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Abstract

We present a modality hallucination architecture for

training an RGB object detection model which incorpo-

rates depth side information at training time. Our con-

volutional hallucination network learns a new and com-

plementary RGB image representation which is taught to

mimic convolutional mid-level features from a depth net-

work. At test time images are processed jointly through

the RGB and hallucination networks to produce improved

detection performance. Thus, our method transfers infor-

mation commonly extracted from depth training data to a

network which can extract that information from the RGB

counterpart. We present results on the standard NYUDv2

dataset and report improvement on the RGB detection task.

1. Introduction

RGB and depth images offer different and often com-

plementary information. In fact, recent work has shown

that the two image modalities can be used simultaneously

to produce better recognition models than either modality

alone [15, 36, 35]. While RGB image capturing devices are

pervasive, depth capturing devices are much less prevalent.

This means that many recognition models will need to per-

form well on RGB images alone as input. We present an

algorithm which uses available paired RGB-d training data

to learn to hallucinate mid-level convolutional features from

an RGB image. We demonstrate that through our approach

we produce a novel convolutional network model which op-

erates over only the single RGB modality input, but out-

performs the standard network which only trains on RGB

images. Thus, our method transfers information commonly

extracted from depth training data to a network which can

extract that information from the RGB counterpart.

Convolutional networks (ConvNets) have produced

tremendous success on visual recognition tasks, from clas-

sification [21, 28, 31], to detection [11, 25], to semantic

segmentation [24, 39]. The standard approach for training

these networks is to initialize the network parameters us-

Figure 1: Training our modality hallucination architecture.

We learn a multimodal Fast R-CNN [10] convolutional net-

work for object detection. Our hallucination branch is

trained to take an RGB input image and mimic the depth

mid-level activations. The whole architecture is jointly

trained with the bounding box labels and the standard soft-

max cross-entropy loss.

ing a large labeled image corpra (ex: ImageNet [6]) and

then fine-tune using the smaller target labeled data sources.

While this strategy has been proven to be very effective, it

offers only one technique for learning representations for

recognition and due to the large parameter space of the net-

work, runs the risk of overfitting to the nuances of the small

RGB dataset.

We propose an additional representation learning algo-

rithm which incorporates side information in the form of

an additional image modality at training time to produce a

more informed test time single modality model. We accom-

plish this by directly learning a modality hallucination net-

work which optimizes over the standard class and bounding

box localization losses while being guided by an additional

hallucination loss which regresses the hallucination features
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to the auxiliary modality features.

Due to its practicality, we consider the case of producing

an RGB detector using some paired RGB-D data at training

time. In doing so, we produce a final model which at test

time only sees an RGB image, but is able to extract both

the image features learned through finetuning with standard

supervised losses as well as the hallucinated features which

have been trained to mirror those features you would ex-

tract if a depth image were present. We demonstrate that

our RGB with hallucination detector model outperforms the

state-of-the-art RGB model on the NYUD2 dataset.

2. Related Work

We use depth side information at training time to transfer

information through a new representation to our test time

RGB model.

RGB-D Detection. Depth and RGB modalities often

offer complementary information. Prior work has made

use of this fact by producing detectors which take as in-

put paired RGB and depth modalities to improve detec-

tion performance over the RGB only model. Many of

these methods do so by introducing new depth representa-

tions [19, 29, 32, 38, 36], most recently by adding an ad-

ditional depth network representation into a convolutional

network architecture [15, 14, 35]. Our work is inspired by

these approaches, which successfully learn complementary

depth feature representations. We learn such representa-

tions at training time and learn to transfer information from

the depth representation to an RGB only model through

modality hallucination.

Transfer Learning. Our work is related to transfer

learning and domain adaptation which learns to share in-

formation from one task to another. Classifical approaches

consider learning to adapt across distributions, through

some combination of parameter updates [2, 7, 18] and trans-

formation learning [22, 12]. Christoudias et al. [5] learned a

mapping to hallucinate a missing modality at training time,

but was only shown with weak recognition models. Along

these lines a transformation learning approach was recently

introduced to use depth information at training time to in-

form RGB test time detection by learning transformations

into a common feature representation across modalities [4].

In contrast to our approach, this paper learned a single rep-

resentation for the joint modality space, while our work fo-

cuses on learning an additional RGB representation which

is informed during training by the depth data. Such modal-

ity hallucination was explored in [30], which introduced a

fusion approach which was able to fill in a missing modal-

ity.

