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Abstract

In many challenging visual recognition tasks where

training data is limited, Vectors of Locally Aggregated De-

scriptors (VLAD) have emerged as powerful image/video

representations that compete with or outperform state-of-

the-art approaches. In this paper, we address two funda-

mental limitations of VLAD: its requirement for the local

descriptors to have vector form and its restriction to lin-

ear classifiers due to its high-dimensionality. To this end,

we introduce a kernelized version of VLAD. This not only

lets us inherently exploit more sophisticated classification

schemes, but also enables us to efficiently aggregate non-

vector descriptors (e.g., manifold-valued data) in the VLAD

framework. Furthermore, we propose an approximate for-

mulation that allows us to accelerate the coding process

while still benefiting from the properties of kernel VLAD.

Our experiments demonstrate the effectiveness of our ap-

proach at handling manifold-valued data, such as covari-

ance descriptors, on several classification tasks. Our re-

sults also evidence the benefits of our nonlinear VLAD de-

scriptors against the linear ones in Euclidean space using

several standard benchmark datasets.

1. Introduction

This paper introduces a nonlinear formulation of Vec-

tors of Locally Aggregated Descriptors (VLAD) that gen-

eralizes their use to manifold-valued local descriptors, such

as symmetric positive definite (SPD) matrices, and allows

them to inherently exploit more sophisticated classification

algorithms. Modern visual recognition techniques typically

represent images by aggregating local descriptors, which,

compared to image intensity, provide robustness to vary-

ing imaging conditions. From a historical point of view,
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this trend gained momentum since the introduction of the

Bag-of-Words (BoW) model [38, 14, 24], which had a sig-

nificant impact on recognition performance. Notable recent

developments include dictionary-based solutions [50, 51],

Fisher Vectors (FV) [30, 32], VLAD [21, 1] and Convolu-

tional Neural Networks (CNN) [23].

Among the aforementioned techniques, VLAD stands

out for the following reasons:

• VLAD is computed via primitive operations. This

makes VLAD extremely attractive when computa-

tional complexity is a concern, and requires virtually

no parameter-tuning, except the size of the codebook.

• In contrast to CNNs, training a VLAD encoder is

straightforward and not contingent on having a large

training set.

• VLAD can be considered as a special case of FVs and

hence inherits several of their properties. The most

eminent one is its theoretical connection to the Fisher

kernel [19].

• From an empirical point of view, VLAD has been

shown to either deliver state-of-the-art accuracy, or

compete with the state-of-the-art methods when train-

ing data is limited. For instance, for scene classifica-

tion on the MIT Indoor dataset, multi-scale VLAD,

with only 4096 features, comfortably outperforms

the mixture of FV and bag-of-parts, which relies on

221550 features [13].

Despite its unique properties, VLAD comes with its own

limitations. In particular, VLAD is designed to work with

local descriptors in the form of vectors. Yet, several recent

studies in computer vision suggest that structural data (e.g.,

SPD matrices [42, 40, 15, 20], graphs [46], orthogonal ma-

trices [11, 16]) have the potential to provide more robust de-

scriptors. Furthermore, since VLAD typically yields a high-

dimensional image representation, it is mostly restricted to

be employed with linear classifiers. The effectiveness of

kernel-based methods, however, has been proven many a

time in visual recognition [12, 4, 31, 45].
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In this paper, we introduce a nonlinear formulation of

VLAD that addresses the aforementioned shortcomings. In

particular, we first derive a kernelized version of VLAD

that relies on mapping each local descriptor to a Repro-

ducing Kernel Hilbert Space (RKHS). We then show that

aggregation can be performed in the RKHS, which only in-

volves computing kernel values. Since several valid ker-

nel functions have recently been defined for non-vector

data [20, 18], our formulation ultimately generalizes the

use of VLAD to non-vector spaces, such as the SPD man-

ifold and the Grassmannian (the manifold of linear sub-

spaces). Furthermore, the inherent nonlinearity of map-

pings to RKHS effectively translates to exploiting more ad-

vanced classifiers within the VLAD framework.

In the spirit of computational efficiency, we then intro-

duce a novel nonlinear approximation to our kernel VLAD,

which makes use of local subspaces in the Hilbert space.

This approximation enjoys properties similar to those of

kernel VLAD, yet has the additional benefit of providing

us with faster coding schemes. Importantly, both kernel

VLAD and its approximation essentially preserve the sim-

plicity of VLAD, in the sense that the extra computations

merely consist of kernel evaluations potentially followed by

projections (i.e., matrix multiplications). To give a concrete

example, for head-pose estimation with manifold-valued

data (see Section 4), our nonlinear approximation of ker-

nel VLAD not only outperforms the Riemannian version of

VLAD [11], but also encodes images 10 times faster.

Our experimental evaluation demonstrates the effective-

ness of our approach at handling manifold-valued data in a

VLAD framework. Furthermore, we evidence the benefits

of exploiting nonlinear classifiers for visual recognition by

comparing the performance of our nonlinear VLAD with

the standard one on several benchmark datasets, where the

local descriptors have a vector form.

