
Identifying Good Training Data for Self-Supervised Free Space Estimation

Ali Harakeh, Daniel Asmar, Elie Shammas

Department of Mechanical Engineering, VRL Lab

American University of Beirut, Beirut, Lebanon

ash18@mail.aub.edu, da20@aub.edu.lb, es34@aub.edu.lb

Abstract

This paper proposes a novel technique to extract train-

ing data from free space in a scene using a stereo camera.

The proposed technique exploits the projection of planes in

the v-disparity image paired with Bayesian linear regres-

sion to reliably identify training image pixels belonging to

free space in a scene. Unlike other methods in the litera-

ture, the algorithm does not require any prior training, has

only one free parameter, and is shown to provide consistent

results over a variety of terrains without the need for any

manual tuning. The proposed method is compared to two

other data extraction methods from the literature. Results

of Support Vector classifiers using training data extracted

by the proposed technique are superior in terms of qual-

ity and consistency of free space estimation. Furthermore,

the computation time required by the proposed technique is

shown to be smaller and more consistent than that of other

training data extraction methods.

1. Introduction

Scene understanding and modeling is a vital condition

for the success of any unmanned autonomous system ex-

ploration. In its most basic form, this understanding reduces

to delineating occupied space from free space and is essen-

tial for a system to safely navigate its environment. Fur-

thermore, knowledge of freespace could provide significant

insight in difficult scene understanding problems [1].

The problem of estimating free space in structured and

static environments is usually solved by exploiting prop-

erties of certain well defined structures. Two examples of

free space estimation solutions are that of Hedau et al. [2]

and Labayrade et al. [3]. While the first exploits the box

like geometry of furniture to estimate free space in indoor

scenes from a single camera image, the second uses the pla-

nar geometry of a road and identifiable lane markings to es-

timate the free space in urban road scenes. In unstructured

or unknown environments such as forest areas, the lack of

structure of the scene causes methods relying on static scene

properties to fail.

To account for the ever changing properties of free space

in unstructured scenes, it is natural to resort to learning

based systems, which usually require a training phase in

which training data representing free space is used as an

input to the learning algorithm. The extraction and classi-

fication of training data is usually performed through di-

rect human supervision; unfortunately, this becomes im-

practical and time consuming as the range of properties to

be learned becomes larger. Furthermore, the resulting sys-

tem cannot extend classification beyond the environments it

learned during training, thereby restricting its autonomy.

Recent free space estimation approaches tackle this

problem through self-supervision, where one classifier di-

rectly supervises input to a second classifier. The first clas-

sifier uses data it is confident about to label parts of the en-

vironment as free space; this data is then provided as in-

put to the second classifier that extends the labeling over

the whole environment. The proposed system in this pa-

per lies within this framework, allowing long range fully

autonomous free space estimation without relying on any

rigid assumptions such as a planar ground or bootstrapping

methods. The main contribution in this paper is a novel

training data extraction method that is fast, accurate, and

can be applied in structured and unstructured environments.

The remainder of this paper is structured as follows. Sec-

tion 2 provides a brief summary of previous systems em-

ploying self supervision. Section 3 explains in details the

training data extraction algorithm proposed in the paper.

Section 4 briefly presents the second classification stage

based on a one-class Support Vector Classifier (ν-SVC),

which is a necessary tool to assess the goodness of the train-

ing data extraction algorithms. Section 5 presents the results

and analysis of the ν-SVC using our proposed method for

training data extraction versus two other training data ex-

traction methods. Finally, Section 6 concludes the paper.

2. Related Work

The first part of this section presents a sample of pre-

vious work on free space estimation with an emphasis on

3530

learning-based methods. The second part gives a brief

overview of the v-disparity algorithm and v-disparity im-

age filtering, which is used as a first stage in the proposed

training data extraction algorithm.

