the same neighboring rela-

tion as the finest level, and the number of seeds is the same

on each level. Note that, in our method we do not introduce

any seed with sub-pixel accuracy. The position of the seed-

s on each level is always truncated to the nearest integers.

Then there will be some seeds with same positions on high

levels when d ∗ ηk−1 < 1. With many seeds duplicated,

the propagation with random search is performed more ex-

tensively on the coarser levels with a low resolution. This

is an important feature that can guarantee the robustness of

matching results on high levels.

After the construction of the pyramid and the generation

of the seeds in each level, we perform the propagation with

random search on each level and propagate the flow of each

seed from top to bottom on the pyramid. We first set the

flow of the seeds {sk−1} on the top level as random flow.

Then a propagation with random search within the maxi-

mum image dimension on this level is performed iterative-

ly. The obtained flow {f(sk−1)} serve as an initialization

of the seeds {sk−2} on the next level Ik−2, and likewise the

computed flow of the seeds in each level always serves as a

initialization of the seeds on the next level:

{f(sl)} =
1

η
· {f(sl+1)}, l < k − 1 (3)

For the seeds on level l < k − 1, we first initialize the

flow of the seeds from higher levels as Equation 3, and then

a propagation with random search within a small search ra-

dius is performed iteratively to obtain the flow of the seeds

on each level. We define r as the search radius of every

pyramid level except the top level which has a search radius

of the maximum image dimension.

The secret is to constrain r within a small range. This is

the most important step in processing the lower levels. The

expansive search radius on the coarsest level together with

many duplicated seeds can help us to find a rough global

optimal initialization. In contrast, on the lower levels, a s-

mall search radius around the propagated matching is very

helpful for the smoothness of the final matching. It can al-

so help us to avoid finding a poor local optimum far from

the propagated matching. While, we find that a too smal-

l search radius on lower levels is vulnerable in the case of

tiny structures with large motions. This is mainly caused by

the failure of recovering the true matching of the tiny struc-

tures which is vanished on higher levels. With a proper r,

we can find the matching of tiny structures as depicted in

Figure 4. A quantitative analysis of the impact of search

radius will be discussed in Section 4.

Figure 4. Example of our coarse-to-fine matching. Left column

shows the matching results on different levels from coarse to fine

(from top to bottom), and right column shows from top to bottom:

mean of the consecutive images, ground truth and the matching

results after outlier handling. We can see that, as the matching gets

finer, it can recover the matching of the weapon which is vanished

on higher levels. Matching correspondences are shown as small

colored patches centered at the matching points (color coded as in

[2]).

Algorithm 1: Coarse-to-fine PatchMatch Algorithm

Input: a pair of images I1, I2, a seed set S ∈ I1
Output: matching correspondences M of S
Construct the image pyramids I li and seeds {sl},

i ∈ {1, 2}, l ∈ {0, 1, . . . , k − 1}
for seeds {sl} from {sk−1} to {s0} do

if l = k − 1 then
random initialization

search within the maximum image dimension

else
initialization according to Eqn. 3

search within radius r

Outlier handling according to Sec. 3.4

3.3. Cost Computation

As an effective feature descriptor, dense SIFT flow [18]

has show prominent performance demonstrated in [18, 1,

31]. We choose our patch-based matching cost to be a sum

of the absolute difference over all the 128 dimensions of the

SIFT flow at the matching points. We use the online code to

compute the SIFT feature for every pixel on each hierarchi-

cal level1. Note that, we use the entire 128 dimensions for

matching, and the SIFT feature is computed for every pixel

on all hierarchical levels with the same patch size 8 × 8 in

our experiments.

1http://people.csail.mit.edu/celiu/SIFTflow/
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3.4. Outlier Handling

As in [3, 19, 25], a forward-backward consistency check

is performed to detect the occlusions and remove the out-

liers. While, considering the effect that the matching results

is more discriminative and also more robust on higher lev-

els, we perform the consistency check on multi levels of the

pyramid simultaneously other than the only check on the

finest level.

Similar to [1], only the validation of the matching corre-

spondences on the two finest levels is checked. With back-

ward flow interpolated from matching correspondences lin-

early, we let the error threshold ǫ of the consistency check

equal to the grid spacing d, and the coarser matches are

all upscaled to the finest resolution before the consistency

check. The matches larger than 400 pixels are also removed.

