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Abstract

Perceiving meaningful activities in a long video se-

quence is a challenging problem due to ambiguous defini-

tion of ‘meaningfulness’ as well as clutters in the scene. We

approach this problem by learning a generative model for

regular motion patterns (termed as regularity) using multi-

ple sources with very limited supervision. Specifically, we

propose two methods that are built upon the autoencoders

for their ability to work with little to no supervision. We

first leverage the conventional handcrafted spatio-temporal

local features and learn a fully connected autoencoder on

them. Second, we build a fully convolutional feed-forward

autoencoder to learn both the local features and the classi-

fiers as an end-to-end learning framework. Our model can

capture the regularities from multiple datasets. We evalu-

ate our methods in both qualitative and quantitative ways -

showing the learned regularity of videos in various aspects

and demonstrating competitive performance on anomaly

detection datasets as an application.

1. Introduction

The availability of large numbers of uncontrolled videos

gives rise to the problem of watching long hours of mean-

ingless scenes [1]. Automatic segmentation of ‘meaning-

ful’ moments in such videos without supervision or with

very limited supervision is a fundamental problem for var-

ious computer vision applications such as video annota-

tion [2], summarization [3, 4], indexing or temporal seg-

mentation [5], anomaly detection [6], and activity recog-

nition [7]. We address this problem by modeling tempo-

ral regularity of videos with limited supervision, rather than

modeling the sparse irregular or meaningful moments in a

supervised manner.

Learning temporal visual characteristics of meaningful

or salient moments is very challenging as the definition of

such moments is ill-defined i.e., visually unbounded. On

the other hand, learning temporal visual characteristics of

ordinary moments is relatively easier as they often exhibit

temporally regular dynamics such as periodic crowd mo-

tions. We focus on learning the characteristics of regular
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Figure 1. Learned regularity of a video sequence. Y-axis refers

to regularity score and X-axis refers to frame number. When there

are irregular motions, the regularity score drops significantly (from

CUHK-Avenue dataset [8]).

temporal patterns with a very limited form of labeling - we

assume that all events in the training videos are part of the

regular patterns. Especially, we use multiple video sources,

e.g., different datasets, to learn the regular temporal appear-

ance changing pattern of videos in a single model that can

then be used for multiple videos.

Given the training data of regular videos only, learning

the temporal dynamics of regular scenes is an unsupervised

learning problem. A state-of-the-art approach for such un-

supervised modeling involves a combination of sparse cod-

ing and bag-of-words [8–10]. However, bag-of-words does

not preserve spatio-temporal structure of the words and re-

quires prior information about the number of words. Ad-

ditionally, optimization involved in sparse coding for both

training and testing is computationally expensive, espe-

cially with large data such as videos.

We present an approach based on autoencoders. Its

objective function is computationally more efficient than

sparse coding and it preserves spatio-temporal information

while encoding dynamics. The learned autoencoder recon-

structs regular motion with low error but incurs higher re-

construction error for irregular motions. Reconstruction er-

ror has been widely used for abnormal event detection [6],

since it is a function of frame visual statistics and abnormal-

ities manifest themselves as deviations from normal visual

patterns. Figure 1 shows an example of learned regular-

ity, which is computed from the reconstruction error by a

learned model (Eq.3 and Eq.4).
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We propose to learn an autoencoder for temporal regu-

larity based on two types of features as follows. First, we

use state-of-the-art handcrafted motion features and learn a

neural network based deep autoencoder consisting of seven

fully connected layers. The state-of-the-art motion features,

however, may be suboptimal for learning temporal regular-

ity as they are not designed or optimized for this problem.

Subsequently, we directly learn both the motion features

and the discriminative regular patterns using a fully con-

volutional neural network based autoencoder.