Self-Supervised Learning For Free Space Estimation: a

variety of sensors and sensor combinations have previously

been employed for free space estimation. Sugar et al. [4]

employed a 3-D LIDAR to find the occupancy probability

of the environment through a semi-supervised learning ap-

proach. The robot is driven by a human operator through

a safe trajectory where it collects the remission and spa-

tial features of free space, which are used as training data

for a one-class classifier. Dahlkamp et al. [5] used a 2-D

LIDAR to extract training data belonging to free space us-

ing the Probabilistic Terrain Analysis (PTA) algorithm pro-

posed in [6]. The training data is then projected to a monoc-

ular camera and used to build a color based classifier. The

PTA algorithm requires unknown parameters to be learned

offline using human supervision. These two systems are

suitable when the properties of the robot’s operating envi-

ronment resemble these of the training environment. The

system presented in this paper differs from both methods in

that it is totally independent of any human supervision and

it does not have free parameters that need to be trained prior

to deployment in a given environment.

Radars have also been successfully employed for self-

supervision in free space estimation. Milella et al. [7] used

the echo in a radar image to identify ground patches and

then projected these patches to a monocular camera coordi-

nate frame in order to train a visual classifier. The classifica-

tion was done through Mahalanobis distance thresholding.

The optimal threshold is determined by constructing ROC

curves on a training dataset. In their work, the radar pro-

duces training patches at a specified distance of 11.4 meters

in front of the robot. Unfortunately, in some scenarios dis-

tance patches might not posses the same features as closer

ones, thereby causing the latter to be classified as obstacles.

The system presented in this paper gets around this problem

by extracting training patches from all over the field of view

of the camera.

Stereo cameras are also used for self-supervised free

space estimation and provide a dense 3-D representation of

the scene with additional color information. Milella et al.

[8] utilizes a stereo camera to extract geometric features that

are used to classify voxels in a 3-D point cloud belonging to

free space. In order to create the ground model, the system

needs to be initialized in an area free of obstacles. The re-

quirement for initialization is problematic when the system

fails and the human operator cannot intervene to reinitialize

it. Our system does not need any special initialization and

in fact can be launched inside a heavily cluttered scene.

Vernaza et al. [9] also used a stereo sensor in a Markov

Random Field framework to classify pixels in the image be-

longing to the ground plane. The largest planar region is

assumed to be the ground plane, and pixels belonging to it

are taken as ground pixels. This training extraction method

fails in scenarios where the ground plane is not the largest

plane in the image. The novel training data extraction al-

gorithm presented in this paper utilizes the properties of the

projection of the ground on the v-disparity image, and is

able to extract training pixels even if the ground is not pla-

nar.

The V-Disparity Algorithm: the v-disparity algorithm was

first proposed by Labayrade et al. [3] for road estimation

in urban scenes. It transforms a disparity image to a v-

disparity image by forming a 256-bin histogram of dispar-

ity values for each row of the disparity image and concate-

nating them vertically. For example, a 720x1280 dispar-

ity image is transformed into a 720x256 v-disparity image.

Oblique and horizontal planes in the disparity image are

mapped to slanted lines in the v-disparity image. Thus,

detecting slanted lines in the v-disparity image is equiva-

lent to the estimation of the ground plane in the disparity

image. Fig.1-c shows the constructed v-disparity image,

where the slanted line projection of the ground plane termed

the ground correlation line can be observed.

The V-Disparity Image Filtering and Stochastic Model:

Harakeh et al. [10] noted that traditional line detection

methods were unreliable when trying to estimate slanted

lines in off-road scenes, and proposed a binary filtering al-

gorithm that takes as an input the v-disparity image and

provides as an output a filtered v-disparity image contain-

ing only slanted lines. This was coupled with a stochas-

tic model, which uses maximum likelihood linear regres-

sion with a first order polynomial basis functions to pro-

vide point estimates of the parameters of the ground cor-

relation line. The parameters were then used to estimate

the mean of a probability distribution that describes the oc-

cupancy probability of each pixel. This approach has two

drawbacks. First, offline training is required to determine

the optimal classification threshold for ground segmenta-

tion, which limits the usability of the modeled probability

distribution when extending to a new environment. Second,

finding point estimates of the line parameters usually results

in over fitted solutions that highly depend on the size and

position of the (v,d) pairs remaining in filtered v-disparity

image. The system presented in this paper handles these

problems by directly modeling the occupancy probability

distribution through the Bayesian linear regression frame-

work, which is described in the next section.