1.1. Related Work

Most of the popular image classification methods extract

local descriptors at patch level, and aggregate these descrip-

tors into a global image representation [24, 30, 21, 32, 43,

23, 1]. When large amounts of training data are available,

CNNs have now emerged as the method of choice to learn

local descriptors. With a limited number of training sam-

ples, existing methods typically opt for handcrafted fea-

tures, such as SIFT.

To aggregate local features, in addition to operations

such as average-pooling and max-pooling, histogram-based

solutions (e.g., BoW) have proven successful. Going be-

yond simple histograms has been an active topic of research

in the past decade. For instance, [24] aggregates histograms

computed over different spatial regions. More recent de-

velopments, such as FVs [30] and VLAD [21, 9], suggest

that first- and potentially second-order statistics should be

encoded in the aggregation process.

In a separate line of research, structured descriptors (e.g.,

covariance descriptors, linear subspaces) have been shown

to provide robust visual models [42, 20, 16]. Being of a

non-vectorial form, aggregating such descriptors is hard to

achieve beyond simple histograms. Nonetheless, one would

like to benefit from the best of both worlds, that is, using

robust non-vectorial descriptors in conjunction with state-

of-the-art aggregation techniques, such as VLAD. This, in

essence, is what we propose to achieve in this paper via ker-

nelization. Furthermore, our approach has the additional

advantage of allowing us to inherently exploit nonlinear

classifiers that have proven powerful for visual recognition.

The recent work of Faraki et al. [11] also aims at ex-

tending the VLAD framework to non-vector data. Specif-

ically, [11] makes use of the tangent bundle of a Rieman-

nian manifold to aggregate manifold-valued data in a simi-

lar manner as VLAD. By contrast, our work is not limited

to Riemannian manifolds. That is, while in [11] the data

must lie on a Riemannian manifold, we only require the ex-

istence of a positive definite kernel defined over the data.

For instance, our framework therefore also applies to local

descriptors represented as graphs, thanks to the available

kernel of, e.g., [46]. Furthermore, several studies suggest

that embedding Riemannian manifolds into RKHS boosts

recognition performance [18, 20]. As a matter of fact, this is

also demonstrated by our experiments, where our approach

outperforms the method of [11].

While a full review of kernel-based methods in com-

puter vision is beyond the scope of this paper, the recent

work of [26] is of particular relevance here. [26] introduces

an approach to employing kernels within a CNN frame-

work. Here, we perform a similar analysis within the VLAD

framework, with the additional benefit of obtaining a repre-

sentation that lets us work with manifold-valued data.

2. Nonlinear VLAD

In this section, after briefly reviewing the conventional

VLAD, we derive our two nonlinear VLAD formulations:

kernel VLAD and its local subspace-based approximation.

2.1. Conventional VLAD

Let X = {xi}Ni=1,xi ∈ R
d be a set of local descriptors

extracted from a query image or a video. In VLAD [21], the

input space Rd is partitioned into m Voronoi cells by means

of a codebook C with centers {cj}mj=1, cj ∈ R
d, obtained

from training data. Typically, this codebook is computed us-

ing the k-means algorithm. Note that supervised algorithms

have also recently been employed to build more discrimina-

tive codebooks [28]. In any event, given the codebook, the

VLAD code v ∈ R
md for the query set X is obtained by

concatenating m Local Difference Vectors (LDV) δj stor-

ing, for each center, the sum of the differences between this
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center and each local descriptor assigned to it. This can be

written as

v(X ) =
[

δT1 (X ), δT2 (X ), · · · , δTm(X )
]T

, (1)

where δj(X ) =

N
∑

i=1

aij
(

cj − xi

)

, (2)

with aij a binary weight encoding whether the local descrip-

tor xi belongs to the Voronoi cell with center cj or not, i.e.,

aij = 1 if and only if the closest codeword to xi is cj .

2.2. Kernel VLAD (kVLAD)

As mentioned earlier, the conventional VLAD is de-

signed to work with local descriptors of vector form. As

such, it cannot handle structured data representations, such

as SPD matrices, or subspaces. While such representations

could in principle be vectorized, this would (i) yield im-

practically high-dimensional VLAD vectors; and (ii) ignore

the geometry of these structured representations, which has

been demonstrated to result in accuracy loss [29, 41, 42,

20]. Here, we address this problem by kernelizing VLAD.

To this end, let us redefine the query set of local descrip-

tors as X = {xi}Ni=1,xi ∈ X, where each descriptor lies in

the space X, which, in contrast to VLAD, is not restricted

to be R
d. In fact, the only constraint we impose is that X

comes with a valid positive definite (pd) kernel k : X×X →
R. For example, X could be the space of SPD matrices, with

the Gaussian kernel defined in [39, 20]. According to the

Moore-Aronszajn Theorem [2], a pd kernel k(·, ·) induces a

unique Hilbert space on X, denoted hereafter by H, with the

property that there exists a mapping φ : X → H, such that

k(x,y) = 〈φ(x), φ(y)〉H = φ(x)Tφ(y). Here, we pro-

pose to make use of this property to map the local descrip-

tors to H, which is a vector space, and perform a VLAD-

like aggregation in Hilbert space. The main difficulty arises

from the fact that H may be infinite-dimensional, and, more

importantly, that the mapping φ corresponding to a given

kernel k is typically unknown.

