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Abstract

We propose a novel approach that generates a high-

quality depth map from a set of images captured with a

small viewpoint variation, namely small motion clip. As

opposed to prior methods that recover scene geometry and

camera motions using pre-calibrated cameras, we intro-

duce a self-calibrating bundle adjustment tailored for small

motion. This allows our dense stereo algorithm to produce

a high-quality depth map for the user without the need for

camera calibration. In the dense matching, the distributions

of intensity profiles are analyzed to leverage the benefit of

having negligible intensity changes within the scene due to

the minuscule variation in viewpoint. The depth maps ob-

tained by the proposed framework show accurate and ex-

tremely fine structures that are unmatched by previous liter-

ature under the same small motion configuration.

1. Introduction

Small motion in a hand-held camera commonly happens

when a user moves the device slightly to find a better photo-

graphic composition, or even when the user tries to hold the

camera steady before pressing the shutter. If we were able

to restore the geometry of the scene using the small motion

clip captured at that moment, it could be useful for a variety

of applications, such as synthetic refocusing or view syn-

thesis. Figure 1 shows an example of the small motion clip.

The averaged image of the entire sequence gives a sense of

how small the camera motion is.

In this paper, we propose an effective pipeline for depth

acquisition from a small motion clip. At the core of our

approach is the novel bundle adjustment scheme that is spe-

cially devised to be applied to the small motion case. Unlike

to prior approaches, our algorithm can jointly estimate the

intrinsic parameters and poses of the camera from a small

motion footage, which imbues the proposed method with

practicality and severs the need for camera calibration.

By virtue of reliably estimating the intrinsic and extrin-

sic camera parameters, a plane sweeping based dense stereo

matching algorithm can be directly applied to produce a

dense depth map in a unified framework. A notable benefit

(a) An averaged image of 
small motion clip

(c) Depth map (d) Synthetic refocusing

(b) Front and top view of 
recovered 3D scene and camera poses 

Figure 1. A small motion clip is our sole input. (a) An averaged

image showing the overall camera motion. (b) Visualization of

recovered 3D scene points and camera poses. (c) Our depth map

result. (d) A synthetic refocusing result as an application example.

Please note that our method does not require camera calibration.

to the small motion clip is that the observed image intensi-

ties for a given point in the scene are almost identical along

the sequence due to the low variation in viewpoint. The

dozens of intensity observations also give a better chance in

finding reliable matchings. In order to leverage this benefit,

our dense stereo matching algorithm utilizes the variance of

the intensity profile as the cost measure for plane sweeping,

which is less likely to be affected by the noise of the refer-

ence image compared to other pair-wise intensity difference

based methods.

As opposed to previous approaches [9, 10, 27] that target

the same goal for small motion, the distinctive points of our

approach can be summarized as follows:

• A unified framework for depth from an uncalibrated

small motion clip is proposed, which can allow the

user to acquire a high-quality depth map from a sin-

gle instance of capture.

• Our bundle adjustment can even jointly estimate the

camera intrinsic parameters (i.e. focal length and radial
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distortion) as well as the camera poses and the scene

geometry from a single small motion clip.

• Our dense stereo matching that analyzes the intensity

and gradient profiles in plane sweeping can generate

depth maps exhibiting extremely fine structures, which

have not been demonstrated in previous literature un-

der the same small motion conditions.

2. Related Work

3D reconstruction from a hand-held camera is a widely

studied topic. SfM successfully recovers the sparse 3D ge-

ometry and camera poses for wide baseline images [7, 22].

The bundle adjustment [25, 4] minimizes the reprojec-

tion errors using an optimization framework. Other ap-

proaches [11, 21, 12] use the L∞ norm instead of the

L2 norm to make the cost function convex, but they are

more susceptible to outliers. As opposed to SfM, multi-

view stereo (MVS) can provide a depth for each pixel via

dense matching of the images [16]. Gallup et al. [5] present

an effective image matching method that selects a proper

baseline and image resolution adapted for the scene depth.