We train our models using multiple datasets including

CUHK Avenue [8], Subway (Enter and Exit) [11], and

UCSD Pedestrian datasets (Ped1 and Ped2) [12], without

compensating the dataset bias [13]. Therefore, the learned

model is generalizable across the datasets. We show that our

methods discover temporally regular appearance-changing

patterns of videos with various applications - synthesizing

the most regular frame from a video, delineating objects

involved in irregular motions, and predicting the past and

the future regular motions from a single frame. Our model

also performs comparably to the state-of-the-art methods on

anomaly detection task evaluated on multiple datasets in-

cluding recently released public ones.

Our contributions are summarized as follows:

• Showing that an autoencoder effectively learns the reg-

ular dynamics in long-duration videos and can be ap-

plied to identify irregularity in the videos.

• Learning the low level motion features for our pro-

posed method using a fully convolutional autoencoder.

• Applying the model to various applications including

learning temporal regularity, detecting objects associ-

ated with irregular motions, past and future frame pre-

diction, and abnormal event detection.

2. Related Work

Learning Motion Patterns Without Supervision. Learn-

ing motion patterns without supervision has received much

attention in recent years [14–16]. Goroshin et al. [17]

trained a regularized high capacity (i.e., deep) neural net-

work based autoencoder using a temporal coherency prior

on adjacent frames. Ramanathan et al. [18] trained a net-

work to learn the motion signature of the same temporal

coherency prior and used it for event retrieval.

To analyze temporal information, recurrent neural net-

works (RNN) have been widely used for analyzing speech

and audio data [19]. For video analysis, Donahue et al. take

advantage of long short term memory (LSTM) based RNN

for visual recognition with the large scale labeled data [20].

Du et al. built an RNN in a hierarchical way to recognize ac-

tions [21]. The supervised action recognition setup requires

human supervision to train the models. Ranzato et al. used

the RNN for motion prediction [22], while we model the

temporal regularity in a video sequence.

Anomaly Detection. One of the applications of our model

is abnormal or anomalous event detection. The survey pa-

per [6] contains a comprehensive review of this topic. Most

video based anomaly detection approaches involve a lo-

cal feature extraction step followed by learning a model

on training video. Any event that is an outlier with re-

spect to the learned model is regarded as the anomaly.

These models include mixtures of probabilistic principal

components on optical flow [23], sparse dictionary [8, 9],

Gaussian regression based probabilistic framework [24],

spatio-temporal context [25, 26], sparse autoencoder [27],

codebook based spatio-temporal volumes analysis [28], and

shape [29]. Xu et al. [30] proposed a deep model for anoma-

lous event detection that uses a stacked autoencoder for fea-

ture learning and a linear classifier for event classification.

In contrast, our model is an end-to-end trainable generative

one that is generalizable across multiple datasets.

Convolutional Neural Network (CNN). Since

Krizhevsky et al.’s work on image classification [31],

CNN has been widely applied to various computer vision

tasks such as feature extraction [32], image classifica-

tion [33], object detection [34, 35], face verification [36],

semantic embedding [37, 38], video analysis [16, 22],

and etc. Particularly in video, Karpathy et al. and Ng et

al. recently proposed a supervised CNN to classify actions

in videos [7, 39]. Xu et al. trained a CNN to detect events

in videos [40]. Wang et al. learned a CNN to pool the

trajectory information for recognizing actions [41]. These

methods, however, require human supervision as they are

supervised classification tasks.

Convolutional Autoencoder. For an end-to-end learning

system for regularity in videos, we employ the convolu-

tional autoencoder. Zhao et al. proposed a unified loss func-

tion to train a convolutional autoencoder for classification

purposes [42]. Noh et al. [43] used convolutional autoen-

coders for semantic segmentation.

3. Approach

We use an autoencoder to learn regularity in video se-

quences. The intuition is that the learned autoencoder will

reconstruct the motion signatures present in regular videos

with low error but will not accurately reconstruct motions in

irregular videos. In other words, the autoencoder can model

the complex distribution of the regular dynamics of appear-

ance changes.