Learning using side information. Our problem can

also be viewed from the learning with side or priviledged

information perspective. This is when a learning algorithm

has additional knowledge at training time, whether meta

data or in our case an additional modality. One then uses

this extra information to inform training of a stronger model

than could be produced otherwise. The theoretical frame-

work was explored in [34] and a max-margin framework

for learning with side-information in the form of bound-

ing boxes, image tags, and attributes was examined in [26],

while Shrivastava and Gupta [27] showed how surface nor-

mals at training time could produce detection improvement

within the DPM framework.

Network transfer through distillation. Most related to

our work is the concept of network distillation and its exten-

sions. Hinton et al. [17] and concurrently Ba et al. [3] in-

troduced the idea of model compression and fast transfer of

information from one convolutional network to another. Es-

sentially, the output from one network is used as the target

probability distribution for a new network. This was shown

to reduce training time of a new network and in some cases

reduce the number of parameters needed in order to achieve

equivalent performance. This approach was further applied

for transfering task correlation across domains [33]. Wang

et al. [37] transfered information across networks without

labels by used a ranking loss across video frames to learn

a deep representation which mapped patches from the same

track closer together than patches from distinct tracks.

Our approach can also be seen as using distillation to

learn representations on RGB images by transferring super-

vision from paired depth images, but we employ joint train-

ing instead of staged training as was used in [16] for super-

vision transfer. In contrast to [16], our focus is different, we

are studying the problem of enriching RGB representations

using depth as side information. We show the result that

learning representations using depth as side information in

this manner can lead to representation which when used in

conjunction with representations learned on ImageNet lead

to boosts in performance for recognition tasks like object

detection.

3. Modality Hallucination Model

We present a modality hallucination architecture for

training an RGB object detection model which incorporates

depth side information at training time. Our hallucination

network learns a new and complementary RGB image rep-

resentation which is trained to mimic depth mid-level fea-

tures. This new representation is combined with the RGB

image representation learned through standard fine-tuning.

3.1. Architecture Definition

Figure 1 illustrates the training architecture for our hallu-

cination model. We use multi-layer convolutional networks

(ConvNets) as our base recognition architecture which have

been shown to be very effective for many different recogni-

tion tasks. Prior work on RGB-D detection [15] has found

success using a two channel model where RGB and depth
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Figure 2: Test time modality hallucination architecture.

images are processed independently with a final detection

score being the softmax of the average of both predictions.

For our architecture we build off of this same general

model. However, we seek to share information between

the two modalities and in particular to use the training time

privileged depth modality to inform our final RGB only de-

tector. To accomplish this, we introduce a third channel

which we call the hallucination network (blue network in

Figure 1). The hallucination network takes as input an RGB

image and a set of regions of interest and produces detection

scores for each category and for each region.

To cause the depth modality to share information with

the RGB modality through this hallucination network, we

add a regression loss between paired hallucination and

depth layers. This choice is inspired by prior work which

uses similar techniques for model distillation [17], task cor-

relation transfer across domains [33], and supervision trans-

fer from a well labeled modality to one with limited la-

bels [16]. Essentially, this loss guides the hallucination net-

work to extract features from an RGB image which mimic

the responses extracted from the corresponding depth im-

age. We will discuss the details of this loss and its optimiza-

tion in the next section. It is important that the hallucination

network has parameters independent of both the RGB and

depth networks as we want the hallucination network acti-

vations to match the corresponding depth mid-level activa-

tions, however we do not want the feature extraction to be

identical to the depth network as the inputs are RGB im-

ages for the hallucination network and depth images for the

depth network.

At test time, given only an RGB image and regions of

interest, we pass our image through both the RGB network

and the hallucination network to produce two scores per cat-

egory, per region, which we average and take the softmax to

produce our final predictions (see Figure 2).

3.2. Architecture Optimization

In this section we describe the implementation and opti-

mization details for our architecture. At training time we

assume access to paired RGB and depth images and re-

gions of interest within the image. We train our model one

set of paired images at a time using the Fast R-CNN [10]

framework. The RGB and depth network are independently

trained using the Fast R-CNN algorithm with the correspond-

ing image input. Next, the hallucination network parame-

ters are intialized with the learned depth network weights

before joint training of the three channel network. The

choice of initialization for the hallucination parameters is

explored in Section 4.1.1. Note, that finetuning of the hal-

lucination network with only a softmax loss on the label

space would be equivalent to the training procedure of the

RGB network. To faciliate transfer we must use an addi-

tional objective by introducing a hallucination loss.