Conventional SfM and MVS approaches can reconstruct

accurate 3D geometry using wide-baseline images, but

users often cannot capture such images. Yu and Gallup [27]

propose an inspirational method that can estimate camera

trajectory even from a clip with hand-shaking motion. They

recover a dense depth map from a random depth initializa-

tion and perform a plane sweeping [3] based image match-

ing that incorporates a Markov Random Field [13]. Al-

though it is a well-known fact that narrow baselines affects

the accuracy of the estimated 3D geometry [17, 18, 19],

the inverse depth representation [27] is successfully demon-

strated in challenging small motion scenarios. Im et al. [9]

extends [27] with the consideration of rolling the shutter

effect. Instead of performing dense image matching, they

propagates the tracked 3D points into the canonical image

domain. As the propagation is regularized by smooth sur-

face normal map obtained from sparse depth points, the re-

sulting depth map is also smooth. Joshi and Zitnick [10]

adopts a homography based image warping for dense im-

age matching with the micro baseline assumption. Their

algorithm even targets the tremble of a camera mounted on

a tripod.

The proposed approach also targets small motion clips

obtained by monocular cameras. To the best of our knowl-

edge, we are the first to demonstrate that even the camera

intrinsic and lens parameters can be reasonably estimated

from a small motion clip. This allows us to introduce a

fully automatic pipeline that performs a self-calibration of

the camera and estimation of a high-quality depth map. As

opposed to [27] that computes a pair-wise consistency be-

tween the images, our dense stereo measures the consis-

tency of the observed intensities by looking at the intensity

Reference view

i-th view

Undistorted feature 
coordinate
Projected point

Figure 2. Small motion geometry used in our bundle adjustment

for an uncalibrated camera (Sec. 3.1). We adopt the distorted-to-

undistorted mapping function F to utilize the inverse depth repre-

sentation in an analytic form.

distributions. Our high fidelity depth map is more reliable

that that of [9, 10, 27].

3. Our Approach

We introduce the two consecutive stages of the proposed

framework. The small motion image sequence is first pro-

cessed in the bundle adjustment to estimate the camera pa-

rameters, then the undistorted images and the acquired pa-

rameters are utilized in the dense stereo matching.

3.1. Bundle Adjustment

The key aspect to the image sequences in question is

that the baseline between the small motion images is signif-

icantly smaller than that of the conventional SfM problem.

This makes the feature matching easier, but also results in

a much higher depth uncertainty that causes conventional

SfM approaches to fail.

In order to handle this challenging problem, Yu and

Gallup [27] introduce two practical clues: (1) the small an-

gle approximation of the camera rotation matrix and (2) the

inverse depth based 3D scene point parameterization. It is

shown that the former reduces the complexity of the cost

function, and the latter helps to regularize the scales of the

variables in the bundle adjustment. This idea is validated

well in challenging real-world datasets, but they assume that

the calibrated focal length is known a priori and do not ac-

count for the effects of the lens distortion.

Based on the two aforementioned insights, we propose

a novel bundle adjustment framework that is carefully de-

signed to estimate the focal length and radial distortion pa-

rameters in addition to the 3D scene points and camera

poses. Compared to a prior work targeting the same ob-

jective for a wide baseline 3D reconstruction [23], our ap-

proach is tailored for the inverse depth representation and is

more effective on small motion clips.

Conventional SfM algorithms map the projected 3D

points from the Undistorted image domain coordinates to

the Distorted image domain coordinates when measuring
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Front view Side view Top view

Yu and Gallup [27] (requires pre-calibration)

Our self-calibrating bundle adjustment

Reference view Our depth map

Figure 3. Comparing reconstructed 3D point clouds. Our ap-

proach recovers reliable 3D point clouds like the result of Yu

and Gallup [27], but our approach is capable of camera self-

calibration. We use calibrated camera parameters to apply [27].

the reprojection error (we refer this approach as to the U-D

model). When it comes to the inverse depth representation,

computing the reprojection error becomes rather complex:

a point must be back-projected into the 3D space before it

is projected onto the other image. However, describing the

back-projected point in an analytic form is not straightfor-

ward when using the U-D model because it is difficult to

get an exact analytic inverse function for the radial distor-

tion model [15].

Our bundle adjustment scheme is built in a slightly dif-

ferent way to avoid losing its analytic form that is essential

for non-linear optimization. We accomplish this by instead

adopting the D-U radial distortion model that maps the point

in the Distorted image domain into the Undistorted image

domain [24]. While the U-D model measures the reprojec-

tion error in the distorted image domain, our D-U model

measures the error in the undistorted image domain. This

idea is fitting for the inverse depth representation because

any feature point can be directly mapped onto the undis-

torted image domain for the back-projection or comparison

with the reprojected point.