As an input to the autoencoder, initially, we use state-of-

the-art handcrafted motion features that consist of HOG and

HOF with improved trajectory features [44]. Then we learn

the regular motion signatures by a (fully-connected) neural

network based autoencoder. However, even the state-of-the-

art motion features may not be optimal for learning regular-

ity as they are not specifically designed for this purpose.

Thus, we use the video as an input and learn both local mo-

tion features and the autoencoder by an end-to-end learning
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Figure 2. Overview of our approach. It utilizes either state-of-the-art motion features or learned features combined with autoencoder to

reconstruct the scene. The reconstruction error is used to measure the regularity score that can be further analyzed for different applications.

model based on a fully convolutional neural network. We

illustrate the overview of our the approach in Fig. 2.

3.1. Learning Motions on Handcrafted Features

We first extract handcrafted appearance and motion fea-

tures from the video frames. We then use the extracted

features as input to a fully connected neural network based

autoencoder to learn the temporal regularity in the videos,

similar to [45, 46].

Low-Level Motion Information in a Small Tempo-

ral Cuboid. We use Histograms of Oriented Gradients

(HOG) [5,47] and Histograms of Optical Flows (HOF) [48]

in a temporal cuboid as a spatio-temporal appearance fea-

ture descriptor for their efficiency in encoding appearance

and motion information respectively.

Trajectory Encoding. In order to extract HOG and HOF

features along with the trajectory information, we use the

improved trajectory (IT) features from Wang et al. [44]. It

is based on the trajectory of local features, which has shown

impressive performance in many human activity recogni-

tion benchmarks [44, 49].

As a first step of feature extraction, interest points are

densely sampled at dense grid locations of every five pix-

els. Eight spatial scales are used for scale invariance. In-

terest points located in the homogeneous texture areas are

excluded based on the eigenvalues of the auto-correlation

matrix. Then, the interest points in the current frame are

tracked to the next frame by median filtering a dense opti-

cal flow field [50]. This tracking is normally carried out up

to a fixed number of frames (L) in order to avoid drifting.

Finally, trajectories with sudden displacement are removed

from the set [44].

Final Motion Feature. Local appearance and motion fea-

tures around the trajectories are encoded with the HOG and

HOF descriptors. We finally concatenate them to form a

204 dimensional feature as an input to the autoencoder.

3.1.1 Model Architecture

Next, we learn a model for regular motion patterns on the

motion features in an unsupervised manner. We propose

to use a deep autoencoder with an architecture similar to

Hinton et al. [45] as shown in Figure 3.

Our autoencoder takes the 204 dimensional HOG+HOF

feature as the input to an encoder and a decoder sequen-

tially. The encoder has four hidden layers with 2,000, 1,000,

500, and 30 neurons respectively, whereas the decoder has

three hidden layers with 500, 1,000 and 2,000 neurons re-

spectively. The small-sized middle layers are for learning

compact semantics as well as reducing noisy information.

204

2000

1000
500

30

Encoder Decoder

Input HOG+HOF Reconstructed HOG+HOF

500
1000

2000

204

Figure 3. Structure of our autoencoder taking the HOG+HOF fea-

ture as input.

Since both the input and the reconstructed signals of the

autoencoder are HOG+HOF histograms, their magnitude of

them should be bounded in the range from 0 to 1. Thus, we

use either sigmoid or hyperbolic tangent (tanh) as the acti-

vation function instead of the rectified linear unit (ReLU).

ReLU is not suitable for a network that has large receptive

fields for each neuron as the sum of the inputs to a neuron

can become very large.

In addition, we use the sparse weight initialization tech-

nique described in [51] for the large receptive field. In the

initialization step, each neuron is connected to k randomly

chosen units in the previous layer, whose weights are drawn

from a unit Gaussian with zero bias. As a result, the total

number of inputs to each neuron is a constant, which pre-

vents the large input problem.