Hallucination Loss. We add the objective that activations

after some layer, ℓ, should be similar between the hallucina-

tion and depth networks. In particular, we add a euclidean

loss between the depth activations AdNet
ℓ

and the hallucina-

tion activations AhNet
ℓ

so that the hallucination loss for the

given layer is defined as:

Lhallucinate(ℓ) = ‖σ(AdNet
ℓ )− σ(AhNet

ℓ )‖2
2

(1)

where σ(x) = 1/(1 + e−x) is the sigmoid function.

This loss can be applied after any layer in the network

and can be optimized directly. However, we are trying to

learn an asymmetric transfer of information, namely we

seek to inform our RGB hallucination model using the pre-

learned depth feature extraction network. Therefore, we set

the learning rates of all layers lower than the hallucination

loss in the depth network to zero. This effectively freezes

the depth extractor up to and including layer ℓ so that the

target depth activations are not modified through backprop-

agation of the hallucination loss.

Multi-task Optmization The full training of our model

requires balancing multiple losses. More precisely we have

11 total losses, 5 softmax cross-entropy losses using bound-

ing box labels as targets, 5 Smooth L1 losses [10] using

the bounding box coordinates as the targets, and one ad-

ditional hallucination loss which matches midlevel activa-

tions from the hallucination branch to those from the depth

branch. The 5 standard supervision and 5 bounding box re-

gression losses operate over each of the three subnetworks,

RGB, depth, hallucination, indepdently so that each learns

weights that are useful for then final task. We then have 2

joint losses over the average of the final layer activations

from both the RGB-depth branches and from the RGB-
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hallucination branches. These losses encourage the paired

networks to learn complementary scoring functions.

For a given network, N, let us denote the softmax cross-

entropy loss over category labels as LN
cls and the Smooth L1

loss over bounding box coordinate regression as LN
loc. Then,

the total joint loss of our optimization can be described as

follows:

L = γLhallucinate (2)

+α
[

LdNet
loc + LrNet

loc + LhNet
loc + LrdNet

loc + LrhNet
loc

]

+β
[

LdNet
cls + LrNet

cls + LhNet
cls + LrdNet

cls + LrhNet
cls

]

Balancing these objective is an important part of our joint

optimization. For simplicity, we choose to weight all local-

ization losses equivalently and all category losses equiva-

lently. This leaves us with three parameters to set, denoted

above as α, β, and γ.

We set the category loss weights, β = 1.0, and then let

the localization weights be a factor of 2 smaller, α = 0.5.

Finally, to set the hallucination loss weight will depend on

the approximate scale of the loss function. This will vary

based on the layer at which the hallucination loss is added.

For lower layers in the network, the loss tends to be larger.

Thus, a smaller value for γ would make sense to avoid

the hallucination loss dominating the other objectives. We

therefore use a heuristic that the contribution of the halluci-

nation loss should be around 10 times the size of the con-

tribution from any of the other losses. For example, if the

contribution from a category loss is about 0.5, then the con-

tribution from the hallucination loss should be around 5. In

practice, one can determine this by running a few iterations

of training and examining the losses.

Gradient Clipping In developing our model, we found

that the optimization could be suceptible to outliers causing

large varitions in gradient magnitudes for the hallucination

loss. One potential way to address this issue would be to set

the loss weight very low on the hallucintation loss so that

even when a large gradient appears the network optimiza-

tion does not diverge. However, this will limit the effective-

ness of the hallucination loss.

Instead, we have found that a more robust way to train

with this euclidean loss is to use gradient clipping. This

simply means that when the total gradient (in terms of ℓ2
norm) in the network exceeds some threshold, T , all gra-

dients are scaled by T / (total norm). Thus, the effective

contribution of an outlier example is reduced since the large

gradients will be scaled down to the standard range. This

approach is simple and already implemented in many stan-

dard deep learning packages (ex: it involves a single line

change in the Caffe [20] solver file).