The overall procedure is summarized in Algorithm 1.

4. Experiments

In this section, we evaluate our matching method on

three optical flow datasets: MPI-Sintel [6], Middlebury [2]

and KITTI [9, 21]. To fill the gaps created by outlier han-

dling we use the EpicFlow [24] to interpolate our matching

correspondences to a dense optical flow (termed as CPM-

Flow).

We optimize the parameters of our method on a sub-

set of the training set of the MPI-Sintel dataset. Then

we use the same constant parameter settings to gener-

ate our matching results for all datasets for evaluation:

{d, r, k, n} = {3, 4, 5, 6}. This demonstrates the robust-

ness of our method. We use the online code with default

parameters used in EpicFlow[24] for interpolation2.

All algorithms were run on an Intel Core i7 3.5GHz CPU

with a single-core implementation. On average, our match-

ing method including interpolation (EpicFlow) requires on-

ly 4.3 seconds for one color image pair (1024 × 436)

from the MPI-Sintel training set. In detail, SIFT flow

computation takes 0.7s, coarse-to-fine matching (including

forward-backward consistency check) 0.6s, and interpola-

tion (EpicFlow) 3s. We can observe that 70% of the time is

spent on interpolation.

4.1. MPI­Sintel Database Experiments

MPI-Sintel dataset [6] is a challenging evaluation bench-

mark based on an animated movie and contains many large

motions. It consists of two versions: clean and final. Com-

pared to the clean version with realistic illuminations and

reflections, the final version adds rendering effects like mo-

tion, defocus blurs and atmospheric effects.

On the MPI-Sintel test set, CPM-Flow currently ranks

1st on the clean version and 2nd on the final version mea-

sured in the average endpoint error (AEE) [2]. Table 1 sum-

2http://lear.inrialpes.fr/src/epicflow/

Method AEE

All

AEE

Noc

AEE

Occ

Time

C
le

a
n

S
et

CPM-Flow 3.557 1.189 22.889 4.3s

DiscreteFlow[22] 3.567 1.108 23.626 ∼180s

FlowFields[1] 3.748 1.056 25.700 18s

EpicFlow[24] 4.115 1.360 26.595 16.4s

PH-Flow[30] 4.388 1.714 26.202 ∼800s

DeepFlow[27] 5.377 1.771 34.751 19s

PCALayers[28] 5.730 2.455 32.468 3.2s

F
in

a
l

S
et

FlowFields[1] 5.810 2.621 31.799 18s

CPM-Flow 5.960 2.990 30.177 4.3s

DiscreteFlow[22] 6.077 2.937 31.685 ∼180s

EpicFlow[24] 6.285 3.060 32.564 16.4s

TF+OFM[13] 6.727 3.388 33.929 ∼400s

Classic+NLP[26] 8.291 4.287 40.925 ∼800s

MDPFlow2[29] 8.445 4.150 43.430 ∼700s

Table 1. Results on MPI-Sintel test set. AEE-Noc (resp. AEE-

Occ) is the AEE on non-occluded areas (resp. occluded areas).

marizes the main results, and our method outperforms all

published methods on the clean version, and we just missed

the best approach by 0.15 on the final version but runs much

faster. Note that it performs especially well on the occluded

areas, thanks to the use of multi-level consistency check in

the outlier handling stage and the edge-preserving interpo-

lation.

Figure 7 shows a comparison to two state-of-the-art

methods. One using an extended coarse-to-fine scheme

(MDPFlow2 [29]) and the other is a modern method in-

terpolated from matching correspondences (EpicFlow[24]).

Similar to EpicFlow [24], CPM-Flow benefits from the in-

terpolation to produce sharp motion boundaries and correct

estimation on occluded areas. While, note how tiny struc-

tures are captured by CPM-Flow. Even small details, like

the tail of the monster in the middle column and the limbs

of the character in the right column, are captured.

Comparison of different matching methods. We

compare our matching method with some state-of-the-art

matching techniques, and also evaluate the performance of

dense optical flow interpolated from these matches (using

EpicFlow [24]).