Let us suppose that we are given a codebook C =
{φ(ci)}mi=1 in H. For instance, this codebook can be com-

puted using kernel k-means. To compute a VLAD code in

H, we need means to perform the following operations:

1. Determine the assignments {aij} in H.

2. Express the LDVs in H.

To determine the assignments, we note that

‖φ(x)− φ(y)‖2 = k(x,x)− 2k(x,y) + k(y,y) . (3)

Therefore, for each local descriptor, the nearest codeword

can be found using kernel values only, i.e., without having

to know the mapping φ, which lets us directly determine the

assignments.

Unfortunately, expressing the LDVs in H is not as

straightforward. Clearly, the form of the LDVs, given by

δj(X ) =
∑

aij

(

φ(cj)− φ(xi)
)

,

with aij obtained using Eq. 3, cannot be computed explicitly

if the mapping φ is unknown, which is typically the case for

popular kernels, such as RBF kernels. However, in most

practical applications, the VLAD vector is not important by

itself; What really matters for visual recognition is a no-

tion of distance between two VLAD vectors. We therefore

turn to the problem of computing the distance of two VLAD

vectors in Hilbert space.

To this end, let X = {xi}NX

i=1,xi ∈ X and Y =

{yi}NY

i=1,yi ∈ X be two sets of local descriptors. The im-

plicit VLAD code of X in H can be expressed as

vH(X ) =
[

δT1 (X ), δT2 (X ), · · · , δTm(X )
]T

,

and similarly for vH(Y). Now, we have

〈

vH(X ),vH(Y)
〉

H

=

m
∑

s=1

δ
T
s (X )δs(Y) (4)

=
m
∑

s=1

NX
∑

i=1

NY
∑

j=1

a
i
sa

j
s

(

φ(cs)− φ(xi)
)T(

φ(cs)− φ(yj)
)

=

m
∑

s=1

NX
∑

i=1

NY
∑

j=1

a
i
sa

j
s

(

k(xi,yj)+k(cs, cs)−k(xi, cs)−k(yj , cs)
)

,

which again only depends on kernel values.

With this inner product, a linear SVM, in its dual form,

can directly be used for classification1. In our experiments,

we rely on this approach, which we refer to as kernel VLAD

or kVLAD for short.

This inner product, however, also allows us to employ an

RBF-based kernel SVM, since

‖vH(X )− vH(Y)‖2 = 〈vH(X ),vH(X )〉H
− 2〈vH(X ),vH(Y)〉H + 〈vH(Y),vH(Y)〉H .

Note that this essentially yields two layers of kernels, i.e.,

the RBF kernel of the SVM makes use of the distance,

which itself is expressed in terms of kernel values.

While effective in practice, our kVLAD algorithm, as

any kernel method, becomes computationally expensive

when dealing with large datasets. In the remainder of

this section, we therefore introduce an approximation to

kVLAD that addresses this limitation while still benefiting

from the nice properties of kVLAD.

1Note that this yields a slightly different optimization problem than the

standard kernel SVM formulation, since in our case the inner product itself

depends on several kernel values.
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2.3. Nonlinear VLAD via Local Subspaces (sVLAD)

Here, we introduce a nonlinear formulation of VLAD

that approximates our kVLAD algorithm. To this end, we

propose to make use of local subspaces to derive a novel

approximation of a Hilbert space H. This approximation

is motivated by the following observation: By looking at

Eq. 2, we can see that the contribution of each codeword

in the VLAD vector is independent of the other codewords,

particularly since each local descriptor is assigned to a sin-

gle codeword. As such, there is no reason for the approx-

imation of H to be shared across all the codewords and

descriptors. We therefore propose to define approximate

Hilbert spaces for each codeword individually.

To this end, let {ts,j}Ns

j=1 be the set of training sam-

ples that generate the codeword cs. In other words, as in

the conventional VLAD where cs = 1

Ns

∑

j ts,j , we have

φ(cs) =
1

Ns

∑

i φ(ts,j). While, due to the unknown nature

of φ, such a codeword cannot be explicitly computed, we

can still evaluate the kernel function at this codeword, since

k(x, cs) = φ(x)Tφ(cs) =
1

Ns

∑

j

k(x, ts,j) .