4. Experiments

We evaluate our model using a standard RGB-D detec-

tion dataset, NYUD2 [38]. The NYUD2 dataset consists

of 1449 labeled RGB-D images. The dataset is split into

train (381 images), val (414 images), and test (654 images)

sets. For our ablation experiments we train our model using

the train set only and evaluate our model on the validation

set. For our overall detection experiment which compares

to prior work, we present results on the test set for our algo-

rithm trained using the combined trainval set.

Base Network. For the following experiments our base

network architecture (used for each of the RGB, depth and

hallucination networks), is the single scale Fast R-CNN mod-

ification to the AlexNet [21] architecture or the VGG-1024

architecture introduced in [10] as a lower memory modifi-

cation of VGG [28]. The RGB AlexNet network is initial-

ized with the CaffeNet [20] released weights, which were

learned using ILSVRC12 [6] and the RGB VGG-1024 net-

work was intialized with the weights released with Fast

R-CNN [10]. We then finetune our RGB network on the

NYUD2 dataset. We represent the depth images using the

HHA encoding introduced by Gupta et al. [15] and inde-

pendently finetune the depth network after initializing with

the RGB weights.

Region Proposals. A Fast R-CNN architecture takes as

input an image and its corresponding regions of interest. To

compute these regions of interest we use two different re-

gion proposal algorithms. For the NYUD2 dataset we use

multiscale combinatorial grouping (MCG) [1], which has

been used in the past for this dataset as it is capable of

incorporating depth information into the proposal mecha-

nism. We use the RGB-D version of MCG for training all

networks and then use the RGB version at test time. We

found this to work better than using RGB MCG for both

training and testing by about 1-2%.

SGD Hyper-parameters. We optimize our network us-

ing the Caffe [20] learning framework. We use a base learn-

ing rate of 0.001 and allow all layers of the three channel

network to update with the same learning rate, with the ex-

ception of the depth network layers below the hallucination

loss, which are frozen. We use a momentum of 0.9 and a

weight decay of 0.0005. We optimize our ablation experi-

ments for 40K iterations and our full NYUD2 experiment

for 60K iterations1 using a step learning rate policy where

the base learning rate is lowered by a factor of 10 (γ = 0.1)

every 30K iterations. Finally, we clip gradients when the L2

norm of the network gradients exceeds 10.

1Note that for one of the initial RGB AlexNet models we use the

weights released with [16] which was only trained for 40K iterations. We

also note that in our experience training the RGB only AlexNet baseline

model for more than 40K iterations did not provide any benefit as it does

for the joint hallucination model and for the VGG-1024 architecture.
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method btub bed bshelf box chair counter desk door dresser gbin lamp monitor nstand pillow sink sofa table tv toilet mAP

RGB only [10] (A) 7.5 50.6 36.8 1.4 30.2 34.9 10.8 21.5 27.8 16.9 26.0 32.6 20.6 25.1 31.6 36.7 14.8 25.1 54.6 26.6

RGB ensemble (A-A) 10.5 53.7 33.6 1.6 32.0 34.8 12.2 20.8 34.5 19.6 28.6 45.7 28.5 24.4 31.4 34.7 14.5 34.0 56.1 29.0

Our Net (A-RGB, A-H) 13.9 56.1 34.4 1.9 32.9 40.5 12.9 22.6 37.4 22.0 28.9 46.2 31.9 22.9 34.2 34.2 19.4 33.2 53.6 30.5

RGB only [10] (V) 15.6 59.4 38.2 1.9 33.8 36.3 12.1 24.5 31.6 18.6 25.5 46.5 30.1 20.6 30.3 40.5 19.5 37.8 45.7 29.9

RGB ensemble (A-V) 14.8 60.4 43.1 2.1 36.4 40.7 13.3 27.1 35.5 20.8 29.9 52.9 33.5 26.2 33.0 44.4 19.9 36.7 50.2 32.7

Our Net (A-RGB, V-H) 16.8 62.3 41.8 2.1 37.3 43.4 15.4 24.4 39.1 22.4 30.3 46.6 30.9 27.0 42.9 46.2 22.2 34.1 60.4 34.0

Table 1: Detection (AP%) on NYUD2 test set: We compare our performance (pool5 hallucinate) against a Fast R-CNN [10] RGB

detector trained on NYUD2 and against an ensemble of Fast R-CNN RGB detectors. AlexNet [21] architecture is denoted as ‘A’ and VGG-

1024 [10, 28] architecture is denoted as ‘V’. Our method outperforms both the RGB-only baselines and the RGB ensemble baselines.