We follow a reasonable approximation of the camera

model using one focal length f and two radial distortion

parameters k1, k2, where the principal point and radial dis-

tortion center are assume to be equal to the image center, as

done in [23]. The small motion geometry used in our bun-

dle adjustment is depicted in Figure 2. If uij is the distorted

coordinates for the j-th feature in the i-th image relative to

the image center, its undistorted coordinates can be calcu-

lated as uijF
(

uij

f

)

, where F is the D-U radial distortion

function that is defined by:

F (·) = 1 + k1 ‖·‖
2
+ k2 ‖·‖

4
. (1)

If i = 0 for the reference image, the back-projection of

the feature u0j to its 3D coordinates xj is parameterized

using its inverse depth wj by:

xj =

[

u0j

fwj
F
(

u0j

f

)

1
wj

]

. (2)

We now introduce a projection function π to describe the

projection of xj onto the i-th image plane as

π (xj , ri, ti) = 〈R (ri)xj + ti〉, (3)

R (ri) =

⎡

⎣

1 −ri,3 ri,2
ri,3 1 −ri,1
−ri,2 ri,1 1

⎤

⎦ , (4)

〈[x, y, z]
⊺
〉 = [x/z, y/z]

⊺
, (5)

where ri ∈ R
3 and ti ∈ R

3 indicate the relative rotation

and translation from the reference image to the i-th image,

{ri,1, ri,2, ri,3} are the elements of ri, and R is the vector-

to-matrix function that transforms the rotation vector ri into

the small-angle-approximated rotation matrix.

The undistorted image domain coordinates of the pro-

jected point is then calculated as fπ (xj , ri, ti). We use the

distance between these coordinates and the undistorted co-

ordinates as the reprojection error of uij . Finally, our bun-

dle adjustment is formulated to minimize the reprojection

errors of all the features in the non-reference images by:

argmin
K,R,T,W

n−1
∑

i=1

m−1
∑

j=0

ρ

(

uijF

(

uij

f

)

− fπ (xj , ri, ti)

)

,

(6)

where n is the number of images, m the number of fea-

tures, ρ (·) the element-wise Huber loss function [8], K the

set of the intrinsic camera parameters {f, k1, k2}, R and T
the sets of the rotation and translation vectors for the non-

reference images, and W the set of inverse depth values.

To obtain the feature correspondences, we first extract

the local features using the Harris corner detector [6] in

the reference image and find the corresponding feature lo-

cations in the other images by using the Kanade-Lukas-

Tomashi (KLT) algorithm [14]. Each tracking is performed

forwards and backwards to reject outlier features with bidi-

rectional error greater than 0.1 pixel.

For the initial parameters of the bundle adjustment, we

set the rotation and translation vectors to zero, which is

mentioned to be reasonable for the small motion case [27].

The focal length is set to the larger value between the im-

age width and height. The two radial distortion parameters
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(b) (c)(a)
Figure 4. An example of plane sweeping stereo. The image sequences correspond to the small motion clip are warped according to the

sweeping depth. (a) One of input images. Three local regions of different scene depth – P1, P2, and P3 are marked for the illustration. (b)

The mean image of warped input images and its corresponding intensity/gradient profile are displayed. If the sweeping depth is correct for

the local region, its profiles become flat. (c) Recovered depth map after applying winner-takes-all scheme on the computed cost volume.

are also set to zero. For the inverse depths, a random value

between 0.01 and 1.0 is given to each feature.

The proposed bundle adjustment has several benefits:

1) It can successfully handle images captured by conven-

tional cameras having mild lens distortion without any pre-

calibration. 2) The use of the robust Huber loss function

helps disregard the effects of outliers. Therefore, filtering

through the use of random sample consensus (RANSAC)

based two view relation estimation is not necessary. In prac-

tice, the two view approach can be unstable for small base-

lines [27].

Although our formulation requires a higher order com-

pared to that of [27] due to the addition of the intrinsic

camera parameters, we find that our bundle adjustment suc-

cessfully converges with a reasonable approximation for the

parameters in most of our experiments (see Figure 3).