3. Bayesian Linear Regression For Training

Data Extraction

This section describes the training data extraction algo-

rithm that we are proposing. First, for each new image the

v-disparity image is extracted, then is filtered by using the

3531

Figure 1: Flowchart of our system. a) Stereo Left Image. b) Stereo disparity image. c) v-disparity image. d) Filtered

v-disparity image. e) Training pixels in green are extracted using our Bayesian linear regression framework, and are used as

input to a One-Class Support Vector Classifier. f) Results of the Support Vector Classifier with the green area as the estimated

free-space in the image.

binary filtering algorithm [10], resulting in an image con-

taining only pixels belonging to the ground correlation line

(Fig.1-d). The remaining (v,d) pairs in the image are used

as training data input to Bayesian linear regression to learn

the predictive probability distribution P(d|v), where v is the

input variable and d the target variable. Although the pre-

dictive distribution from Bayesian linear regression is usu-

ally used to predict new values of d given v, we found that

we can use it to compute the probability of a disparity value

d in the disparity image to belong to the ground correlation

line, which is analogous to the probability of d belonging to

the ground plane.

3.1. Learning The Predictive Distribution

The non-planar nature of the ground plane in off-road

scenarios leads to a distorted ground line projection in the

v-disparity image that might not be straight. To accommo-

date this case,the disparity d is modeled as a second degree

polynomial function of v, which has the form:

d = w0 +w1v+w2v2 + ε = wT φ ∗(v)+ ε, (1)

where φ ∗(v) are the set of second degree polynomial basis

function, [φ0(v) φ1(v) φ2(v)] = [v0 v1 v2] and w the param-

eter vector w = [w0 w1 w2]. ε is a zero mean Gaussian ran-

dom variable with precision β . The conditional distribution

of d takes the following form:

P(d|v,w,β) = N (d;wT φ ∗(v),β−1). (2)

The vectors v = [v1...vN] and d = [d1...dN] are now de-

fined as the training data pairs, where vn,dn are coordinate

pairs extracted from the filtered v-disparity image. Target

training variables [d1...dN] are assumed to be IID variables

drawn from the conditional distribution in (2) and as such,

their likelihood function has the expression :

P(d|v,w,β) =
N

∏
n=1

N (dn;wT φ ∗(vn),β
−1). (3)

3.1.1 Bayesian Linear Regression

At first, it should be noted that throughout this section, the

variables v and v will be added to the conditional variables

through the independence assumption. To begin with the

Bayesian treatment of linear regression, a prior distribution

is defined over the model parameter vector w as:

P(w|α) = P(w|v,v,α,β) = N (0,α−1I), (4)

For simplicity, the prior is considered to be zero mean and

isotropic Gaussian with a single precision parameter α .

This assumption reduces the number of unknown parame-

ters in the prior to only α and results in a Gaussian posterior

distribution when multiplied with the likelihood function in

(3). Having set the prior, the posterior distribution of the

parameter vector w given the training data can be written

using Bayes rule as:

P(w|v,v,d,α,β) = ΓP(d|v,v,α,β ,w)P(w|v,v,α,β), (5)

3532

where Γ is a normalization coefficient and P(d|v,v,α,β ,w)
is the likelihood function in (3). The posterior distribution is

computed by completing the squares in the exponential and

then making use of the standard form of the normalization

coefficient of the Gaussian, and has the form:

P(w|v,v,d,α,β) = N (w; µw,Σw), (6)

where µw is the mean:

µw = βΣwΦT d, (7)

and Σw is the 3×3 covariance matrix:

Σ−1
w = αI +βΦT Φ. (8)

Here, I is a 3×3 identity matrix and Φ is the design matrix,

written in terms of the input vector v as:

Φ =




1 v1 v2
1

.

.

1 vn v2
n


 (9)

Th predictive distribution is expanded according to the the-

orem of total probability as:

P(d|v,v,d,α,β) =
∫

w
P(d|v,v,d,α,β ,w)

P(w|v,v,d,α,β)dw.

(10)

It is noted that the predictive distribution is the result of

a convolution of two Gaussian distributions in (2) and (6).

Accordingly, the predictive distribution has the following

form:

P(d|v,v,d,α,β) = N (d; µT
w φ ∗(v),Σp), (11)

where the variance Σp can be written as:

Σp =
1

β
+φ ∗(v)T Σwφ ∗(v). (12)

Although the unknown parameter w has been marginalized,

the previous equations require precise knowledge of the pre-

cision parameters α and β , which might not be available

apriori.