4.1. NYUD2 Detection Evalutation

Table 1 reports performance of our full system with two

different architecture on the NYUD2 dataset. The two base

architectures are either AlexNet (indicated as ‘A’) [21] or

VGG-1024 (indicated as ‘V’) [10, 28]. We train our ini-

tial RGB and depth networks using the strategy proposed

in [15], but use Fast R-CNN instead of RCNN as used in

[15]. We then initialize our hallucination network using the

depth parameter values. Finally, we jointly optimize the

three channel network structure with a hallucination loss on

the pool5 activations. When our hallucination network is la-

beled with a particular architecture this refers to the choice

of the depth network and the hallucination network archi-

tecture and the RGB architecture is chosen and indicated

separately. In the next two sections we explore our choice

of initialization and at which layer to add a hallucination

loss.

For each architecture choice we first compare against the

corresponding RGB only Fast R-CNN model and find that

our hallucination network outperforms this baseline, with

30.5 mAP vs 26.6 mAP for the AlexNet architecture and

34.0 mAP vs 29.9 mAP for the VGG-1024 architecture.

Note that for our joint AlexNet method, A-RGB + A-H,

we average the APs of the joint model using each of the

AlexNet RGB baseline models. As an additional reference,

the state-of-the-art performance of RGB-D detection algo-

rithms on NYUD2 is 41.2 mAP [14], 44.4 mAP [15] when

run with Fast R-CNN [10] and 47.1 mAP [16]. However,

these algorithms operate in the privileged regime with ac-

cess to depth at test time, thus they are able to achieve the

highest overall performance.

It is well known that ensemble methods tend to outper-

form the single model approach. For example, an ensemble

of two ConvNets each initialized randomly and then trained

using the same data source, outperforms either model inde-

pendently [13]. Since our method is the combination of an

RGB model trained using a standard supervised approach

and an RGB model trained using our depth halluciation

technique, we additionally compare our approach to an en-

semble of standard trained RGB models. Table 1 reports the

performance both for an ensemble of two different AlexNet

RGB models, the weights for which were randomly initial-

ized with different seeds before being pre-trained with Im-

ageNet [6], and for an ensemble of an AlexNet RGB model

with a VGG-1024 RGB model. We find in both cases that

the RGB ensemble improves performance over the single

RGB model, while our hallucination model offers the high-

est performance overall, with 14/19 categories improving

for the AlexNet comparisons to ensemble and 13/19 cate-

gories improving for the VGG-1024 hallucination net com-

parisons to ensemble. This suggests that our hallucination

model offers more benefit than a simple RGB ensemble.

While our method hallucinates mid-level depth features,

other work has proposed hallucinating the pixel level depth

from an RGB image. As an additional baseline, we have

taken a state-of-the-art depth estimation approach [23] and

used the model to produce hallucinated depth images at test

time which can be used as input to the depth channel of

our pre-trained RGB-D detector. However, doing this per-

formed worse than using our RGB model alone (22% mAP

vs 27% mAP) so we have ommitted the results from Table 1.

Note that we do not fine-tune our detection model using the

depth pixel hallucinations and thus a drop in performance

is likely due, at least in part, to the mismatch between the

true depth used at training time and the hallucinated depth

images used at test time. We refer the interested reader to a

related and more comprehensive investigation of pixel depth

hallucination by Eigen and Fergus [8] who replaced the true

depth input into their network with their hallucinated depths

and normals and did fine-tune, yet still did not observe per-

formance improvements for the final semantic segmentation

task.

In the next subsections we explore ablation studies and

analysis on our hallucination model. For all the following

experiments we use the AlexNet RGB and hallucination ar-

chitecture.

4.1.1 How to initialize the hallucination net?

One important parameter of training our model is how to

initialize the hallucination network. We explore three nat-

ural choices in Table 2, random initialization, initialization

with the RGB network parameter values, and initialization
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Initial Weights bathtub bed bshelf box chair counter desk door dresser gbin lamp monitor nstand pillow sink sofa table tv toilet mAP