Here, we therefore propose to exploit the subspaces spanned

by the training samples associated to each individual code-

word to obtain an approximate representation of H. More

specifically, let Ss = span({φ(ts,j)}Ns

j=1). We then define

δs(X ) =

N
∑

i=1

ais

(

πs

(

φ(cs)
)

− πs

(

φ(xi)
)

)

, (5)

with πs : H → Ss the projection onto Ss. This pro-

jection can be obtained as follows. Let Ks be the ker-

nel matrix estimated from the training samples generating

cs, i.e., [Ks]i,j = k(ts,i, ts,j). By eigendecomposition,

we can write Ks = U sΛsU
T
s . Then, ΦsU sΛ

−1/2
s , with

Φs = [φ(ts,1), · · · , φ(ts,Ns
)], forms a basis for Ss. As

such, we can write

πs(x) = Λ−1/2
s U s

[

k(x, ts,1), · · · , k(x, ts,Ns
)
]

. (6)

The LDVs δs(X ) can then be obtained for all codewords,

and concatenated to form the final sVLAD representation.

Remark 1. Note that one can also use only the top r eigen-

vectors of Ks to construct an r-dimensional local subspace

in H. This would not only yield the same dimensionality for

all local subspaces, but could also potentially help discard-

ing the noise associated to the {ts,i}Ns

i=1.

Remark 2. Recall that in FV the coding scheme takes into

account the Gaussian distribution centered at each code-

word. In VLAD, coding is simplified by assuming that the

Gaussian distributions are isotropic and all have the same

variance. Interestingly, our sVLAD formulation relaxes this

assumption by explicitly considering the eigenvalues of the

kernel (covariance) computed from the data associated to

each codeword.

2.4. Normalization

Recent studies have shown that the discriminative power
of VLAD can be boosted by additional post-processing
steps, such as ℓ2 power normalization and signed square
rooting normalization [1, 13]. The ℓ2 power normalization,
where each block in VLAD is normalized individually, can
easily be performed in kVLAD, since

‖δs(X)‖
2

H=

NX
∑

i,j=1

a
i
sa

j
s

(

k(xi,xj)+k(cs, cs)−k(xi, cs)−k(xj , cs)
)

only depends on kernel values. As a result, the inner prod-

uct of Eq. 4 after normalizing each VLAD block indepen-

dently, i.e.,

〈

v̄H(X), v̄H(Y)
〉

H

=

k
∑

s=1

〈

δs(X), δs(Y)
〉

‖δs(X)‖H‖δs(Y)‖H
,

will also only depend on kernel values. By contrast, how-

ever, the signed square rooting normalization can only be

achieved when explicit forms of the descriptors are avail-

able, i.e., in sVLAD.

3. Further Discussions

Our sVLAD formulation makes use of several local ap-

proximations of a Hilbert space. Other approaches have

been proposed in the past to speed up kernel methods via

Hilbert space approximations. Note, however, that these

techniques yield one global approximation of the Hilbert

space. In particular, the Nyström approximation [49, 31]

makes use of data to approximate the kernel values. Fur-

thermore, other methods approximate the inner product of

specific kernel functions [33, 45]. For the sake of complete-

ness, below, we derive approximations to kVLAD based

on the aforementioned techniques. Note that our experi-

ments demonstrate the benefit of our sVLAD formulation

over these other approximations.

3.1. Nyström Approximation (nVLAD)

We start by deriving an approximation to kVLAD via the

Nyström method [49, 31]. Such an approximation yields an

explicit form for the mapping φ to the Hilbert space H, and

thus allows us to approximate a given kernel.

More specifically, let T = {ti}Mi=1, ti ∈ X be a col-

lection of M training examples, and let K be the corre-

sponding kernel matrix, i.e., [K]i,j = k(ti, tj). We seek

to approximate the elements of K as inner products be-

tween r-dimensional vectors. In other words, we aim to
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find a matrix Z ∈ R
r×M , such that K ≃ ZTZ. The best

such approximation in the least-squares sense is given by

Z = Σ
1/2V , with Σ and V the top r eigenvalues and cor-

responding eigenvectors of K. From the Nyström method,

for a new sample x ∈ X, the r-dimensional vector repre-

sentation of the space induced by k(x, ·) can be written as

zN (x) = Σ
−1/2V

[

k(x, t1), · · · , k(x, tM )
]T

. (7)

Given a set of local descriptors X = {xi}, our nVLAD

algorithm then consists of computing the corresponding

{zN (xi)}, and making use of Eq. 1 and Eq. 2 with this new

representation.

3.2. Fourier Approximation (fVLAD)

The previous approximation applies to general kernels

defined on both Euclidean and non-Euclidean data. In the

Euclidean case, however, other approximations have been

proposed for specific kernels [33, 45]. Since our experi-

ments on Euclidean data all rely on RBF kernels, here, we

discuss an approximation of this type of kernels based on

the Bochner Theorem [34].