3.2. Dense Stereo Matching

Once we have obtained the intrinsic and extrinsic camera

parameters from the previous stage, we can utilize these pa-

rameters in our plane sweeping based dense stereo matching

algorithm to recover a dense depth map. The distortion in

the input images are rectified using the estimated intrinsic

parameters. The rectified images are then used in this step.

The original idea of the plane sweeping algorithm [3] is

to back-project the tracked features onto an arbitrary vir-

tual plane perpendicular to the z-axis of the canonical view

point. If the back-projected points from all viewpoints are

gathered in a small region of the virtual plane, we can con-

clude that the depth of the tracked feature is equivalent to

that of the plane. Otherwise, this step repeats using other

virtual planes. This simple but powerful idea is extended

to dense stereo matching by warping the images onto the

sweeping plane and measuring the photo consistency of

each pixel of the warped images. The representative ap-

proach [2] computes the absolute intensity differences be-

tween the reference image and the other images for the con-

sistency measure.

Inspired by this reliable framework, our approach takes

(e) Reference 
view

(a) WTA-
SAD

(b) WTA-
VAR

(c) Refined-
SAD

(d) Refined-
VAR

Figure 5. Comparison with SAD based cost and VAR based cost.

After applying winner-takes-all (WTA) strategy, depth from SAD

based cost (WTA-SAD) shows higher depth noise than that of

VAR based cost (WTA-VAR). As a result, WTA-SAD gives in-

correct depth when depth refinement algorithm [26] is applied.

into account the distribution of the intensities acquired from

the pixels in the warped images that correspond to the same

point on the virtual plane, which we collectively call the in-

tensity profile. Consider the observed intensities in the pro-

file acquired from the correct sweeping depth; it is reason-

able to assume that the captured intensities are almost iden-

tical because the camera response function, white-balance,

scene illumination, and observed scene radiance are un-

changed with the kind of small viewpoint variation we are

dealing with. Therefore, the profile will be uniform if the

sweeping plane is at the correct depth for that pixel. Fig-

ure 4 shows an example supporting this idea.

Now we will introduce our dense stereo algorithm de-

vised for small motion clips, step-by-step.

Building intensity profile. For the k-th depth in nk sweep-

ing depths, all the images are warped by back-projecting

them onto a virtual plane at a given inverse-depth1 wk

from the reference viewpoint, and then projected onto the

reference image domain. The plane-induced homography

Hik ∈ R
3×3 that describes the transformation from the ref-

erence image domain coordinates to the i-th image domain

coordinates when passing through the virtual plane at the

1To prevent the abuse of the notation, we view the inverse depth wk =

1

zk
as a practical analog to the depth candidate.
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(a) Winner-takes-all (b) Outlier removal (c) After refinement (d) Reference View

Figure 6. The sequential procedures to get the dense depth map. (a) Rough depth map acquired by applying winner-takes-all strategy on the

cost volume, (b) after the removal of unreliable depth pixels through our approach, and (c) after the depth refinement algorithm is applied.

(d) The reference image. Note the fine structures observable in the bicycles.

k-th sweeping depth can be formulated by:

Hik = K

⎡

⎣

1 −ri,3 ri,2 + wkti,1
ri,3 1 −ri,1 + wkti,2
−ri,2 ri,1 1 + wkti,3

⎤

⎦K−1, (7)

where {ti,1, ti,2, ti,3} are the elements of ti and K is de-

fined as
[

f 0 pu

0 f pv

0 0 1

]

. (pu, pv) in K is the principal point co-

ordinates equated to the image center. Using this homogra-

phy, the i-th undistorted image Iui can be warped into the

reference image domain through the operation described by

the following formulation:

Iik(u) = Iui (〈Hiku〉), (8)

where 〈·〉 is the same function defined in Eq. (5) and Iik
is the warped i-th image according to the k-th sweeping

depth. After warping n images, every pixel u in the ref-

erence image domain has an intensity profile P(u, wk) =
[I0k(u), · · · , I(n−1)k(u)] for the inverse depth candidate

wk.

Compute matching cost volume. Based on earlier discus-

sions, we measure the consistency of the intensity profile to

evaluate the alignment of the warped images. Our match-

ing cost CI for pixel u and depth candidate wk is defined as

follows:

CI(u, wk) = VAR
(

[

I0k(u), · · · , I(n−1)k(u)
]

)

, (9)

where VAR(p) is the variance of vector p. In order to en-

force the matching fidelity on the edge regions of the image,

we introduce two additional costs Cδu and Cδv defined as the

horizontal and vertical gradients of the images, respectively.