RGB 7.5 50.4 9.9 0.9 26.2 24.9 5.8 15.8 13.0 29.8 12.0 43.1 20.9 14.7 17.9 25.3 15.1 32.5 59.1 22.4

depth 9.9 52.4 14.9 0.9 24.9 24.4 4.3 15.3 18.1 24.1 14.8 45.8 27.2 18.5 21.3 29.0 13.7 33.6 66.4 24.2

random 10.5 47.6 12.3 0.6 23.5 20.2 6.0 13.0 19.3 12.0 13.3 42.8 12.8 12.1 13.6 23.0 13.9 28.6 61.5 20.3

Table 2: RGB Detection (AP%) on NYUD2 val set: We compare intializing the hallucination network by randomly initializing or by

using the pre-trained RGB or depth parameter values.

with the depth network parameter values. Here we use RGB

and depth networks trained using NYUD2 train set only

and then we use the NYUD2 validation set for evaluation

of the different choices. We find that both the RGB and

depth initialization schemes outperform the baseline RGB

only model (20.6% mAP for this setting) and the random

initialization model. The depth initialization model has the

highest mAP performance and higher AP than the RGB ini-

tialization model on 12/19 categories (plus 1 tied category).

We thus choose to intialize our hallucination network in all

future experiments with the depth parameter values.

4.1.2 Which layer to hallucinate?

Another important parameter of our method is to choose

which mid-level activations the hallucination loss should

regress to. In Table 3 we systematically explore placing the

hallucination loss after each layer from pool1 to fc8. We

found that overall adding the hallucination loss at a mid to

lower layer improved performance the most over the RGB

only baseline network.

The highest overall performance was achieved with the

hallucination loss on the pool5 activations. However, the re-

sult was not uniformly distributed across all categories. For

example, bathtub received a noticeably greater performance

increase with a hallucination loss at pool1.

We also experimented with adding the hallucination loss

at multiple layers in the network, but did not find this to be

more effective than pool5 alone.

4.1.3 Does hallucination help on other datasets?

We next study the application of our hallucination network

on the Pascal [9] dataset (VOC 2007) which lacks depth

data. First, we directly evaluate both the NYUD2 RGB-only

network and our NYUD2 RGB plus hallucination network

on the four overlapping categories in Pascal. Results for this

experiment are reported in the first two rows of Table 4.

We find that our hallucination network provides 3.9%

mAP improvements across these four Pascal categories

when compared to the RGB-only baseline (from 16.9 to

20.8 mAP). Additionally, we note that there is a dataset

shift between Pascal and NYUD2 which causes the over-

all performance of both methods to be lower than that of a

network which was explicitly trained on Pascal. Therefore,

we also explore further fine-tuning on the available Pascal

Figure 3: Roi-pool5 activations on three top scoring re-

gions from an NYUD2 test set image. This figure illus-

trates the difference between the activations from the three

networks.

VOC 2007 trainval set. This set only contains RGB images

so we may only further fine-tune the RGB network.

This means that the dataset shift is mitigated in the RGB

network but not in the hallucination network. Nevertheless,

we find that the combination of our Pascal fine-tuned RGB

network with our NYUD2 trained hallucination network

continues to outperform the RGB-only baseline, achieving

53.2 mAP instead of 52.1 mAP and higher performance on

3/4 categories.

This indicates that the hallucination technique provides

benefit beyond the NYUD2 dataset and we expect that the

gains from the hallucination network would only become

larger if we were able to adapt the parameters to the new

dataset directly.

4.2. What did the hallucination net learn?

Regression losses can often be difficult to train together

with the supervised cross-entropy loss. We first verify that

831



hallucination

layer bathtub bed bshelf box chair counter desk door dresser gbin lamp monitor nstand pillow sink sofa table tv toilet mAP

RGB only 4.9 45.5 10.9 1.3 21.5 23.6 5.4 14.5 12.7 17.4 9.4 40.9 17.2 14.9 19.9 19.2 14.0 32.5 66.3 20.6

pool1 12.0 54.0 17.9 1.1 24.5 23.6 5.0 15.2 16.3 12.7 13.3 40.0 24.7 16.6 20.5 29.6 14.9 27.4 55.3 22.3

pool2 8.4 50.7 13.5 1.0 24.2 26.0 6.6 13.1 13.8 17.8 11.7 40.7 21.8 15.0 20.5 22.4 15.2 27.2 59.7 21.5

conv3 8.8 52.5 13.2 1.0 25.6 26.2 3.3 13.2 14.9 17.0 16.2 41.6 22.2 20.2 22.9 24.6 17.2 37.4 65.6 23.3