3.1.2 Learning The Precision Parameters

In a fully Bayesian treatment, the predictive distribution

would be expanded using the theorem of total probability

over all three unknown parameters α , β , and w. This ex-

pansion would have the form:

P(d|v,v,d) =
∫

α

∫

β

∫

w
P(d|v,v,d,α,β ,w)

P(w|v,v,d,α,β) (13)

P(α,β |v,v,d)dwdβdα,

which has no closed form solution due to the lack of knowl-

edge of the conditional joint PDF P(α,β |v,v,d). An ap-

proximation of the fully Bayesian treatment of this hierar-

chical model is computed by setting the hyperparameters at

the highest level of the hierarchy (α and β) to their most

likely values instead of integrating them out [11].

We start by assuming that the conditional joint pdf

is sharply peaked around the values of the true hyper-

parameters α̂ and β̂ . The predictive distribution in this case

can be estimated as:

P(d|v,v,d)≃P(d|v,v,d, α̂, β̂)

=
∫

w
P(d|v,v,d, α̂, β̂ ,w)P(w|v,v,d, α̂, β̂)dw.

To estimate the two hyperparameters, the conditional joint

pdf is expanded using Bayes theorem as:

P(α,β |v,v,d) ∝ P(d|v,v,α,β)P(α,β |v,v). (14)

Due to the lack of knowledge of the hyperparametes α and

β their joint prior P(α,β |v,v) is assumed to be uniform

and thus is relatively flat. Because of the previous assump-

tion, maximizing the conditional joint pdf P(α,β |v,v,d) is

equivalent to maximizing P(d|v,v,α,β) and as such, the

true hyper parameters can be estimated as:

α̂ = argmax
α

P(d|v,v,α,β),

β̂ = argmax
β

P(d|v,v,α,β),
(15)

The estimates of the hyperparameters require the computa-

tion of the likelihood function P(d|v,v,α ,β), which has the

form:

P(d|v,v,α,β) =
∫

w
P(d|v,v,α,β ,w)P(w|v,v,α,β)dw,

(16)

Working out the convolution, the evidence function

P(d|v,v,α,β) has the form:

P(d|v,v,α,β) =
(

β

2π

)N
2

(α) |Σ−1
w |−

1
2 exp

[
−β

2
||d−Φµw||

2 +
α

2
µwµT

w

]
.

Maximizing the evidence function is the same as maximiz-

ing its natural logarithm and as such, the hyper-parameters

can be computed by setting the partial derivative of the log-

arithm of the evidence function with respect to the respec-

tive hyper-parameter to zero. The natural logarithm of the

evidence function can be written as:

lnP(d|v,v,α,β) =

lnα +
N

2
lnβ −

ln |Σ−1
w |

2

−
N

2
ln(2π)−

β

2
||d−Φµw||

2 −
α

2
µwµT

w .

(17)

3533

The derivative equation with respect to α is:

∂ lnP(d|v,v,α,β)

∂α
=

1

α
−

1

2

[
µwµT

w +
∂ ln |Σ−1

w |

∂α

]
. (18)

The determinant of the matrix Σ−1
w can be rewritten in terms

of the eigenvalues of the matrix βΦT Φ as:

|Σ−1
w |= ∏

i

(λi +α).

Computing the partial derivative we get:

∂ ln |Σ−1
w |

∂α
= ∑

i

1

λi +α
. (19)

Setting the partial derivative in (18) to zero, the hyper-

parameter α will have the form:

α =
1

µwµT
w

∑
i

λi

λi +α
. (20)

Proceeding with similar analysis with respect to the hyper-

parameter β we obtain:

1

β
=

1

N −∑i
λi

λi+α

N

∑
n=1

[dn −µT
w φ ∗(vn)]

2
. (21)

We note that both solutions are implicit solutions of the pa-

rameters themselves. To solve for the hyper-parameters, an

initial value must be chosen to calculate µw and the sum

∑i
λi

λi+α
and then compute α and β using (20) and (21) until

convergence. Convergence is determined when the differ-

ence between the old and new value of the hyperparameters

is less than a specified tolerance. Initial value selection and

the tolerance are discussed in the next section.