Cδu is defined as follows:

Cδu(u, wk) = VAR

([

δI0k
δu

(u), · · · ,
δI(n−1)k

δu
(u)

])

,

(10)

where δI
δu

indicates the image gradient in the horizontal di-

rection. We use the first-order gradient filter F = [−1 0 1 ]
to approximate δI

δu
in the discrete and finite image space.

Cδv is similarly calculated using the vertical gradients ob-

tained by using F⊺. The comprehensive matching cost C is

defined as

C = CI + λ(Cδu + Cδv). (11)

Although the numerous intensity observations in the pro-

file give a reliable matching cost, the variance operator used

in Eq. (9) and (10) may not robustly compute the deviation

of the profile in the presence of outliers. The application of

a 3× 3 box filter on C can suppress some of the noise in the

costs. The proposed matching scheme is found to recover

the fine structures in the depth map results, which will be

shown later.

The proposed cost volume C is analogous to the conven-

tional plane sweeping stereo [2], which computes the sum

of absolute intensity difference (SAD) between the refer-

ence image and the other images. Here, the notable dif-

ference to our method is that the pairwise matching costs

depend on the reference image; if the reference image in-

cludes a large amount of noise, the matching cost will be

less reliable. By contrast, our variance operator handles ev-

ery element equally. Figure 5 shows the depth map compar-

ison between the SAD based cost and the VAR based cost

after applying the winner-takes-all strategy and the succes-

sive refinement.

Depth refinement. After applying the winner-takes-all

strategy on the cost volume C, we get the depth map Dwin.

Although Dwin gives a reasonable depth estimate, some

values of Dwin can be noisy when homogeneous textures

are present in that region as may not give an obvious

cost minimum. To handle noisy depth, we define a con-

fidence measure described by the formulation M(u) =
1−CI(u, Dwin(u))/P̄(u, Dwin(u)), where P̄ is the mean
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Figure 7. Synthetic experiments with respect to the magnitude of the baseline (n = 31) and the number of images (b = −2.1). (a), (c)

Depth maps obtained by the proposed WTA and their difference maps. (b), (d) Robustness measure results denoting the percentage of

pixels within 3, 5, 7, and 10 label differences from the ground truth.

Algorithm 1: Depth from Small Motion Clip

Input: Image sequence {Ii}
n−1

i=0

Output: Depth map Dout

- Compute relative pose {ri, ti}
n−1

i=0
, 3D points {x} of the

scene, and lens parameters f , k1, k2 (Sec. 3.1)

- Undistort {Ii}
n−1

i=0
to get {Iui }

n−1

i=0

- nk = number of label, zmin = nearest depth of x

for k = 1 : nk do

- Set wk = k

nkzmin

for i = 0 : (n− 1) do

- Warp Iui using wk, K, Ri, and ti (Eq. (7))

- Build intensity/gradient profiles and compute cost

volume C (Eq. (9, 10, and 11))

- Winner-takes-all on C and get Dwin

- Refine Dwin and get Dout (Sec. 3.2)

of the intensity profile P used for normalizing the confi-

dence map scale. If M(u) is smaller than a constant thresh-

old, we declare them as outlier pixels. Dwin and M(u)
are used for the depth refinement algorithm [26] that en-

forces smoothness on the depth image using the guidance

of the reference color image. [26] is based on the mini-

mum spanning tree structure, and it requires only 2 addi-

tion/subtraction operations and 3 multiplication operations

in total for each pixel. Figure 6 shows an example of the

outlier detection and the refinement. The overall pipeline of

our approach is summarized in Algorithm 1.

4. Experimental Results

4.1. Synthetic Dataset

We devise a synthetic experiment to analyze the algo-

rithm’s dependence on the magnitude of the baseline mo-

tion and on the number of images. We render 11 clips each

containing one reference image and 30 non-reference im-

ages all captured at a fixed distance around the z-axis of the

reference image. The baselines are determined relative to

the minimum depth of the scene from the reference image.

