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Abstract

Egocentric cameras are being worn by an increasing

number of users, among them many security forces world-

wide. GoPro cameras already penetrated the mass market,

reporting substantial increase in sales every year. As head-

worn cameras do not capture the photographer, it may seem

that the anonymity of the photographer is preserved even

when the video is publicly distributed.

We show that camera motion, as can be computed from

the egocentric video, provides unique identity information.

The photographer can be reliably recognized from a few

seconds of video captured when walking. The proposed

method achieves more than 90% recognition accuracy in

cases where the random success rate is only 3%.

Applications can include theft prevention by locking the

camera when not worn by its rightful owner. Searching

video sharing services (e.g. YouTube) for egocentric videos

shot by a specific photographer may also become possible.

An important message in this paper is that photographers

should be aware that sharing egocentric video will compro-

mise their anonymity, even when their face is not visible.

1. Introduction

The popularity of head worn egocentric cameras is in-

creasing. GoPro reports an increase in sales of 66% every

year, and cameras are widely used by extreme sports enthu-

siasts and by law enforcement and military personnel.

Special features of egocentric video include:

• The camera is worn by the photographer, and is record-

ing while the photographer performs normal activities.

• The camera moves with the photographer’s head.

• The camera does not record images of the photogra-

pher. In spite of this we show that photographers can

often be identified.

Photographers feel secure that sharing their egocentric

videos on social media does not compromise their identity

(Fig. 1). Police forces routinely release footage of officer

a) b)
Figure 1. a) A GoPro video uploaded to YouTube allegedly cap-

turing a crime from the POV of the robber. Can the robber be rec-

ognized? b) A GoPro video uploaded by US soldiers in combat.

Are their identities safe?

activity and operations of special forces recorded by wear-

able cameras are widely published on YouTube. Some have

even recorded and published their own crimes. A conse-

quence of our work is that the photographer identity of such

videos can sometimes be found from camera motion.

Body motion is an accurate and replicable feature for

identifying people over time. It is often recorded by ac-

celerometers ([16]) or by an overlooking camera. Egocen-

tric video can effectively serve as a head mounted visual

gyroscope and can accurately capture body motion infor-

mation. It follows that any egocentric video which includes

walking contains body motion information that can accu-

rately reveal the photographer.

Specifically, we use sparse optical flow vectors (50 flow

vectors per frame) taken over a few steps (4 seconds). This

results in a set of time-series, one for each component of

each optical flow vector. In Fig 2 we show the temporal

Fourier Transform of one flow vector for three different se-

quences, showing visible differences between different pho-

tographers.

As a first approach for determining photographer iden-

tity, we computed LPC (Linear Predictive Coding 1) [3] co-

efficients for each of the optical flow time series. All LPC

coefficients of all optical flow sequences were used as a de-

scriptor. Photographer recognition using a non-linear SVM

trained on the LPC descriptor gave 81% identification accu-

1The LPC coefficients of a time series are k values that when scalar

multiplied with the last k measurements of the time series, will optimally

predict the next measurement.
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Figure 2. Comparison of the temporal frequency spectra for three

videos. Two videos were recorded using camera D1 by users A

and B, the third video was recorded by user A using camera D2. It

is readily seen that the spectra of the two videos recorded by pho-

tographer A are very similar to each other despite being recorded

by different cameras and at different times. This suggests that a

photographer’s physique is expressed in the motion observed in

his video.

racy (vs. accuracy of 3% in random) and verification EER

(Equal Error Rate) of 10%.

Our second approach learns the descriptor and classi-

fiers using a Convolutional Neural Network (CNN) which

includes layers corresponding to body motion descriptor

extraction and to recognition. The CNN is trained on the

optical-flow features described above. Using CNN im-

proves the results over the LPC coefficients, yielding 90%

identification rate (vs. accuracy of 3% in random) and veri-

fication EER (Equal Error Rate) of 8%.

The above experiments were performed on both a small

(6 person) public dataset [6] (originally collected for Ego-

centric Activity Analysis) and on a new, larger (32 person)

dataset collected by us especially for Egocentric Video Pho-

tographer Recognition (EVPR).