3.1.3 Training Pixel Extraction

After learning the hyperparameters α̂ and β̂ from (20) and

(21) respectively, the final form of the predictive distribu-

tion becomes:

P(d|v,v,d, α̂, β̂) = N (d; µT
w φ ∗(v),Σp), (22)

with Σp computed from (12). The predictive distribution

(22) is usually used to estimate new values of the target

variable d given the row coordinate v as the input variable.

Here, a confidence interval is specified over the PDF, and

disparity values in the disparity image belonging to it are

labeled as pixels belonging to free space in the image. An

example of training pixel labeling is shown in Fig.1-e.

The algorithm contains only three free parameters which

are the initial values of the hyperparameters, the tolerance

for convergence, and the confidence interval. Since we are

using the confidence interval for selecting training data, the

initial value of the hyperparameters has no effect on the se-

lection procedure. The tolerance is set to a very low value of

10−10 for both hyper parameters. This leaves the confidence

interval to be the only real free parameter in the algorithm

controlling the amount of data labeled as training pixels.

In our implementation, disparity values laying in the 30%

confidence interval are chosen as our training data. Increas-

ing the width of the confidence interval yields more but less

precise training data and vice-versa.

4. Second Stage Classification

This section briefly describes the second stage classifi-

cation phase, which is necessary to evaluate the goodness

of the extracted training data. At first, the image is sepa-

rated to constant sized blocks in order to extract histograms

necessary for the creation of the feature vector. Blocks are

labeled as training blocks if at least 10% of their pixels in-

clude training pixels. Kim et al. [12] showed that the quality

of free space estimation deteriorates as the size of the blocks

increases. In contrast, the computational speed decreases as

the size of the blocks increase. We chose 5×32 blocks as a

compromise between quality and computation speed.

Each block in the image has associated with it a 20 di-

mensional feature vector comprised of:

From HSV space:

• An 8 bin histogram of hue.

• A 5 bin histogram of saturation.

• The mean value of hue.

• The mean value of saturation.

From RGB space:

• The mean value of R.

• The mean value of G.

• The mean value of B.

From XYZ space:

• The mean height of each block with respect to the

stereo sensor.

• The difference in height between the highest and low-

est point in the block.

This feature vector might not be the optimal for free space

estimation, but is sufficient for comparing training data ex-

traction methods.

The training data extraction algorithm can only extract

data from one of the two classes, and therefore the classi-

fication problem is formulated as a one-class classification

problem in which all the training data belongs to the pos-

itive class and where the negative class is severely under

sampled. The ν-Support Vector Classifier proposed by [13]

is chosen as the second stage classifier since it requires min-

imal free parameter selection. A standard off-the-shelf im-

plementation of the ν-SVC is used and thus only the selec-

tion of free parameters in this implementation will be dis-

cussed. The three free parameters in the ν-SVC algorithm

are ν , the kernel scale, and the outlier fraction. ν is a pa-

3534

rameter that lies between 0 and 1 and controls the fraction

of training data to become support vectors. In this imple-

mentation, it is set to 1 which results in using all training

data as support vectors. The outlier fraction, which de-

termines the percentage of training data to belong to the

negative class is set to be 5%. This combination of ν and

outlier fraction allows the ν-SVC classifier to be robust to

only small amounts of wrong labels in the training data. A

large amount of wrongly labeled training data will change

the shape of the decision boundary, emphasizing the effect

of training data extraction algorithms on the quality of the

final pixel classification and allowing an objective compar-

ison between training extraction algorithms. As part of the

algorithm, the scale of the Gaussian kernel is selected auto-

matically, using a heuristic procedure based on training data

subsampling. Finally, due to the difference in their scale,

features are standardized by subtracting their mean value

and dividing by their standard deviation.

5. Experiments and Results

This section presents an analysis of the goodness of

training data extracted by the proposed algorithm by com-

paring it against training data extracted via other techniques

in the literature. This is done by inputting each set of data

to the ν-SVC and comparing the three corresponding output

pixel labels.