We define the objective function of the autoencoder by

an Euclidean loss of input feature (xi) and the reconstructed

feature (fW (xi)) with an L2 regularization term as shown

in Eq.1. Intuitively, we want to learn a non-linear classifier
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so that the overall reconstruction cost for the ith training

features xi is minimized.

f̂W = argmin
W

1

2N

∑

i

‖xi − fW (xi)‖
2
2 + γ‖W‖22, (1)

where N is the size of mini batch, γ is a hyper-parameter to

balance the loss and the regularization and fW (·) is a non-

linear classifier such as a neural network associated with its

weights W .

3.2. Learning Features and Motions

Even though we use the state-of-the-art motion feature

descriptors, they may not be optimal for learning regular

patterns in videos. To learn highly tuned low level features

that best learn temporal regularity, we propose to learn a

fully convolutional autoencoder that takes short video clips

in a temporal sliding window as the input. We use fully

convolutional network because it does not contain fully con-

nected layers. Fully connected layers loses spatial informa-

tion [52]. For our model, the spatial information needs to be

preserved for reconstructing the input frames. We present

the details of training data, network architecture, and the

loss function of our fully convolutional autoencoder model,

the training procedure, and parameters in the following sub-

sections.

3.2.1 Model Architecture

Figure 4 illustrates the architecture of our fully convolu-

tional autoencoder. The encoder consists of convolutional

layers [31] and the decoder consists of deconvolutional lay-

ers that are the reverse of the encoder with padding removal

at the boundary of images.

We use three convolutional layers and two pooling layers

on the encoder side and three deconvolutional layers and

two unpooling layers on the decoder side by considering

the size of input cuboid and training data.

Convolutional Layers

Pooling Layers

Deconvolutional Layers

Unpooling Layers

Input Frames Reconstructed Frames

Encoder Decoder

10×227×227

512×55×55

512×27×27

10×227×227

512×55×55256×55×55

256×27×27 256×27×27

128×13×13

128×27×27

256×13×13

Figure 4. Structure of our fully convolutional autoencoder.

The first convolutional layer has 512 filters with a stride

of 4. It produces 512 feature maps with a resolution of

55 × 55 pixels. Both of the pooling layers have kernel of

size 2 × 2 pixels and perform max poling. The first pool-

ing layer produces 512 feature maps of size 27× 27 pixels.

The second and third convolutional layers have 256 and 128

filters respectively. Finally, the encoder produces 128 fea-

ture maps of size 13 × 13 pixels. Then, the decoder recon-

structs the input by deconvolving and unpooling the input

in reverse order of size. The output of final deconvolutional

layer is the reconstructed version of the input.

Input Data Layer. Most of convolutional neural networks

are for classifying images and take an input of three chan-

nels (for R,G, and B color channel). Our input, however, is

a video, which consists of an arbitrary number of channels.

Recent works [7, 20] extract features for each video frame,

then use several feature fusion schemes to construct the in-

put features to the network, similar to our first approach de-

scribed in Sec. 3.1.

We, however, construct the input by a temporal cuboid

using a sliding window technique without any feature trans-

form. Specifically, we stack T frames together and use them

as the input to the autoencoder, where T is the length of the

sliding window. Our experiment shows that increasing T
results in a more discriminative regularity score as it incor-

porates longer motions or temporal information as shown in

Fig. 5.
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Figure 5. Effect of temporal length (T ) of input video cuboid.

(Left) X-axis is the increasing number of iterations, Y-axis is the

training loss, and three plots correspond to three different values of

T . (Right) X-axis is the increasing number of video frames and Y-

axis is the regularity score. As T increases, the training loss takes

more iterations to converge as it is more likely that the inputs with

more channels have more irregularity to hamper learning regular-

ity. On the other hand, once the model is learned, the regularity

score is more distinguishable for higher values of T between reg-

ular and irregular regions (note that there are irregular motions in

the frame from 480 to 680, and 950 to 1250).