The ability to recognize the photographer quickly and

accurately can be important for camera theft prevention and

for forensic analysis (e.g. who committed the crime). Other

applications are web search by egocentric video photogra-

pher and organization of video collections. Wearing a mask

does not reduce recognition rate, of course.

2. Previous Work

Determination of the painter of an artwork for prevent-

ing forgery and fake artists has attracted attention for cen-

turies. Computer vision researchers have presented sev-

eral approaches for automatic artist and style classification

mainly utilizing low-level and object cues [10, 1].

Recognizing the unseen photographer of a picture is an

interesting related problem. In this setting the photographic

style [24] and the location of the photograph [8, 13] can

be used as cues for photographer recognition. Both meth-

ods are unable to distinguish between photographers using

cameras on default settings (such as most wearable cam-

eras) and at the same locations. Another approach is auto-

matic recognition of the photographer’s reflection (e.g. in

the subject’s eyes [18]), but this relies on having reflective

surfaces in the pictures.

Photographer recognition from wearable camera video is

a novel problem. Such video is jittery due to the motion of

the photographer’s head and body. Although typically a nui-

sance, we show that frame jitters can accurately determine

photographer identity.

Human body motion was already used for recognition.

Gait recognition is typically done by a video camera ob-

serving a person’s shape and dynamic walking style. These

features are able to recognize a person accurately [17]. In

our scenario, however, the photographer is not seen by the

camera which is worn on his head. Recognition from ac-

celerometers carried on the user’s body [16] is also reported.

Shiraga et al. [23] studied people recognition wearing a

backpack with stereo cameras. Rotation and period of mo-

tion were computed using 3D geometry, and users were ac-

curately recognized. Unlike all prior art, we are interested

in recognizing photographers of videos taken by standard

wearable cameras (e.g. as exist on video sharing websites),

nearly all of which are monocular, head or chest mounted.

Using optical flow for activity recognition from head-

mounted cameras has been done by [11, 19, 22, 14] and

others. Papers [20, 25] used head motion to retrieve head-

mounted camera users observed in other videos recorded at

the same time. We, on the other hand, use camera motion to

recognize the users of wearable cameras across time.

Feature design for time series data has been extensively

studied, particularly for speech recognition systems ([21]).

Speaker verification is a long standing problem which is re-

lated to this work. Linear Predictive Coding (LPC) descrip-

tors are very popular for speaker recognition [7]. We show

that an LPC-based descriptor is highly effective also for user

recognition from egocentric camera video.

In this paper we also take an end-to-end approach of

learning features along with the classifier, instead of hand

designing the features. We perform this using convolutional

neural networks (CNN). For an overview of deep networks

see [2]. Learned features are sometimes better than hand-

designed features [12].

3. Photographer Recognition from Optical

Flow

Egocentric video suffers from bouncy and unsteady mo-

tion caused by photographer head and body motion. Al-
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Figure 3. a) 50 Optical flow vectors are calculated for each frame

(only 12 shown here), and represented as two columns (each of 50

values), for the x and y optical flow components. b) The feature

vector consists of optical flow columns for 60 frames, stacked into

two 50×60 arrays, for the x and y components of the flow.
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Figure 4. Two examples of the flow feature vectors. Each feature

vector consists of 50 optical flow vectors per frame, computed for

each of 60 frames. Here only the central row, having 10 flow vec-

tors, is shown. The left and right images show the horizontal and

vertical components of the optical flow. Note the rich temporal

structure along the time axis.

though usually a nuisance, we show that this motion forms

the basis for accurate photographer recognition methods.

We present our basic features in Sec. 3.1. Two alterna-

tive descriptors and classifiers are described in Sec. 3.2 and

Sec. 3.3.

3.1. Feature Extraction

In the following sections we assume that the video

frames were pre-processed in the following way (see

Fig. 3):

1. Frames are partitioned into a small number (mx×my)

of non-overlapping blocks.

2. mx × my optical flow vectors are computed for each

frame using the Lucas Kanade algorithm [15]. We use

10×5 optical flow vectors per frame.

3. A block of T seconds of such optical flow vectors is

taken. We used T = 4 seconds, which is long enough

to include a few steps. At 15 fps this results in 60

frames.

4. Each feature vector covers a period of 4 seconds, and

we computed feature vectors every 2 seconds. There is

an overlap of 2 seconds between two successive feature

vectors.