5.1. Datasets

To be able to perform the necessary experiments, three

datasets were created with terrains ranging from planar to

non-planar ground. Each frame in the dataset is comprised

of a stereo pair of 720× 1280 colored images, their corre-

sponding disparity image, and pixel X ,Y ,and Z coordinate

with respect to the camera’s coordinate frame. The images

are captured by Stereo Lab’s ZED stereo camera [14] and

the algorithm provided by the camera’s SDK was used to

generate the disparity image and the point cloud coordi-

nates. The three datasets include:

Difficult dataset: 16 images taken with a hand held stereo

camera on highly non-planar terrain(Fig.3-first row).

Medium dataset: 120 images taken with the a stereo cam-

era mounted on UGV driven on a slightly non-planar park-

like terrain (Fig.3-second and third rows).

Easy dataset: 145 images taken with the a stereo camera

mounted on a UGV driven on a highly planar man-made

terrain (Fig.3-fourth and fifth rows).

It has to be noted that pixels lacking geometric features

due to rectification, occlusion, or being located beyond the

stereo camera’s maximum range are not considered in this

evaluation. Furthermore, ground truth is generated manu-

ally for every frame of the three datasets.

5.2. Baselines

Two training data extraction algorithms are used for the

sake of comparison with the proposed algorithm. The two

algorithms are:

Bootstrapping: Bootstrapping was used in [8] and relies on

the assumption that the properties of the ground plane will

not change much as the UGV moves through the environ-

ment. This algorithm is implemented by manually provid-

ing the robot with positive labels in the first frame, which

it then uses as training data for classification in the second

frame. Positively labeled data in the second frame are used

as training data in the third and so on.

Plane Fitting: this algorithm was used in [9] and [12] and

relies on plane fitting in the stereo generated point cloud

to determine patches belonging to the ground plane. For

maximum robustness towards outliers, M-estimator SAm-

ple Consensus (MSAC) algorithm is used for plane fitting.

The expected normal vector of the ground plane is required

to be provided as an input, and inlier points determined by

the algorithm are used as training data input to the ν-SVC

algorithm.

5.3. Analysis Of The Results

All experiments were done with the feature vector and

ν-SVC parameters held constant across all three datasets.

Furthermore, the free parameters of the three training data

extraction methods are also fixed over all trails. The la-

bels obtained from the ν-SVC using the three algorithms

are compared to ground truth labels to compute three per-

formance criteria, which are the recall, precision, and speci-

ficity.

Recall describes the fraction of ground patches retrieved

by the classifier, while precision describes fraction of the

retrieved patches that are correct. Specificity on the other

hand, describes the fraction of correctly identified negative

instances, which in our case are the obstacles. The proposed

algorithm’s aim is two-fold, first to maximize all three per-

formance criteria of the ν-SVC classifier and second, to

keep its performance relatively the same over all the three

types of terrain. Table 1 summarizes the mean recall, preci-

sion, and specificity of the ν-SVC classifier using training

data from the three algorithms over all the frames of each

datasets.

The ν-SVC classifier using Bootstrapping performed the

worst of all three having a mean recall of 0.134 over the

three datasets and is found to be unusable for reliable free

space estimation. The low recall is attributed to the deterio-

ration of the classification as the camera moves away from

its initial position due to the change in the properties of the

ground. This phenomenon can be clearly seen in Fig.2-left

where the recall is plotted as function of frames. Better rel-

ative performance of the ν-SVC using Bootstrapping on the

Difficult dataset is mainly due to the constant color proper-

3535

Figure 2: Plots of recall values of the ν-SVC and computa-

tional time (in seconds) of the three training data extraction

methods per frame of the datasets..

ties of the ground in this dataset. The results of the ν-SVC

using Bootstrapping are shown in the fifth column of Fig.3.

At the early frames of operation (third and fourth rows), it

provides good results, while at later frames (first, second

and fifth rows), the quality of classification greatly deteri-

orates. One advantage of bootstrapping is its low compu-

tation time due to the low requirements for training data

extraction.

The ν-SVC utilizing plane fitting reaches 0.9646 and

0.9422 recall on the easy and medium dataset respectively.

Compared to the ν-SVC using our algorithm, which has a

recall of 0.8671 and 0.8114 on the same datasets, the ν-SVC

utilizing plane fitting seems to perform better. We attribute

the better performance to the much larger amounts of train-

ing data provided by plane fitting in cases of planar ground.