We first compare our matching method with the fol-

lowing matching algorithms: sparse SIFT keypoints [8]

matched with FLANN [20] (referred to as SIFT-NN)3, Kd-

tree PatchMatch [10] (KPM)4 and DeepMatching [27] (D-

M)5. Considering different matching methods often produce

matches at different locations, we use a comparison method

similar to [27] for fair matching comparison. After assign-

3https://github.com/Itseez/opencv
4http://j0sh.github.io/thesis/kdtree/
5http://lear.inrialpes.fr/src/deepmatching/
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Figure 5. Comparison of different matching methods. The first

row is the mean of two consecutive images (left) and the ground

truth (right). From the second row, each row shows the matching

results (left) and the dense flow results (right) from top to bottom:

SIFT-NN [8, 20], KPM [10], DM [27] and our CPM method. The

dense flow results are all interpolated from the matching corre-

spondences using EpicFlow[24].

ing each point a fixed grid with a spacing of 10 pixels the

nearest neighbor match, density is defined as the percent-

age of points with at least one match in the neighborhood of

10 × 10, and precision is the percentage of those matches

with an error below 10 pixels.

Quantitative results are listed in Table 2, and qualitative

results in Figures 5. As we can see that, the matching results

produced by SIFT is too sparse to obtain a reasonable dense

flow after interpolation. To handle the noisiness of KPM

which is a dense NNF technique, we perform a forward-

backward consistency check before the interpolation. Note

that, our matching method can produce comparable match-

ing results with DeepMatching [27] but runs much faster.

Furthermore, as Table 2 shows, after interpolation, the ob-

tained dense flow from our matching method is more accu-

rate than that from DeepMatching.

The main reason why our CPM can outperform Deep-

Matching is that CPM can produce more matches than

DeepMatching by default. Note that DeepMatching using

the default parameters produces only about 5K matches for

one 1024 × 436 image pair, while CPM can produce about

40K matches (grid spacing d = 3). Furthermore, the final

flow is interpolated from these matches, and more match-

es are preferable under the condition of similar density and

precision. We think DeepMatching can obtain similar qual-

Method # Density Precision AEE Time

SIFT-NN[8] 1K 0.175 0.581 29.835 0.5s

KPM[10] 446K 1.000 0.595 6.961 0.4s

DM[27] 5K 0.892 0.945 3.774 15s

CPM 40K 0.886 0.975 3.617 1.3s

Table 2. Comparison of different matching methods. The “#” col-

umn refers to the average number of matches per image. AEE is

reported on the final version of the MPI-Sintel training set after in-

terpolation, and interpolation time is not included in the reported

time.
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Figure 6. Parameter sensitivity analysis. Note that, AEE is report-

ed on the final version of the MPI-Sintel training set, and interpo-

lation time is not included in the reported time.

ity as CPM if it can produce more matches by adjusting its

default parameters, but at the expense of even worse effi-

ciency.

Parameter sensitivity analysis. In order to get a bet-

ter understanding of the robustness and scalability of CPM-

Flow, we evaluate the impact of different parameter settings

of our matching approach to the flow interpolated from the

matching correspondences. After obtaining the optimized

parameters as reported in Section 4 on a subset (20%) of

the clean version training set of the MPI-Sintel dataset, we

systematically vary the parameter setting each by one and

report the AEE on the final version of the training set. Fig-

ure 6 summarizes the results.

We also report the average running time of our match-

ing method with different grid spacing d. As Figure 6(a)

shows, a small grid spacing clearly improves the perfor-

mance, which is contributed by the more extensive search

on each level of the pyramid. While a small grid spacing

leads to a high computation complexity, especially when

there is no spacing (d = 1). We find that d = 3 hardly
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Figure 7. Example of our results on MPI-Sintel. Each column shows from top to bottom: mean of two consecutive images, ground truth,

CPM-Flow and 2 state-of-the-art methods (EpicFlow [24] and MDPFlow2 [29]). CPM-Flow is able to capture thin moving objects like the

tail of the monster (middle column) and the limbs of the character (right column).

impairs the quality but leads to a significant speed-up.

Figure 6(b) studies the effect of our method with differ-

ent search radius r. We can see that with the increase of r,

the flow shows a clear trend of quality deterioration, which

is caused by the more outliers introduced by larger search

radius. While we find that a too small r(< 4) also results

in quality deterioration. This is mainly caused by that the

too small r will cause the match correspondences to be too

smooth, and make it fails to recover the matches of small

parts which is vanished on higher levels.