We used optical flow features for photographer recog-

nition, rather than pixel intensities, as the body motion is

eventually expressed by the pixel motion. On the other

hand, recognition should be invariant to the specific ob-

jects seen in the environment, objects that are represented

by pixel intensities. CNNs may be able to learn optical flow

from pixel intensities, but learning this will require much

more data than we can collect.

If dense optical flow were used as a feature, the high fea-

ture dimensionality would have lead to overfitting on small

datasets. Using a smaller number of flow vectors gave re-

duced accuracy. In looking for the optimal feature size we

found out that a grid size of 10×5 optical flow vectors was

a good compromise between overfitting and accuracy.

The feature extraction process is shown in Fig 3. Visual-

ization of two extracted feature vectors is shown in Fig. 4.

Full details are in Sec. 6.3.

3.2. LPC Descriptor + Kernel SVM

LPC [3] is a popular time-series descriptor (e.g. for

speaker verification). LPC assumes the data is generated by

a physical system, here the photographer’s head and body. It

attempts to learn a linear regression model for its equations

of motion, predicting for each optical flow series the flow

value in the next frame given the flow values of previous k

frames. Given a feature vector, we calculate an LPC model

for each component of each 4s flow time series (100 mod-

els in total). Using too few coefficients yields less accurate

predictions, while too many coefficients causes overfitting.

We found k=9 to work well for our case. The final LPC de-

scriptor consisted of all coefficients of all time-series mod-

els (100×9).

An RBF-SVM classifier was used for learning both iden-

tification (classify LPC descriptor into 1 of M known pho-

tographers) and verification (classify LPC descriptor into

target photographer or rest-of-the-world). The non-linear

(RBF) classifier outperformed linear SVM in almost all

cases. As mentioned before, photographer recognition us-

ing a non-linear SVM trained on the LPC descriptor gave

81% identification rate (vs. random 3%), and the verifica-

tion EER (Equal Error Rate) was 10%.

3.3. Convolutional Neural Network

In Sec. 3.2 we described a hand-designed descriptor for

identity recognition. The LPC descriptor suffers from sev-

eral drawbacks:

• The LPC regression model is learned for each time-

series separately and ignores the dependence between

optical flow vectors.
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Figure 5. A diagram of our CNN architecture for photographer recognition from a given flow feature vector. The operations on the data

are shown on top, the sizes of subsequent data layers are shown on the bottom. The Neural Network learns the descriptor jointly with the

classifier, therefore automatically creating a descriptor optimal to this task.

• The LPC descriptor and SVM classifier are learned in-

dependently, the labels cannot directly influence the

design of the descriptor.

To overcome the above drawbacks, we propose to learn a

CNN model for photographer recognition. The CNN learns

descriptor and classifier end to end, and is able to take ad-

vantage both of dataset labels and the dependence between

features when calculating filter coefficients. The CNN is a

more general architecture, the LPC descriptor is a subset of

descriptors learnable by the network.

Due to the limited number of data points available in our

datasets, we limit our CNN to only 2 hidden layers. Us-

ing more layers increases model capacity but also increases

over-fitting, and this architecture yielded the best perfor-

mance. The architecture is illustrated in Fig. 5.

Our architecture is tailored especially for egocentric

video. As we use sparse optical flow we do not assume

much spatial invariance in the features (differently from

most image recognition tasks). On the other hand the pre-

cise temporal offset of the photographer’s actions is usually

not important, e.g. the precise time of the beginning of a

photographer’s step is less important than the time between

strides. Our architecture should therefore be temporally in-

variant. The first layer was thus designed to be convolu-

tional in time but not in space.

The kernel size spans all the blocks across the x and y

components over KT frames (we use KT = 20 which is

a little longer than the typical step duration). The convolu-

tional layer consists of M kernels (we use M = 128). The

outputs of the kernels z1m = Wm ∗ x are passed through

a ReLU non-linearity (max(z1m, 0)). We pool the outputs

substantially in time, as the feature vector is of high dimen-

sion compared to the amount of training data available. To

a) b) c)
Figure 6. The MAP rule operated on the FPIS dataset: a) Ground

truth labels. b) Raw CNN probabilities. c) MAP rule probabilities

(for T=12 seconds.). The MAP classifier visibly ’cleaned up’ the

prediction.

correspond to the typical time interval between steps we use

kernel length of 20 and stride of 15.