However, the increase in recall comes at the expense of a de-

crease in precision and specificity. On the two datasets, the

ν-SVC using our algorithm achieves a precision of 0.9604

and 0.9326 respectively vs 0.9340 and 0.8931 for the ν-

SVC using plane fitting. The specificity of the ν-SVC using

our algorithm was also better, achieving 0.9853 and 0.9781

on the two datasets vs a specificity of 0.9731 and 0.9592

for the ν-SVC using plane fitting. On the Difficult dataset,

a deterioration in the quality of classification of the ν-SVC

using plane fitting was observed. In highly non planar envi-

ronments, plane fitting only provides training data from the

largest locally planar patch with a normal vector closest to

that provided as input for the algorithm (Fig.3 third column,

first row). This leads to a reduction in recall to a value of

0.5784. As the recall decreases, the precision increases to

0.9959 and the specificity to 0.9992. On the other hand, the

ν-SVC using our algorithm is able to provide a recall value

of 0.8147, providing an increase of 0.2368 over the recall

of the ν-SVC using plane fitting. This high recall is accom-

panied with high values of precision and specificity, 0.9855

and 0.9725 respectively. This shows that our algorithm is

able to provide reliable training data on highly non planar

terrain.

Another important criterion to consider is the computa-

tion time of each training extraction algorithm. The pro-

posed algorithm includes v-disparity image generation, fil-

tering and Bayesian linear regression and was implemented

in Matlab, as were the other two data extraction algorithms.

All the algorithms ran on the same Laptop. The fifth column

of Table 1 shows that as the nature of the scene becomes

more non-planar, the computation time of plane fitting in-

creases. Furthermore, Fig.2-right shows that the variance

of the computation time between frames is very large for

plane fitting, which is mainly due to the dependence of its

computation time on the density of the point cloud. The pro-

Table 1: Evaluation of the ν-SVC using the three training

data extraction algorithms over the three datasets. The eval-

uation is based on the average recall, precision, specificity,

and computation time (of the training data extraction algo-

rithm, in seconds) over all the frames of each dataset. As

the terrain becomes harsher, our algorithm proves to pro-

duce better results.

ν-SVC using Our Training Extraction Algorithm

Dataset Recall Precision Specificity Time

Easy 0.8671 0.9604 0.9853 0.0547

Medium 0.8514 0.9326 0.9781 0.0592

Difficult 0.8147 0.9855 0.9725 0.0598

ν-SVC using plane fitting

Dataset Recall Precision Specificity Time

Easy 0.9646 0.9340 0.9731 0.1681

Medium 0.9422 0.8931 0.9592 0.4833

Difficult 0.5784 0.9960 0.9957 1.1138

ν-SVC using Bootstrapping

Dataset Recall Precision Specificity Time

Easy 0.0326 0.9787 0.9995 NA

Medium 0.0869 0.9853 0.9963 NA

Difficult 0.2838 0.9959 0.9992 NA

3536

Figure 3: Examples of the training data extracted using our algorithm and the plane fitting algorithm (first and third columns

respectively), and the final classification results obtained from ν-SVC using our algorithm (green), largest fitted plane al-

gorithm (red) and bootstrapping (blue). Bootstrapping does not explicitly extract training data at each frame and thus only

results of the final classification are shown.

posed algorithm shows a more consistent computation time

whether across datasets (Table 1, fifth column) or across

frames (Fig.2).

The intuition behind the improved performance pro-

vided by the ν-SVC using our proposed algorithm for train-

ing data extraction is that in non-planar environments, the

ground plane is actually made up of many small oblique and

horizontal planes, which are all projected to slanted lines

in the v-disparity image. Using the v-disparity filtering al-

gorithm to extract these lines is conceptually equivalent to

fitting planes to the whole scene in one shot. This allows

us to extract training data over the whole scene even in

highly non-planar scenarios (Fig.3-first column, first row)

and results in the computational time of our algorithm to

remain approximately the same whether the terrain is pla-

nar or non-planar. Finally, selecting training data by using

the confidence interval allows picking only high confidence

pixels for training, increasing the final classification’s preci-

sion and specificity. Such examples can be seen in the final

row of Fig.3, where the training data provided by our al-

gorithm results in better classification results. Plane fitting

can be seen to provide a large amount of wrongly labeled

training pixels resulting in a deterioration in the quality of

the final classification.