All the images are rendered using the BlenderTM software

at a set resolution of 640 × 480. Since our algorithm de-

R3 R5 R7 R10 MAD

SAD 43.331 64.940 78.337 86.419 8.650

VAR 44.349 67.728 81.646 90.201 5.763

Table 1. Quantitative comparison between the SAD based cost and

VAR based cost using one of our synthetic clips (b = −2.1, n =
31). MAD denotes the mean of absolute depth label difference.

termines the camera pose and scene depth up to a scaled

factor, the obtained depth map and the ground truth has to

be normalized into the same range, from 1 to 256 in our

case, for an accurate assessment. Fig. 7 shows the depth

map results obtained by the proposed WTA scheme and

their corresponding difference maps by varying magnitudes

of the baseline, shown in Fig. 7.(a), and the number of im-

ages used, Fig. 7.(c), respectively. Additionally, it shows

the results of the quantitative evaluations, Fig. 7.(b) and

Fig. 7.(d), using the robustness measure employed by the

Middlebury stereo evaluation system [20]; R5 denotes the

percentage of pixels that come within an absolute distance

of 5 labels from the ground truth label. These two evalua-

tions demonstrate that our method can produce a depth with

an R5 score of at around 80% as long as the magnitude of

the baseline is greater than 1% of the nearest scene depth

and the number of frames captured exceeds 30 frames. This

roughly equates to a 1 second small motion clip.

We also carried out a quantitative comparison by using

either the SAD based cost or the proposed VAR based cost

in the plane sweeping stage. In this experiment, the ground-

truth camera parameters of our synthetic clip (b = −2.1,

n = 31) are given to the depth map acquisition pipeline. As

shown in Table 1, the WTA depth map using the SAD based

cost gives worse results than that of the VAR based cost.

The reason behind this result is that the SAD based cost is

easily affected by quality of the reference image, which may

contain noise, whereas the VAR based cost has no bias and

considers the importance of all input images equally.

4.2. Real-world Dataset

Camera setup. We have tested our method using a machine

vision camera, Flea3 from Point Grey, Inc. (1280 × 960
resolution at 30fps), and an iPhone 6 with two video modes
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Figure 8. Depth maps acquired by our algorithm. For each dataset, the left image shows the averaged image of the footage to indicate

the amount of camera movement, and the right image shows the estimated depth map using our algorithm. The clips are captured by a

hand-held iPhone 6 device using the default video capturing mode. Note that the capture times of the displayed clips are only one second.

Point Grey Flea3 iPhone6

#1 (11) #2 (6) #1 (7) #2 (7)

F
o

ca
l

le
n

g
th

(p
ix

el
/s

ca
le

) GT 1685.95 1685.02 1283.05 1293.73

Initial 1280.00 1280.00 1000.00 1000.00

R
efi

n
ed Min 1656.44 1634.14 1253.45 1279.52

Mean 1707.74 1684.74 1300.06 1301.56

Max 1771.43 1748.79 1351.44 1332.44

D
is

to
rt

io
n

er
ro

r(
p

ix
el

)

Initial 5.76 5.89 3.65 3.25

R
efi

n
ed Min 0.09 0.02 0.89 0.97

Mean 0.52 0.53 1.48 1.14

Max 1.26 1.20 2.17 1.49

Table 2. Evaluation on the estimated intrinsic camera parameters

(i.e. focal length and radial distortion). We have tested 31 clips

(identified by the number in the parenthesis) grabbed by two cam-

eras with different lens settings. The ground truth camera parame-

ters (GT) are acquired using the camera calibration toolbox [28].

(1920 × 1280 at 30fps and 1280 × 720 at 240fps). For the

240 fps videos, 30 frames are uniformly sampled from the

first 240 frames. As the proposed method can utilize the full

resolution of the images, the estimated depth maps have the

same resolution as the inputs. The datasets are captured by

multiple users independent to this research. The small mo-

tion clips contain various types of motions, such as the one-

directional or waving motion. The maximum distances for

the captured scenes range from a wide variety of distances.

Figure 8 shows high-quality depth maps from various types

of small motions.

Computational time. In order to process each small mo-

tion footage (30 frames of 1280 × 720 res. images), our

unoptimized implementation takes about one minute to per-

form feature extraction, tracking, and bundle adjustment.

We use the Ceres solver for the sparse non-linear optimiza-

tion [1]. The dense stereo matching stage takes about 10

minutes. The reported time is measured without CPU par-

allelization. We use a desktop computer equipped with an

Intel i7-4970K 4.0Ghz CPU and 16GB RAM. The data and

program are released on our project website.