conv4 9.7 51.2 12.9 1.0 26.3 26.8 6.9 17.4 16.7 22.0 12.4 43.2 15.5 16.4 24.0 23.5 16.2 34.2 64.2 23.2

pool5 9.9 52.4 14.9 0.9 24.9 24.4 4.3 15.3 18.1 24.1 14.8 45.8 27.2 18.5 21.3 29.0 13.7 33.6 66.4 24.2

fc6 10.3 47.2 12.0 0.6 21.7 20.0 5.9 12.8 13.8 20.5 11.8 34.4 16.3 13.1 14.8 27.3 16.1 28.8 60.5 20.4

fc7 3.3 49.4 12.7 0.8 24.1 21.8 4.8 15.2 16.8 11.7 10.0 43.4 18.7 14.2 20.6 25.2 14.4 29.5 63.1 21.0

fc8 4.2 50.7 13.9 0.9 23.8 23.6 5.4 15.5 18.0 13.2 13.3 42.0 20.9 15.8 22.3 23.8 14.5 29.6 63.6 21.8

Table 3: RGB Detection (AP%) on NYUD2 val set: We compare hallucinating different mid-level features with our method.

Figure 4: Example Detections on the NYUD2 test set where our RGB hallucination network’s (green box) top scoring

detection for the image is correct while the baseline RGB detector’s (red box) top scoring detection is incorrect.

our hallucination loss is effectively learning by examining

the training loss vs iteration and confirming that the hallu-

cination loss does indeed decrease.

We next verify that this training loss decrease translates

to a decreased loss on the test data and hence a better depth

activation alignment. To this end, we examine the network

outputs on the NYUD2 test set. We first compute the hal-

lucination loss value across the entire test set before and

after learning and find that the value decreases from 216.8

to 94.6.

We additionally compare the euclidean distance between

the hallucination activations and the RGB activations and

find that after learning, the hallucination and depth activa-

tions are closer than the hallucination and RGB activations.

Specifically, for the case where the hallucination network

was intialized with RGB weights, the hallucination network

activations start out being same as the RGB network activa-

tions but over time become closer to the depth network as

can be seen from the post-training euclidean losses of H-

RGB =113.0 while H-HHA=97.5.m

As an example, Figure 3 shows roi-pool5 activations

from corresponding regions in the test image which have

highest final detection scores. The visualization shows all

256× 6× 6 roi-pool5 activations and corresponding region

label. This figure illustrates the difference between the RGB

activations learned through our approach and through the
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Figure 5: Example Detections on the NYUD2 test set where our RGB hallucination network’s (green box) top scoring

detection for the image is a false positive while the baseline RGB detector’s (red box) top scoring detection is a true positive.

method chair dining table sofa tv mAP

RGB 17.5 13.0 10.4 26.7 16.9

RGB+H 19.5 17.4 19.3 27.1 20.8

RGB (pascal ft) 33.1 63.5 49.1 62.7 52.1

RGB (pascal ft) + H (no ft) 34.3 61.9 53.3 63.9 53.4

Table 4: RGB Detection (AP%) on PASCAL voc 2007 test set:

We compare running our hallucination network on a new dataset.

We compare the RGB only vs hallucination network of NYUD2

by first directly applying the networks on pascal. Then we fine-

tune the RGB model on pascal data (leaving the hallucination por-

tion fixed) and continue to find that the nyud trained hallucination

model provides performance improvements.

standard learning procedure.

Finally, we know from the detection experiments in the

previous section that training with the hallucination loss of-

fers performance improvements over a single RGB model

or an ensemble of RGB models trained without the depth

hallucination loss. However, it’s important to know how the

network is improving.

Therefore, in Figure 4, we show randomly sampled im-

ages from the NYUD2 test set where the top scored region

from our hallucination model corresponds to a true positive

and the top scoring region from the single RGB baseline

corresponds to a false positive. Our method output is illus-

trated with a green box and the baseline is illustrated with a

red box.

5. Conclusion

We have introduced a novel technique for incorporating

additional information, in the form of depth images, at train-

ing time to improve our test time RGB only detection mod-

els. We accomplish this through our modality hallucination

architecture which combines a traditional RGB ConvNet

representation with an additional and complementary RGB

representation which has been trained to hallucinate depth

mid-level features. Our approach outperforms the corre-

sponding Fast R-CNN RGB detection models on the NYUD2

dataset.
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