Data Augmentation In the Temporal Dimension. As the

number of parameters in the autoencoder is large, we need

large amounts of training data. The size of a given training

datasets, however, may not be large enough to train the net-

work. Thus, we increase the size of the input data by gen-

erating more input cuboids with possible transformations to

the given data. To this end, we concatenate frames with

various skipping strides to construct T -sized input cuboid.

We sample three types of cuboids from the video sequences

- stride-1, stride-2, and stride-3. In stride-1 cuboids, all

T frames are consecutive, whereas in stride-2 and stride-

3 cuboids, we skip one and two frames, respectively. The

stride used for sampling cuboids is two frames.

We also performed experiments with precomputed opti-

cal flows. Given the gradients and the magnitudes of op-
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tical flows between two frames, we compute a single gray

scale frame by linearly combining the gradients and mag-

nitudes. It increases the temporal dimension of the input

cuboid from T to 2T . Channels 1, . . . , T contain gray scale

video frames, whereas channels T +1, . . . , 2T contain gray

scale flow information. This information fusion scheme was

used in [39]. Our experiments reveal that the overall im-

provement is insignificant.

Convolutional and Deconvolutional Layer. A convolu-

tional layers connects multiple input activations within the

fixed receptive field of a filter to a single activation output.

It abstracts the information of a filter cuboid into a scalar

value.

On the other hand, deconvolution layers densify the

sparse signal by convolution-like operations with multiple

learned filters; thus they associate a single input activation

with patch outputs by an inverse operation of convolution.

Thus, the output of deconvolution is larger than the original

input due to the superposition of the filters multiplied by the

input activation at the boundaries. To keep the size of the

output mapping identical to the preceding layer, we crop out

the boundary of the output that is larger than the input.

The learned filters in the deconvolutional layers serve as

bases to reconstruct the shape of an input motion cuboid.

As we stack the convolutional layers at the beginning of the

network, we stack the deconvolutional layers to capture dif-

ferent levels of shape details for building an autoencoder.

The filters in early layers of convolutional and the later lay-

ers of deconvolutional layers tend to capture specific motion

signature of input video frames while high level motion ab-

stractions are encoded in the filters in later layers.

Pooling and Unpooling Layer. Combined with a convo-

lutional layer, the pooling layer further abstracts the acti-

vations for various purposes such as translation invariance

after the convolutional layer. Types of pooling operations

include ‘max’ and ‘average.’ We use ‘max’ for translation

invariance. It is known to help classifying images by mak-

ing convolutional filter output to be spatially invariant [31].

By using ‘max’ pooling, however, spatial information

is lost, which is important for location specific regularity.

Thus, we employ the unpooling layers in the deconvolution

network, which perform the reverse operation of pooling

and reconstruct the original size of activations [43, 53, 54].

We implement the unpooling layer in the same way as

[53, 54] which records the locations of maximum activa-

tions selected during a pooling operation in switch variables

and use them to place each activation back to the originally

pooled location.

Optimization Objective. Similar to Eq.1, we use Eu-

clidean loss with L2 regularization as an objective function

on the temporal cuboids:

f̂W = argmin
W

1

2N

∑

i

‖Xi − fW (Xi)‖
2
2 + γ‖W‖22, (2)

where Xi is ith cuboid, N is the size of mini batch, γ is a

hyper-parameter to balance the loss and the regularization

and fW (·) is a non-linear classifier - a fully convolutional-

deconvolutional neural network with its weights W .

3.3. Optimization and Initialization

To optimize the autoencoders of Eq.1 and Eq.2, we

use a stochastic gradient descent with an adaptive sub-

gradient method called AdaGrad [55]. AdaGrad computes

a dimension-wise learning rate that adapts the rate of gra-

dients by a function of all previous updates on each dimen-

sion. It is widely used for its strong theoretical guarantee

of convergence and empirical successes. We also tested

Adam [56] and RMSProp [57] but empirically chose to use

AdaGrad.