The data is then passed through two fully connected

(affine) layers each followed by a sigmoid non-linearity

(σ(z) = 1

1+e−z
). The first fully connected hidden layer

has N1 hidden nodes (we used N1 = 128). The output of

this layer is the learned CNN descriptor.

The second fully connected layer is a linear soft-max

classifier and has the same number of nodes as the num-

ber of output classes: 2 classes for verification, and 20 or

32 classes for identification.

3.4. Joint Prediction from Several Descriptors

Sec. 3.2 and Sec. 3.3 described a method to train a

photographer classifier on a short (4 seconds) video se-

quence. The video used for recognition is usually signifi-

cantly longer than 4 seconds.

We split the video into 4 second subsequences (over-

lapping by 2 seconds) and extract their feature vectors Vt

(t is the subsequence number). We compute the iden-

tity label (Lt) probability distribution for each feature

vector Vt using LPC or CNN classifiers trained as de-
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Figure 7. Classification accuracy vs. video length when one fea-

ture vector covers T = 4 seconds (Using CNN on the FPSI

Dataset). Longer video allows extraction of more feature vectors.

MAP classification consistently beats mode classification. Both

methods can exploit longer sequences and thus improve on 4s se-

quence recognition. All methods perform far better than random.

scribed above, We then classify the entire video into the

globally most likely label, argmaxi

∏
t P (Lt = i|Vt) =

argmaxi

∑
t log(P (Lt = i|Vt)). While this classifier as-

sumes that feature vectors are IID, we have found that this

requirement is not necessary for the success of the method.

See Fig. 6 for an example on the FPIS dataset. MAP clas-

sification has helped boost the recognition performance on

the EVPR dataset to around 90% (an increase of 13%) over

the 4s rate.

4. Results

Several experiments were performed to evaluate the ef-

fectiveness of our method. As there is no standard dataset

for Egocentric Video Photographer Recognition, we use

both a small (6 person) public dataset - FPSI [6] that was

originally collected for egocentric activity analysis. For

each photographer - morning sequences were used for train-

ing, and afternoon sequences for testing.

In order to evaluate our method under more principled

settings, we collected a new larger (32 person) dataset -

EVPR - specifically designed for egocentric photographer

video recognition. In the EVPR dataset all photographers

recorded two 7 minute sequences (from which we extracted

around 200 four second sequences each) on the same day

with different head-mounted cameras (D1,D2) for training

and testing. 20 of the photographers also recorded another

7 minute sequence with yet another camera (D3) a week

later. Both datasets are described in detail in Sec. 6.1. The

detailed experimental protocol is described in Sec. 6.2.

4.1. Photographer Identification

Fig. 7 presents the photographer recognition test perfor-

mance of our network on the FPSI database (6 people). The

average correct recognition rate on a single feature vector

(describing only 4 seconds of video) is 76% against the ran-

dom performance of 16.6%.

Figure 8. CMC rates for same day recognition (for 12s sequences).

LPC accuracy: 81% (Top-1) and 88% (Top-2). The CNN further

improves the performance with 90% (Top-1) and 93% (Top-2).

Both methods far outperform the random rate of 3% (Top-1) and

6% (Top-2). Both descriptors also beat the raw features by a large

margin.

Figure 9. CMC rates for recognition 1 week later (for 12s se-

quences). LPC accuracy: 76% (Top-1) and 86% (Top-2). The

CNN further improves the performance with 91% (Top-1) and

96% (Top-2). Both methods far outperform the random rate of

5% (Top-1) and 10% (Top-2). Both descriptors also beat the raw

features by a large margin.

Test videos are usually longer than 4 seconds, and we

have multiple feature vectors for each person. We com-

bine predictions over a longer video using the MAP rule in

Sec. 3.4. In Fig. 7 we compare the MAP strategy vs. taking

the most frequent 4s prediction in the test video (Mode). We

observe that using longer sequences further improves recog-

nition performance, reaching around 91% accuracy for 50

seconds of video. We also observe that MAP classifiers

consistently beats the Mode classifier and use it in all other

experiments.