6. Conclusion

We presented a novel method to extract training data for

free space classification. The proposed algorithm does not

require any prior training, has only one free parameter, and

is shown to provide consistent results over a variety of ter-

rains, without requiring any terrain-specific tuning. ν-SVC

using our algorithm for training data selection is shown to

provide comparable results in planar terrain and much bet-

ter results in highly non-planar ones over other methods in

literature. Finally, our algorithm requires less computation

time to extract data from environments of varying typolo-

gies. The time to extract the data is both low and consistent

regardless of the environment being planar or not.

7. Acknowledgments

This work was supported by the University Research
Board (URB) at the American University of Beirut and
by the Lebanese National Council for Scientific Research
(LNCSR) .

3537

References

[1] D. C. Asmar, J. S. Zelek, and S. M. Abdallah, “Tree trunks

as landmarks for outdoor vision slam,” in Computer Vision

and Pattern Recognition Workshop, 2006. CVPRW’06. Con-

ference on. IEEE, 2006, pp. 196–196. 1

[2] V. Hedau, D. Hoiem, and D. Forsyth, “Recovering free space

of indoor scenes from a single image,” in Computer Vision

and Pattern Recognition (CVPR), 2012 IEEE Conference on.

IEEE, 2012, pp. 2807–2814. 1

[3] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time ob-

stacle detection in stereovision on non flat road geometry

through” v-disparity” representation,” in Intelligent Vehicle

Symposium, 2002. IEEE, vol. 2. IEEE, 2002, pp. 646–651.

1, 2

[4] B. Suger, B. Steder, and W. Burgard, “Traversability

analysis for mobile robots in outdoor environments: A

semi-supervised learning approach based on 3d-lidar data,”

in Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2015. [Online]. Available: http://ais.informatik.

uni-freiburg.de/publications/papers/suger15icra.pdf 2

[5] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. R.

Bradski, “Self-supervised monocular road detection in desert

terrain.” in Robotics: science and systems. Philadelphia,

2006. 2

[6] S. Thrun, M. Montemerlo, and A. Aron, “Probabilistic ter-

rain analysis for high-speed desert driving.” in Robotics: Sci-

ence and Systems, 2006, pp. 16–19. 2

[7] A. Milella, G. Reina, J. Underwood, and B. Douillard, “Vi-

sual ground segmentation by radar supervision,” Robotics

and Autonomous Systems, vol. 62, no. 5, pp. 696–706, 2014.

2

[8] A. Milella, G. Reina, and M. M. Foglia, “A multi-baseline

stereo system for scene segmentation in natural environ-

ments,” in Technologies for Practical Robot Applications

(TePRA), 2013 IEEE International Conference on. IEEE,

2013, pp. 1–6. 2, 6

[9] P. Vernaza, B. Taskar, and D. D. Lee, “Online, self-

supervised terrain classification via discriminatively trained

submodular markov random fields,” in Robotics and Au-

tomation, 2008. ICRA 2008. IEEE International Conference

on. IEEE, 2008, pp. 2750–2757. 2, 6

[10] A. Harakeh, D. Asmar, and E. Shammas, “Ground segmenta-

tion and occupancy grid generation using probability fields,”

in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ In-

ternational Conference on. IEEE, 2015, pp. 695–702. 2,

3

[11] C. M. Bishop, Pattern recognition and machine learning.

springer, 2006. 4

[12] D. Kim, S. M. Oh, and J. M. Rehg, “Traversability classi-

fication for ugv navigation: A comparison of patch and su-

perpixel representations,” in Intelligent Robots and Systems,

2007. IROS 2007. IEEE/RSJ International Conference on.

IEEE, 2007, pp. 3166–3173. 5, 6

[13] B. Schölkopf, R. Williamson, A. Smola, and J. Shawe-

Taylor, “Sv estimation of a distributions support,” Advances

in neural information processing systems, vol. 12, 1999. 5

[14] S. Labs, https://www.stereolabs.com/. 6

3538

http://ais.informatik.uni-freiburg.de/publications/papers/suger15icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/suger15icra.pdf
https://www.stereolabs.com/