We train the network using multiple datasets. Fig. 6

shows the learning curves trained with different datasets as

a function of iterations. We start with a learning rate of

0.001 and reduce it when the training loss stops decreasing.

For the autoencoder on the improved trajectory features, we

use mini-batches of size 1, 024 and weight decay of 0.0005.

For the fully convolutional autoencoder, we use mini batch

size of 32 and start training the network with learning rate

0.01.
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Figure 6. Loss value of models trained on each dataset and all

datasets as a function of optimization iterations.

We initialized the weights using the Xavier algorithm

[58] since Gaussian initialization for various network struc-

ture has the following problems. First, if the weights in a

network are initialized with too small values, then the sig-

nal shrinks as it passes through each layer until it becomes

too small in value to be useful. Second, if the weights in a

network are initialized with too large values, then the signal

grows as it passes through each layer until it becomes too

large to be useful. The Xavier initialization automatically

determines the scale of initialization based on the number

of input and output neurons, keeping the signal in a reason-

able range of values through many layers. We empirically

observed that the Xavier initialization is noticeably more

stable than Gaussian.

3.4. Regularity Score

Once we trained the model, we compute the reconstruc-

tion error of a pixel’s intensity value I at location (x, y) in
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frame t of the video sequence as following:

e(x, y, t) = ‖I(x, y, t)− fW (I(x, y, t))‖2, (3)

where fW is the learned model by the fully convolutional

autoencoder. Given the reconstruction errors of the pix-

els of a frame t, we compute the reconstruction error of

a frame by summing up all the pixel-wise errors: e(t) =∑
(x,y) e(x, y, t). We compute the regularity score s(t) of a

frame t as follows:

s(t) = 1−
e(t)−mint e(t)

maxt e(t)
. (4)

For the autoencoder on the improved trajectory feature, we

can simply replace I(x, y) with p(x, y) where p(·) is an im-

proved trajectory feature descriptor of a patch that covers

the location of (x, y).

4. Experiments

We learn the model using multiple video datasets, total-

ing 1 hour 50 minutes, and evaluate our method both quali-

tatively and quantitatively. We modify1 and use Caffe [59]

for all of our experiments on NVIDIA Tesla K80 GPUs.

For qualitative analysis, we generate the most regular

image from a video and visualize the pixel-level irregular-

ity. In addition, we show that the learned model based on

the convolutional autoencoder can be used to forecast future

frames and estimate past frames.

For quantitative analysis, we temporally segment the

anomalous events in video and compare performance

against the state of the arts. Note that our model is not

fine-tuned to one dataset. It is general enough to capture

regularities across multiple datasets.

4.1. Datasets

We use three datasets to train and demonstrate our mod-

els. They are curated for anomaly or abnormal event de-

tection and are referred to as Avenue [8], UCSD pedes-

trian [12], and Subway [11] datasets. We describe the de-

tails of datasets in the supplementary material.

4.2. Learning a General Model Across Datasets

We compare the generalizability of the trained model us-

ing various training setups in terms of regularity scores ob-

tained by each model in Fig. 7. Blue (conventional) rep-

resents the score obtained by a model trained on the spe-

cific target dataset. Red (generalized) represents the score

obtained by a model trained on all datasets, which is the

model we use for all other experiments. Yellow (trans-

fer) represents the score obtained by a model trained on all

datasets except that specific target dataset. Red shaded re-

gions represent ground truth temporal segments of the ab-

normal events.

1https://github.com/mhasa004/caffe

By comparing ‘conventional’ and ‘generalized’, we ob-

serve that the model is not degraded by other datasets. At

the same time, by comparing ‘transfer’ and either ‘gener-

alized’ or ‘conventional’, we observe that the model is not

too much overfitted to the given dataset as it can generalize

to unseen videos in spite of potential dataset biases. Con-

sequently, we believe that the proposed network structure is

well balanced between overfitting and underfitting.