According to the Bochner Theorem [34], a shift-

invariant kernel2, such as the Euclidean RBF kernel, can

be expressed with the Fourier integral. As shown in [33],

for real-valued kernels, this can be written as

k(xi − xj) =

∫

Rd

p(ω)zF (xi)zF (xj)dω, (8)

where zF (x) =
√
2 cos(ωTx+b), with b a random variable

drawn from [0, 2π]. In other words, k(xi,xj) = k(xi−xj)
is the expected value of zF (xi)zF (xj) under the distribu-

tion p(ω). For the RBF kernel k(xi,xj) = exp(−‖(xi −
xj)‖2/2σ2), we have p(ω) = N (0, σ−2

Id).
Let {ωi}ri=1, ωi ∈ R

d, be i.i.d. samples drawn from the

normal distribution N (0, σ−2
Id), and {bi}ri=1 be samples

uniformly drawn from [0, 2π]. Then, the r-dimensional es-

timate of φ(x) ∈ H is given by

zF (x) =

√

2

r

[

cos(ωT
1 x+ b1), · · · , cos(ωT

r x+ br)
]

. (9)

Similarly to nVLAD, we can then compute zF (xi) for

each local descriptor xi, and use Eq. 1 and Eq. 2 to obtain a

code. In our experiments, we refer to this approach, which

only applies to Euclidean data, as fVLAD.

3.3. Kernelizing Fisher Vectors

Due to the connection between VLAD and FVs, it seems

natural to rely on the ideas discussed above to kernelize

FVs. One difficulty in kernelizing FVs, however, arises

2A kernel function is shift invariant if k(xi,xj) = k(xi − xj).

from the fact that Gaussian distributions, which are required

to model the probability distributions in FVs, are not well-

defined in RKHS. More specifically, to fit a Gaussian dis-

tribution in a d-dimensional space, at least d independent

observations (training samples) are required, to ensure that

the covariance matrix of the distribution is not rank defi-

cient. Obviously, for an infinite dimensional RKHS, this

requirement cannot be met. While, in principle, it is pos-

sible to regularize the distributions, e.g., [52], we believe

that an in-depth analysis of this approach to kernelize FVs

goes beyond the scope of this paper. Note, however, that

our approximations of H can be applied verbatim to derive

approximate formulations of kernel FVs.

4. Experiments

We now evaluate our algorithms, i.e., kVLAD and

sVLAD, on several recognition tasks. As mentioned before,

our main motivation for this work was to be able to exploit

the power of the VLAD aggregation scheme to tackle prob-

lems where the input data is not in vectorial form. There-

fore, we focus on two such types of data, which have be-

come increasingly popular in computer vision, namely Co-

variance Descriptors (CovDs), which lie on SPD manifolds,

and linear subspaces, which form Grassmann manifolds.

Nevertheless, in addition to this manifold-valued data, we

also evaluate our algorithms in Euclidean space.

4.1. SPD Manifold

In computer vision, SPD matrices have been shown to

provide powerful representations for images and videos via

region covariances [41]. Such representations have been

successfully employed to categorize, e.g., textures [41, 17],

pedestrians [42] and faces [17].

SPD matrices can be thought of as an extension of posi-

tive numbers and form the interior of the positive semidef-

inite cone. It is possible to directly employ the Frobenius

norm as a similarity measure between SPD matrices, hence

analyzing problems involving such matrices via Euclidean

geometry. However, as several studies have shown, unde-

sirable phenomena may occur when Euclidean geometry is

utilized to manipulate SPD matrices [29, 42, 20]. Here, in-

stead, we make use of the Stein divergence defined as

δ2S(A,B) = ln det
(A+B

2

)

− 1

2
ln det

(

AB
)

. (10)

This divergence was shown to yield a positive definite

Gaussian kernel [39], named the Stein kernel given by

kS : Sn
++ × Sn

++ → R such that kS(A,B) =
exp(−σδ2S(A,B)). In all our experiments on SPD mani-

folds, the bandwidth of this kernel was determined by cross-

validation on the training data.

A standard approach when dealing with an SPD man-

ifold consists of flattening the manifold using the diffeo-
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morphism log : Sn
++ → Sym(n), where log and Sym(n)

denote the principal matrix logarithm and the space of sym-

metric matrices of size n, respectively. Given that Sym(n)
is a vector space, one can then directly employ tools from

Euclidean geometry, here the VLAD algorithm, to analyze

SPD matrices mapped to that space. We refer to this base-

line as log-Euclidean VLAD or lE-VLAD following the ter-

minology used in [3]. Note that this strategy has been suc-

cessfully employed in several recent studies (e.g., for se-

mantic segmentation [5]). We also report the results of the

Nyström approximation (nVLAD) of Section 3.1.3

Furthermore, we also compare our algorithms against

the state-of-the-art Weighted ARray of COvariances

(WARCO) [40], Riemannian-VLAD (R-VLAD) [11], Co-

variance Discriminative Learning (CDL) [47], and Rie-

mannian Sparse Representation using the Stein divergence

(RSR-S) [15]. In WARCO, an image is decomposed into

a number of overlapping patches, each of which is repre-

sented with a CovD. Classification is then performed by

combining the output of a set of kernel classifiers trained

on local patches. R-VLAD makes use of the tangent bun-

dle of a Riemannian manifold to aggregate manifold-valued

data in a similar manner to VLAD. In essence, WARCO

and R-VLAD pursue the same goal as us, i.e., to aggregate

local non-vectorial descriptors, which makes them proba-

bly the most relevant baselines, here. By contrast, follow-

ing [47, 15], we have used both CDL and RSR-S holisti-

cally, i.e., every image was described by one SPD matrix.