To evaluate the recognition performance on a larger

dataset, we show the performance of our method on our new

dataset - EVPR. In this experiment the network was trained

on video sequences for each photographer using Camera D1

and is evaluated on video sequences recorded on the same

day using Camera D2 and a week later recorded using Cam-

era D3. In Fig. 8 and Fig. 9 we present the cumulative match

curve (CMC) for the same day and week later recognition

results respectively. We use the Top-k notion, indicating

that the correct result appeared within the top k predictions
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No Stab Stab

Descriptor 4s 12s 4s 12s

LPC 65% 81% 59% 72%

CNN 77% 90% 71% 86%
Table 1. Same-day CSMC recognition accuracy with and without

stabilization.

of the classifier. In addition to LPC and CNN, an RBF-SVM

trained on the raw optical flow features is used as baseline to

evaluate the quality of our descriptors. High accuracy was

achieved in both scenarios, same day CNN recognition ac-

curacy is 90% (top 1) and 93% (top 2). The recognition per-

formance a week later is better with 91% (top 1) and 96%

(top 2). The improved performance numbers a week later

are expected due to the smaller dataset size (20 vs 32), but

are nonetheless encouraging as many photographers wore

different shoes from the D1 training sequence recorded a

week before. This result shows that our method can obtain

good recognition performance on meaningful numbers of

photographers and across at least a week.

To test the possibility that stabilization would take away

some or all the body motion information in the frame mo-

tions, the identification experiments were redone with the

following pre-processing stage: for each frame (50 flow

vectors) the mean framewise vector was calculated and then

subtracted from each of the vectors in the frame. As motion

between frames is small and some lens distortion correc-

tion was performed, this is similar to 2D stabilization. Ta-

ble. 1 shows that such ”stabilization” degrades performance

somewhat (4-9%), but accuracy still remains fairly high. We

note however that more complex stabilization might remove

more body motion information.

4.2. Photographer Verification

We also test the verification performance obtained by our

method. In order to evaluate verification performance by a

single number it is common to use the Equal Error Rate

(EER), the error rate at which the False Acceptance Rate

(FAR) and False Rejection Rate are equal.

The EER for both the CNN and LPC descriptors for

videos of length 4s (one feature vector) and 12s (five fea-

ture vectors) is presented in Table. 2 while the ROC curves

are shown in Fig. 10. A detailed description of our proto-

col can be found in Sec. 6. It can be seen from our results

that high accuracy (low EER) can be obtained by both de-

scriptors: LPC 14% (4s), 10% (12s) and CNN 11% (4s),

8% (12s). The CNN obtains better performance for both

durations with a larger improvement for 4s.

It should be noted that all test probe photographers apart

from the target photographer had never been used in train-

ing. By focusing on modeling the target photographer we

can separate him from the rest of the world, and are thus

able to generalize to unseen test photographers.

Descriptor 4s 12s

LPC 13.6% 9.6%

CNN 11.3% 8.1%
Table 2. Verification equal error rates for LPC and CNN descrip-

tors with 4s and 12s sequence duration.

Figure 10. ROC curves for the verification performance of our

method for LPC and CNN descriptors of 4s and 12s sequences.

For both methods we show the mean ROC curve. The EER of

each method is given by the point of intersection between the lin-

ear line and its ROC curve.

Horizontal flow component Vertical flow component

−
→

x

−→ t −→ t
Figure 11. Examples of a temporal filter for the horizontal (left)

and vertical (right) flow components. Horizontal axis is time, and

vertical axis is location along the central line. The horizontal com-

ponent filter appears to be sensitive for certain left-right frequen-

cies, while the vertical component filter is sensitive to oscillating

rotations: When the right side is moving up the left side is moving

down, etc.

5. Discussion

Analysis of CNN features: In order to analyze the fea-

tures learned by the CNN we visualize the filters learned

by the first layer. Fig. 11 shows the horizontal and veriti-

cal components of a first layer temporal filter learned by the

network. For illustration purposes, only the weights of the

central line of pixels are shown. Looking at the weights, we

see that the horizontal component filter is tuned to respond

to some specific frequencies, while the vertical component

looks for sharp rotations. This behavior appears in several

other filters suggesting that the network might be using both

spectral and transitive cues.