CUHK Avenue-# 15 UCSD Ped1-# 32 UCSD Ped2-# 02

Subway Enter-#1

Subway-Exit-#1

Figure 7. Generalizability of Models by Obtained Regularity

Scores. ‘Conventional’ is by a model trained on the specific tar-

get dataset. ‘Generalized’ is by a model trained on all datasets.

‘Transfer’ is by a model trained on all datasets except that specific

target datasets. Best viewed in zoom.

4.3. Visualizing Temporal Regularity

The learned model measures the intensity of regularity

up to pixel precision. We synthesize the most regular frame

from the test video by collecting the pixels that have the

highest regularity score by our convolutional autoencoder

(conv-autoencoder) and autoencoder on improved trajecto-

ries (IT-autoencoder).

The first column of Fig. 8 shows sample images that con-

tain irregular motions. The second column shows the syn-

thesized regular frame. Each pixel of the synthesized im-

age corresponds to the pixel for which reconstruction cost

is minimum along the temporal dimension. The right most

column shows the corresponding regularity score. Blue rep-

resents high score, red represents low.

Fig. 9 shows the results using IT-autoencoder. The left

column shows the sample irregular frame of a video se-

quences, and the right column is the pixel-wise regularity

score for that video sequence. It captures irregularity to

patch precision; thus the spatial location is not pixel-precise

as obtained by conv-autoencoder.

4.4. Predicting the Regular Past and the Future

Our convolutional autoencoder captures temporal ap-

pearance changes since it takes a short video clip as input.

Using a clip that is blank except for the center frame, we can

6738
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Avenue Dataset

UCSD Ped1 Dataset

UCSD Ped2 Dataset

Subway Exit Dataset

Figure 8. (Left) A sample irregular frame. (Middle) Synthesized

regular frame. (Right) Regularity Scores of the frame. Blue repre-

sents regular pixel. Red represents irregular pixel.

Avenue Dataset UCSD Ped2 Dataset

Figure 9. Learned regularity by improved trajectory features.

(Left) Frames with irregular motion. (Right) Learned regularity

on the entire video sequence. Blue represents regular region. Red

represents irregular region.

predict both near past and future frames of a regular video

clip for the given center frame.

Time Input  

moment 
Past 

(0.1 sec before) 

Future 

(0.1 sec later) 

Time Input  

moment 
Past 

(0.1 sec before) 

Future 

(0.1 sec later) 

Figure 10. Synthesizing a video of regular motion from a sin-

gle seed image (at the center). Upper: CUHK-Avenue. Bottom:

Subway-Exit.

Given a single irregular image, we construct a temporal

cube as the input to our network by padding other frames

with all zero values. Then we pass the cube through our

learned model to extrapolate the past and the future of that

center frame. Fig. 10 shows some examples of generated

videos. The objects in an irregular motion start appearing

from the past and gradually disappearing in the future.

Since the network is trained with regular videos, it learns

the regular motion patterns. With this experiment, we

showed that the network can predict the regular motion of

the objects in a given frame up to a few number of past and

future frames.

4.5. Anomalous Event Detection

As our model learns the temporal regularity, it can be

used for detecting anomalous events in a weakly supervised

manner. Fig. 11 shows the regularity scores as a function of

frame number. Table 1 compares the anomaly detection ac-

curacies of our autoencoders against state-of-the-art meth-

ods. To the best of our knowledge, there are no correct de-

tection or false alarm results reported for UCSD Ped1 and

Ped2 datasets in the literature. We provide the EER and

AUC measures from [60] for reference. Additionally, the

state-of-the-art results for the avenue dataset from [8] are

not directly comparable as it is reported on the old version

of the Avenue dataset that is smaller than the current ver-

sion.

We find the local minimas in the time series of regular-

ity scores to detect abnormal events. However, these local

minima are very noisy and not all of them are meaningful

local minima. We use the persistence1D [61] algorithm to

identify meaningful local minima and span the region with

a fixed temporal window (50 frames) and group nearby ex-

panded local minimal regions when they overlap to obtain

the final abnormal temporal regions. Specifically, if two lo-

cal minima are within fifty frames of one another, they are

considered to be a part of same abnormal event. We con-

sider a detected abnormal region as a correct detection if it

has at least fifty percent overlap with the ground truth.