Next, we evaluate the effect of our hierarchical method

with different number of hierarchical levels k . As we can

see in Figure 6(c), when k = 1 (single-scale PatchMatch),

the method performs poorly, mainly caused by the local am-

biguity of patches without any guidance. As k increase, the

quality rises contributed by the propagation from high levels

which is more discriminative. This confirms the importance

of the multi-scale matching strategy. However, the quality

will be impaired by too more levels (k > 5), due to the

failure of recovering small details.

For the iteration numbers n, a larger n always leads to

a more accurate matching, while at the price of more run-

ning time. We find that after n = 6 times of iterations our

matching method has almost converged, and it obtains lim-

ited gain in accuracy with even larger n.

4.2. Middlebury Database Experiments

Middlebury dataset [2] is a classical optical flow bench-

mark. It contains complex motions for accurate optical flow

estimation, while no large displacements. On Middlebury,

our method obtains an average AEE of 0.368 and performs

slightly better than EpicFlow (0.393). Like EpicFlow [24],

the benefits of our matching method on Middlebury are lim-

ited due to the absence of large displacements.

4.3. KITTI Database Experiments

KITTI dataset [9, 21] was created from a driving platfor-

m and contains images of city streets. It contains complex

lighting conditions and large displacements. Note that the
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Method Out

Noc3

Out

All3

AEE

Noc

AEE

All

Time

PH-Flow[30] 5.76% 10.57% 1.3 2.9 800s

FlowFields[1] 5.77% 14.01% 1.4 3.5 23s

CPM-Flow 5.79% 13.70% 1.3 3.2 4.2s

NLTGV-SC[23] 5.93% 11.96% 1.6 3.8 16s∗

DiscreteFlow[22] 6.23% 16.63% 1.3 3.6 180s

DeepFlow[27] 7.22% 17.79% 1.5 5.8 17s

EpicFlow[24] 7.88% 17.08% 1.5 3.8 15s

TF+OFM[13] 10.22% 18.46% 2.0 5.0 350s

Table 3. Results on KITTI2012 test set. AEE-Noc is the AEE on

non-occluded areas. Out-Noc3 (resp. Out-All3) is the percentage

of pixels with flow error above 3 pixels on non-occluded areas

(resp. all pixels). ∗Runtime measured on a powerful GPU.

Method Fl-all Fl-bg Fl-fg Time

DiscreteFlow[22] 22.38% 21.53% 26.68% 180s

CPM-Flow 23.23% 22.32% 27.79% 4.2s

EpicFlow[24] 27.10% 25.81% 33.56% 15s

DeepFlow[27] 29.18% 27.96% 35.28% 17s

Table 4. Results on KITTI2015 test set. Fl-bg (resp. Fl-fg) is

the percentage of outliers averaged only over background regions

(resp. foreground regions).

KITTI dataset consists of two versions: KITTI2012 [9] and

KITTI2015 [21].

Table 3 compares our method to state-of-the-art method-

s that do not use epipolar geometry or stereo vison on the

KITTI2012 dataset. Note that we use the same matching

parameters for both KITTI and MPI-Sintel. Our method

clearly outperforms the original EpicFlow [24] as well as

most other methods. As can be seen, in addition to the effi-

ciency, our method just missed the best approach by 0.03%

in Out-Noc3 and performs best in terms of AEE on non-

occluded areas. We also evaluate our method on the newly

emerged KITTI2015 dataset. As Table 4 shows, our method

outperforms EpicFlow and is 40+ times faster than the 1st.

5. Conclusion

We present an efficient coarse-to-fine matching frame-

work for optical flow estimation. On the basis of the ob-

servation that the matching results is more discriminative

on higher pyramidal levels and the optical flow is smooth

spatially, we combine an efficient random search with the

coarse-to-fine scheme on a sparse image grid structure for

optical flow. The evaluation on modern datasets shows that

our approach is capable of providing highly accurate opti-

cal flow for large displacements and is more efficient than

state-of-the-art methods with similar quality. For our future

work, we are interested in the parallelization of our match-

ing framework in the GPU for real-time processing. Ex-

ploring the proposed matching framework to facilitate other

tasks is also an interesting research direction.
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