Transfer Learning for verification: In some scenarios

it may not be possible to train a verification classifier for

each photographer. In such cases Nearest Neighbors may

be a good alternative. The following approach is taken: An
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a) b) c)
Figure 12. Common failure cases for the 4-second descriptor: a-b)

Sharp turns of the head result in atypical fast motions, sometimes

causing motion blur. c) Large moving objects can also cause atyp-

ical optical flow patterns.

identification CNN is trained on half the photographers in

the training dataset. We choose a video by a target pho-

tographer (that was not used for training the CNN), and ex-

tract its CNN descriptors (as in Sec. 3.3), this set of descrip-

tors forms our gallery. Similarly we extract CNN descrip-

tors from all video sequences of photographers not used

for training the CNN, this forms our probe set (excluding

the sequence used as gallery). For each probe descriptor

we check if the euclidean distance from its nearest neigh-

bor in the gallery is smaller than some threshold, and if so

we classify it as the target photographer. We used Cam-

era D1 sequences for training and D2 sequences for test.

16 randomly selected photographers were used for training

the CNN, and the rest for verification. The same procedure

was carried out for LPC (without training a CNN). Multiple

4s sequence predictions are aggregated using simple voting.

The average EER for 12s sequences was 15.5% (CNN) and

22%(LPC). Although less accurate than trained classifiers,

this shows the network learns to identity features that are

general and can be transferred to identify unseen photogra-

phers. Nearest Neighbors classification on the optical flow

raw features yielded very low performance in accordance

with the findings of [20, 25].

Verification on FPSI: We tried learning verification clas-

sifiers by choosing one photographer from the FPSI dataset

as target, and 4 other photographers as negative training

data. The morning sequences of the target photographer

were used for training and the afternoon for testing. We

tested the classification performance between the afternoon

sequences of the target photographer and the remaining 6th

non-target photographer from the FPSI dataset. The net-

work however, fit to the train non-target photographers and

has not been able to generalize to the unseen probe pho-

tographer. We therefore conclude that a significant number

of photographers (such as present in the EVPR dataset) is

required for training a verification classifier.

Failure cases: In Fig. 12 several cases are shown where

the 4 second descriptor failed to give correct recognition.

Failure can be caused by sharp head movements (some-

times causing significant blur), by large moving objects, or

by lack of features for optical flow computation. It is likely

that by identifying such cases and removing their descrip-

tors, higher recognition performance may be achieved.

6. Experimental Procedure

In this section we give a detailed description of the ex-

perimental procedure used in Sec. 4.

6.1. Dataset Description

Two datasets were used for evaluation: a public general

purpose dataset (FPSI) and a larger dataset (EVPR) col-

lected by us to overcome some of the weaknesses of FPSI.

6.1.1 FPSI Dataset

The First-Person Social Interactions (FPSI) dataset was col-

lected by Fathi et al. [6] for the purpose of activity analysis.

6 individuals (5 males, 1 female) recorded a day’s worth

of egocentric video each using head-worn GoPro cameras.

Due to battery and memory limitations of the camera, the

photographers occasionally took the cameras off and put

them on again, ensuring that camera extrinsic parameters

were not kept constant.

In this work we learn to recognize video photographers

while walking, rather than sitting or standing. We therefore

extracted the walking portions of each video using manual

labels. It is possible to use a classifier such as described in

[19] to find the walking intervals.

6.1.2 EVPR Dataset

The FPSI dataset suffers from several drawbacks: it con-

tains video only for a small number of photographers (6)

and each photographer wears the same hat and camera all

the time. It is therefore conceivable that learning camera

parameters can help recognition. To overcome these issues

we collected a larger dataset - Egocentric Video Photogra-

pher Recognition (EVPR).

The EVPR consists of head-mounted video sequences

collected from 32 photographers. Each video sequence was

recorded with a GoPro camera attached to a baseball cap

worn on the photographer’s head (as in Fig. 13). Each pho-

tographer was asked to walk normally for around 7 min-

utes along the same road. All photographers recorded two 7

minute video sequences on a single day using two different

cameras (and caps). 20 photographers also recorded another

sequence a week later. The use of different cameras for

different sequences came to ensure that motion rather than

camera calibration is learned. No effort was made to ensure

that the same shoes would be used on both days (and in fact

several persons had changed shoes between sequences).