Evaluation on the camera self-calibration. As the pro-

posed bundle adjustment is designed to self-calibrate the

intrinsic camera parameters, we devise a quantitative evalu-

ation method for the camera parameters obtained by our ap-

proach. For this experiment, we use the calibrated Flea3 and

iPhone6 cameras, each while on two different lens settings2.

Table 2 compares the estimated focal length and radial dis-

tortion against the ground truth. Here, we intentionally set

the initial focal length to be significantly different from the

ground truth. For measuring the distortion error, we gen-

erate a pixel grid and transform their coordinates using the

estimated D-U function F . The transformed coordinates are

again applied with the ground-truth U-D model found in the

camera pre-calibration. If the estimated F is reliable, these

sequential transformation should be identity. The distortion

error is measured in pixels using the mean of absolute dis-

tances. The results show that the estimated parameters are

close to the ground truth. Notably, the mean distortion er-

ror from the Flea3 datasets is around 0.5 pixels, while the

initial parameter (k1,2 = 0) had an error of 5.8 pixels.

Comparison with [9, 27]. Figure 9 shows the depth maps

acquired by Yu and Gallup [27], Im et al. [9], and our ap-

proach. We use the dataset and results provided by their

2iPhone can hold a fixed focal length if the user touches the region of

interest in the preview screen for a long time.
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Averaged image of the clips Yu and Gallup [27] Im et al. [9] Our results

Figure 9. Comparison with state-of-the-art approaches. The amount of camera movement is quite small as indicated by the averaged images

on the far left. The results of Yu and Gallup [27] show an inaccurate depth discontinuity on the shadow and indicate that the brick wall

is nearer than the ground. Our result shows a similar depth tendency to [9] while exhibiting much sharper depth discontinuities. The

erroneous region in our approach is also marked in red.

One of input images Our depth map

Joshi and Zitnick [10] Our synthetic refocusing

Figure 10. Comparison with Joshi and Zitnick [10] on the appli-

cation of synthetic refocusing. Our high-quality depth map gener-

ates an admirable foreground focused image from the small mo-

tion clip. Note that our result shows realistic defocus blurs on the

background whilst preserving sharp edges in the foreground (bot-

tom region of the cup).

respective websites for the pair comparison. The results

by [27] have inaccurate depth values as marked with the red

rectangles. The results of [9] show better depth values, in-

dicating that the ground plane is nearest to the camera. This

is due to their explicit consideration of the rolling shutter

effect. However, the depth discontinuity is too smooth, re-

sulting in blurry object boundaries unsuitable for the use of

synthetic refocusing. Our results have similar depth values

to [9] but show much sharper edge boundaries. Note that

our approach performs a self-calibration of the camera pa-

rameters for the displayed results, whereas [27, 9] utilize

the factory settings for the camera focal length and do not

account for the lens distortion.

Comparison with [10]. The synthetic refocusing image ob-

tained by using our depth map is compared with that of [10].

We also use the dataset and result provided by [10] for the

pair comparison. As shown in Fig. 10, our foreground fo-

cused image consistently gives realistic defocus blurs.

Limitations. Although our algorithm is specially designed

for small baselines, the estimated camera poses become un-

reliable if the motion is unreasonably small. However, ac-

cording to Sec. 4.1, the required minimum baseline to apply

our approach is reasonable, and such failure cases rarely

happen in real hand-held scenarios. We observe that the

lack of features near the image border results in the erro-

neous estimation of the radial distortion parameters. Our

approach does not explicitly take into account the effects of

occlusion/dis-occlusion because the detected outliers in our

depth post-processing stage reasonably correspond to such

regions. However, any sophisticated occlusion inference al-

gorithm could be applied here.

5. Conclusion

We have introduced a practical algorithm that recovers a

high-quality depth map from a small motion clip recorded

by commercial cameras. Our self-calibrating bundle adjust-

ment estimates the camera parameters that are shown to be

close to the ground truth, even if only one second of the

clip is used. Our dense stereo matching step analyzes the

statistics of intensity profile and shows a superior depth map

than that of the previous approaches. In the future, we plan

to study the convergence properties of the proposed bundle

adjustment scheme.
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