In the following experiments on the SPD manifold, we
used a codebook of size 32 for all variants of the VLAD al-
gorithm. Empirically, we observed that, for any algorithm,
larger codebooks did not significantly improve the perfor-
mance. To provide a fair comparison against WARCO, we
used the same set of features as [40]. Specifically, from a
local patch, a 13×13 CovD was extracted using the features

f(x, y) = [h1(Y ), · · · , h8(Y ), Y, Cb, Cr, ‖g(Y )‖,∠(g(Y ))]T,

where f(x, y) denotes the feature vector at location (x, y)
and Y , Cb and Cr are the three color channels from the

CIELab color space at (x, y). hi(·) is the scaled symmetric

Difference of Offset Gaussian filter bank, and ‖g(Y )‖ and

∠(g(Y )) are the gradient magnitude and orientation calcu-

lated on the Y channel (see [40] for details). The same set

of features was used for all the algorithms.

Head Orientation Classification. As a first experiment,

we considered the problem of classifying head orientation

using the QMUL and HOCoffee datasets [40]. The QMUL

head dataset contains 19292 images of size 50 × 50, cap-

tured in an airport terminal. The HOCoffee dataset contains

18117 head images of size 50 × 50. The images typically

include a margin of 10 pixels on average, so that the ac-

3The Fourrier approximation fVLAD only applies to Euclidean data.

Method QMUL HOCoffee HOC

R-VLAD [11] 91.8% 85.0% 81.3%
WARCO [40] 91% 80% 78%
CDL [47] 81.6% 71.2% 77.8%
RSR-S [15] 82.7% 65.9% 78.9%

lE-VLAD 87.6% 82.4% 79.7%
nVLAD 88.9% 83.4% 81.4%

kVLAD 92.2% 85.3 % 83.1%
sVLAD 92.7% 84.0% 84.1 %

Table 1. Recognition accuracies for QMUL, HOCoffe and HOC.

tual average dimension of the heads is 30× 30 pixels. Both

datasets come with predefined training and test samples.

The results of all the algorithms on both datasets are

reported in Table 1. Note that kVLAD outperforms the

state-of-the-art on both datasets, and that sVLAD even out-

performs kVLAD on QMUL. This can be attributed to

the square root normalization, which is not possible for

kVLAD. Without this normalization, the performance of

sVLAD drops by roughly 1%, and thus remains close to,

but slightly lower than that of kVLAD. Among the approx-

imations, sVLAD is superior to nVLAD. This is not really

surprising, since nVLAD uses a single subspace for all its

codewords, whereas sVLAD exploits local representations.

Body Orientation Classification. As a second task on the

SPD manifold, we considered the problem of determining

body orientation from images using the Human Orientation

Classification (HOC) dataset [40]. The HOC dataset con-

tains 11881 images of size 64 × 32 and comprises 4 orien-

tation classes (Front, Back, Left, and Right). In Table 1, we

compare the performance of our algorithms with the base-

lines. First, we note that all VLAD variants, including R-

VLAD, lE-VLAD and nVLAD, are superior to WARCO.

This demonstrates the effectiveness of the VLAD aggrega-

tion scheme. Moreover, we note that our algorithms outper-

form R-VLAD, lE-VLAD and nVLAD. The highest accu-

racy is obtained by sVLAD, which, again, in comparison to

kVLAD, benefits from the square root normalization.

Altogether, our experiments on SPD manifolds demon-

strate that our approach offers an attractive solution to ex-

ploiting the information from local patches. Note that, ex-

cept for a handful of studies (e.g., WARCO, R-VLAD),

CovDs are usually extracted from entire images, hence

making them questionable for challenging classification

tasks. This is typically due to the fact that aggregating non-

vectorial data is an open problem, to which we provide a

solution in this paper.

4.2. Grassmann Manifold

The space of p dimensional subspaces in R
d for 0 <

p ≤ d is not a Euclidean space, but a Riemannian man-

ifold known as the Grassmann manifold G(d, p). A point

U ∈ G(d, p) is typically represented by a d× p matrix U
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with orthonormal columns, such that U = Span(U). The

choice of the basis to represent U is arbitrary and metrics on

G(d, p) are defined so as to be invariant to this choice. The

projection distance is a typical choice of such metric. It was

recently shown to induce a valid positive definite kernel on

G(d, p) [18], i.e., the projection RBF kernel defined as

kp(A,B) = exp(σ‖ATB‖2F ), σ > 0 . (11)

As for the SPD manifold, the bandwidth of this kernel was

obtained by cross-validation on the training data.