6.2. Evaluation Protocol

6.2.1 Photographer Identification

Photographer identification sets to recognize a photogra-

pher from a closed set of M candidates. For this task it

is assumed that we have training data from all subjects.
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Figure 13. The apparatus used to record the EVPR dataset.

We tested our method both on the FPSI the EVPR

datasets. In the FPSI dataset we used for each individual

the first 80% of sequences (taken in the morning) for train-

ing, and the last 20% sequences recorded in the afternoon

for testing. This is done to reduce overfitting to a particular

time or camera setup. Data were randomly sub-sampled to

ensure equal number of examples for each photographer in

both training and testing sets. The results are described in

Sec. 4.

For the EVPR dataset we used sequences from Camera

D1 for training. For testing we use both sequences from

Camera D2 (taken on the same day) and Camera D3 (taken

a week later, when available). The results on each camera

are compared to analyze whether recognition performance

degrades within a week.

6.2.2 Photographer Verification

Given a target photographer with a few minutes of train-

ing data, and negative training examples by other non-target

photographers, we verify whether a probe test video se-

quence was recorded by the target photographer. Recogni-

tion on longer sequences is done by combining the predic-

tions from subsequent short sequences. As the FPSI dataset

contains only 6 photographers it was not suitable for this

task (this was elaborated upon in Sec. 5) therefore only the

EVPR dataset was used for evaluating performance on this

task. For each of 32 photographers: i) photographer is des-

ignated target ii) we selected sequences of the target photog-

rapher and 15 non-target photographers (randomly selected)

for training a binary classifier. All training sequences were

7 minutes (200 descriptors) long and were recorded by cam-

era D1. iii) Another sequence recorded by the target pho-

tographer and the remaining 16 participants that were not

used for training, were used to test the classifier. Test se-

quences were recorded by camera D2. iv) The ROC curve

and EER ware computed. Average EER and ROC for all

photographers is finally obtained. As each sequence con-

tained about 200 descriptors this formed a significant test

set. Care was taken to ensure that all photographers (apart

from the target) would appear in the training or test datasets

but not in both. This was done to ensure we did not overfit

to specific non-target photographers. We replicated positive

training examples to ensure equal numbers of negative and

positive training and test data.

6.3. Implementation Details

Features: In all experiments the optical flow grid size

used was 10×5. In the CNN experiments, all optical flow

values were divided by the square-root of their absolute

value, this was found to help performance by decreasing the

significance of extreme values. Feature vectors of length 60

frames at 15 fps (4s) were used. Feature vectors were ex-

tracted every 2s (with a 2s overlap).

Normalization: We followed the standard practice - For

the LPC descriptor, all feature vectors were mean and vari-

ance normalized across the training set before being used

by the SVM. For the CNN, feature vectors were mean sub-

tracted before being input to the CNN.

Training: The SVM was trained using LIBSVM [4]. We

used σ = 1e − 4 and C = 1 for LPC, C = 10 for the

raw features. The CNN was trained by AdaGrad [5] with

learning rate 0.01 on a GPU using the Caffe [9] package.

The mini-batch size was 200.

7. Conclusion

A method to recognize the photographer of head-worn

egocentric camera video has been presented. We show that

photographer identity can be found from body motion in-

formation as expressed in camera motion when walking.

Recognition was done with both physically motivated hand

designed descriptors, and with a Convolutional Neural Net-

work. Both methods gave good recognition performance.

The CNN classifier was shown to generalize and improve

on the LPC hand-designed descriptor.

The time-invariant CNN architecture presented here is

quite general and can be used for other video classification

tasks relying on coarse optical flow.

We have tested the effects of simple 2D video stabiliza-

tion on classification accuracy, and found only slight degra-

dation in performance. It is possible that more elaborate

stabilization would have a greater effect.

The implication of our work is that photographers’ head-

worn egocentric videos give much information away. This

information can be used benevolently (e.g. camera theft

prevention, user analytics on video sharing websites) or ma-

liciously. Care should therefore be taken when sharing such

video.
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