Our model outperforms or performs comparably to the

state-of-the-art abnormal event detection methods but with

a few more false alarms. It is because our method identi-

fies any deviations from regularity, many of which have not

been annotated as abnormal events in those datasets while

competing approaches focused on the identification of ab-

normal events. For example, in the top figure of Fig. 11, the

‘running’ event is detected as an irregularity due to its un-

usual motion pattern by our model, but in the ground truth

it is a normal event and considered as a false alarm during

evaluation.

4.6. Filter Responses

We visualize some of the learned filter responses of our

model on Avenue datasets in Fig. 12. The first row visual-

izes one channel of the input data and two filter responses

of the conv1 layer. These two filters show completely op-
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Running

Train Approaching

Wrong Direction

Running

Wrong Direction

Running
Walking Group

Wrong Direction

Throwing

Regular

Running

Regular

Running

Stuck

Figure 11. Regularity score (Eq.3) of each frame of three video sequences. (Top) Subway Exit, (Bottom-Left) Avenue, and (Bottom-Right)

Subway Enter datasets. Green and red colors represent regular and irregular frames respectively.

Dataset Regularity Anomaly Detection

# Regular Conv-AE # Anomalous Correct Detection / False Alarm AUC/EER

Name # Frames Frames Correct Detect / FA Event Conv-AE IT-AE State of the art Conv-AE State of the art

CUHK Avenue 15, 324 11, 504 11, 419/355 47 45/4 43/8 12/1 (Old Dataset) [8] 70.2/25.1 N/A

UCSD Ped1 7, 200 3, 195 3, 135/310 40 38/6 36/11 N/A 81.0/27.9 92.7/16.0 [60]

UCSD Ped2 2, 010 374 374/50 12 12/1 12/3 N/A 90.0/21.7 90.8/16.0 [30]

Subway Entrance 121, 749 119, 349 112, 188/4, 154 66 61/15 55/17 57/4 [8] 94.3/26.0 N/A

Subway Exit 64, 901 64, 181 62, 871/1, 125 19 17/5 17/9 19/2 [8] 80.7/9.9 N/A

Table 1. Comparing abnormal event detection performance. AE refers to auto-encoder. IT refers to improved trajectory.

posite responses to the irregular object - the bag in the top

of the frame. The first filter provides very low response

(blue color) to it, whereas the second filter provides very

high response (red color). The first filter can be described

as the filter that detects regularity, whereas the second filter

detects irregularity. All other filters show similar character-

istics. The second row of Fig. 12 shows the responses of the

filters from conv2 and conv3 layers respectively.

Additional results can be found in the supplementary

material. Data, codes, and videos are available online2.

5. Conclusion

We present a method to learn regular patterns using au-

toencoders with limited supervision. We first take advan-

tage of the conventional spatio-temporal local features and

learn a fully connected autoencoder. Then, we build a fully

convolutional autoencoder to learn both the local features

and the classifiers in a single learning framework. Our

model is generalizable across multiple datasets even with

potential dataset biases. We analyze our learned models

in a number of ways such as visualizing the regularity in

frames and pixels and predicting a regular video of past and

future given only a single image. For quantitative analy-

sis, we show that our method performs competitively to the

2http://www.ee.ucr.edu/˜mhasan/regularity.html

(a) Input data frame (b) Conv1 filter responses.

(c) Conv2 filter responses. (d) Conv3 filter responses.

Figure 12. Filter responses of the convolutional autoencoder

trained on the Avenue dataset. Early layers (conv1) captures fine

grained regular motion pattern whereas the deeper layers (conv3)

captures higher level information.

state-of-the-art anomaly detection methods.
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