Several state-of-the-art image-set matching methods

model sets of images as subspaces [16, 18]. However, to the

best of our knowledge, all these methods rely on a holistic

subspace representation. The only exception is again R-

VLAD [11], which, as our approach, can aggregate local

subspaces obtained by breaking an image-set into smaller

blocks to form a complete image-set descriptor.

In our experiments, in addition to R-VLAD and nVLAD,

we compare the results of our algorithms with four base-

lines: First, similarly to the log-Euclidean approach on SPD

manifolds, we propose to flatten G(d, p) at Id×p
4 and per-

form conventional VLAD in the resulting Euclidean space.

We refer to this method as lE-VLAD. As a second baseline,

we make use of the state-of-the-art Grassmannian Sparse

Coding (gSC) algorithm of [16], which describes each

image-set with a single linear subspace. We also employ

the kernel version of the Affine Hull Method (kAHM) intro-

duced in [6] and the CDL algorithm [47] as other state-of-

the-art baselines for image-set matching. Below, we evalu-

ate the performance of our algorithms and of the baselines

on three different classification problems, i.e., action clas-

sification, object recognition and pose categorization from

image-sets.

Action Recognition. As a first experiment on the Grass-

mannian, we made use of the Ballet dataset [48]. The Ballet

dataset consists of 8 complex motion patterns performed by

3 subjects. We extracted 1200 image-sets by grouping 5

frames depicting the same action into one image-set. The

local descriptors for each image-set were obtained by split-

ting the set into small blocks of size 32×32×3 and comput-

ing a Histogram of Oriented Gradient (HOG) [8] for each

block. We then created subspaces of size 31 × 3, hence

points on G(31, 3). We randomly chose 50% of the image-

sets for training and used the remaining sets as test samples.

We report the average accuracy over 10 such random splits.

We report the accuracy of all the algorithms in Table 2.

Note that all the local approaches outperform the holis-

tic gSC method. The maximum accuracy is obtained by

sVLAD, thus showing the power of our approximation.

Given the simplicity of lE-VLAD, it is interesting to ver-

ify if it can measure up to our algorithms by enlarging its

4We use Id×p to denote the truncated identity matrix.

dictionary. To this end, we increased the size of the dic-

tionary in lE-VLAD up to the point where the performance

started to decrease (256 atoms). While this indeed improved

the accuracy of lE-VLAD up to, at best, 91.7%, it remains

significantly below the performance of sVLAD.

Object Recognition. For the task of object recognition

from image-sets, we used the CIFAR dataset [22]. The CI-

FAR dataset contains 60000 images (32 × 32 pixels) from

10 different object categories. From this dataset, we gener-

ated 6000 image-sets, each one containing 10 random im-

ages of the same object. In our experiments, we used 1500

image-sets for training and the remaining 4500 image-sets

as test data. We report accuracies averaged over 10 random

image-set generation processes. To generate local descrip-

tors, we decomposed each image-set into small blocks of

size 8× 8× 5. Each block was then represented by a point

on G(64, 5) using SVD.

In Table 2, we compare the results of our algorithms with

those of the baselines. Here, kVLAD yields the best accu-

racy, closely followed by sVLAD.

Pose Classification. As a last experiment on the Grass-

mannian, we evaluated the performance of our algorithms

on the task of pose categorization using the CMU-PIE face

dataset [37]. The CMU-PIE face dataset contains images

of 67 subjects under 13 different poses and 21 different il-

luminations. The images were closely cropped to enclose

the face region and resized to 64 × 64. We extracted 1700

image-sets by grouping 6 images with the same pose, but

different illuminations, into one image-set. The local de-

scriptors for each image-set were obtained by splitting the

set into small blocks of size 32×32×3 from which we com-

puted Histogram of LBP [27]. We then created subspaces

of size 58× 3, hence points on G(58, 3). Table 2 compares

the results of our algorithms with those of the baselines.

The highest accuracy is obtained by kVLAD, this time by a

larger margin over sVLAD, which nonetheless remains the

second best. Note that, here, flattening the manifold through

its tangent space at I58×3 seems to incur strong distortions,

as indicated by the low performance of lE-VLAD.

4.3. Euclidean Space

Our final experiments are devoted to Euclidean spaces.

To this end, we made use of the Pascal VOC 2007

dataset [10] and of the Flicker Material Database

(FMD) [36]. The Pascal VOC 2007 dataset [10] con-

tains 9963 images from 20 object categories. The FMD

dataset contains 1000 images from 10 different material cat-

egories [36]. Both datasets have been extensively used to

benchmark coding techniques. For these datasets, the com-

putational cost of kVLAD becomes overwhelming because

of the large amount of local descriptors they involve. There-

fore, we only report the results of sVLAD. We compare
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Method Ballet CIFAR CMU-PIE

R-VLAD [11] 93.9% 50.5% 69.5%
gSC [16] 79.7% 59.9% 75.5%
kAHM [6] 85.8% 36.1% 55.3%
CDL [47] 73.1% 54.7% 64.6%

lE-VLAD 91.1% 46.2% 59.6%
nVLAD 88.9% 62.2% 79.5%

kVLAD 92.2% 67.9 % 86.3 %

sVLAD 94.4% 65.2% 80.1%

Table 2. Accuracies for Ballet, CIFAR and CMU-PIE.

Method mAP

SPM [24] 54.3%
OCP [35] 57.2%
Sup-VLAD [28] 60.9%

VLAD 54.7%
nVLAD 56.2%
fVLAD 55.8%

sVLAD 60.3%

Table 3. Mean Average Precision

(mAP) for the VOC 2007 dataset.

Method CCR

aLDA [36] 44.6%
MS4C [25] 50.0%
DTDRBF [7] 53.1%

VLAD 49.4%
nVLAD 52.3%
fVLAD 50.3%

sVLAD 55.2%

Table 4. Correct Classification Rate

(CCR) for the FMD dataset.

these results with those of the two approximations fVLAD

and nVLAD, as well as with those of conventional VLAD

(implementation provided in [44]). Note that lE-VLAD and

R-VLAD both boil down to conventional VLAD in the Eu-

clidean case.

For these experiments, we set the size of the codebooks

to 256 and used SIFT descriptors as local features, with

dimensionality reduced to 80 using PCA. For fVLAD and

nVLAD, the size of the RKHS was chosen to be 256 (almost

3 times larger than the original space). While increasing the

dimensionality of the RKHS could potentially improve the

results, it would come at the expense of increasing the com-

putational burden of coding.

For Pascal VOC 2007, Table 3 compares the recog-

nition accuracies of the above-mentioned techniques with

the following additional baselines: Spatial Pyramid Match-

ing (SPM) [24], Object-Centric spatial Pooling (OCP) [35]

and supervised dictionary learning for VLAD (Sup-

VLAD) [28]. Similarly to our experiments on manifolds,

sVLAD outperforms the fixed approximation techniques

(i.e., fVLAD and nVLAD). Importantly, we observe that the

three approximations outperform traditional methods such

as SPM and VLAD. Furthermore, sVLAD also outperforms

the state-of-the-art pooling method OCP [35], and performs

roughly on par with the supervised Sup-VLAD. This latter

comparison motivates an interesting future research direc-

tion to learn a supervised dictionary in RKHS.

For FMD, Table 4 compares the recognition accu-

racies of our algorithms with nVLAD, fVLAD, VLAD

and the state-of-the-art methods augmented Latent Dirich-

let Allocation (aLDA) [36], Multi-Scale Spike-and-Slab

Sparse Coding (MS4C) [25], and Describable attributes

(DTDRBF) [7]. In essence, we can see that sVLAD out-

performs (i) VLAD and the other approximations; and (ii)

the state-of-the-art aLDA, MS4C and DTD methods.

4.4. Coding Times

Below, we report the coding times of our two algorithms.

For sVLAD, this means the time to build one image descrip-

tor, which is virtually the time to classify one sample. For

kVLAD, however, since no descriptor is explicitly built, we

report the time to compute Eq. 4. Note that this timing can-

not truly be compared to that of sVLAD, but still gives an

indication of the speed of kVLAD. All these coding times

were obtained on a quad-core machine using Matlab.

When measuring these timings, we used the following

parameters (corresponding to our previous experiments).

We used a codebook of size 32 for the SPD and Grassmann

manifolds, and a codebook of size 256 in Euclidean space.

Note that, for the Euclidean case, we assumed that 1000 lo-

cal descriptors were computed on each image, while, for the

SPD and Grassmann manifolds, this number was set to 100.

All the coding times are reported in Table 5. For kVLAD,

the time to classify one image can be roughly obtained by

multiplying the values in the table by the number of train-

ing samples. As mentioned before, this makes kVLAD ill-

suited for large datasets. By contrast, these timings show

that sVLAD takes roughly one second to classify each im-

age, which is quite competitive.

Method SPD Grassmann Euclidean

kVLAD 80ms 155ms 45ms

sVLAD 750ms 1700ms 950ms

Table 5. Coding times for kVLAD and sVLAD (see text for de-

tails).

5. Conclusions and Future Work

In this paper, we have introduced a kernel extension of

the VLAD encoding scheme. We have also proposed a

novel approximation to this kernel formulation in the inter-

est of speeding up the coding process. Not only do the re-

sulting algorithms let us exploit more sophisticated classifi-

cation schemes in the VLAD framework, but they also allow

us to aggregate local descriptors that do not lie in Euclidean

space. Our experiments have evidenced that our algorithms

outperform state-of-the-art methods, such as WARCO [40]

and R-VLAD [11], on several manifold-based recognition

tasks. Furthermore, they have also shown that our new cod-

ing schemes yield superior results compared to the conven-

tional VLAD algorithm. In the future, we plan to explore

possible ways of kernelizing the Fisher vector method [30].

Since our local approximation of a Hilbert space has em-

pirically proven superior to other approximation, we also

intend to study its use in other kernel-based algorithms.
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