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Abstract

We introduce the novel problem of automatically gener-

ating animated GIFs from video. GIFs are short looping

video with no sound, and a perfect combination between im-

age and video that really capture our attention. GIFs tell a

story, express emotion, turn events into humorous moments,

and are the new wave of photojournalism. We pose the

question: Can we automate the entirely manual and elabo-

rate process of GIF creation by leveraging the plethora of

user generated GIF content? We propose a Robust Deep

RankNet that, given a video, generates a ranked list of its

segments according to their suitability as GIF. We train our

model to learn what visual content is often selected for GIFs

by using over 100K user generated GIFs and their corre-

sponding video sources. We effectively deal with the noisy

web data by proposing a novel adaptive Huber loss in the

ranking formulation. We show that our approach is robust

to outliers and picks up several patterns that are frequently

present in popular animated GIFs. On our new large-scale

benchmark dataset, we show the advantage of our approach

over several state-of-the-art methods.

1. Introduction

Animated GIF is an image format that continuously dis-

plays multiple frames in a loop, with no sound. Although

first introduced in the late 80’s, its popularity has increased

dramatically in recent years on social networks, such as

Tumblr and reddit, generating numerous famous Internet

memes and creative Cinemagraphs [1]. In response, vari-

ous websites have been created to provide easy-to-use tools

to generate GIF from video, e.g., GIFSoup, Imgflip, and

Ezgif. However, while becoming more prevalent, the cre-

ation of GIF remains an entirely manual process, requiring

the user to specify the timestamps of the beginning and the

end of a video clip, from which a single animated GIF is

generated. This way of manually specifying the exact time

range makes existing solutions cumbersome to use and re-

∗This work was done while the author was an intern at Yahoo! Inc.

Figure 1. Our goal is to rank video segments according to their

suitability as animated GIF. We collect a large-scale dataset of an-

imated GIFs and the corresponding video sources. This allows us

to train our Robust Deep RankNet using over 500K pairs of GIF

and non-GIF segment pairs, learning subtle differences between

video segments using our novel adaptive rank Huber loss.

quires extensive human effort.

In this paper, we introduce the novel problem of auto-

matically generating animated GIFs from video, dubbed

Video2GIF. From the computer vision perspective, this is

an interesting research problem because GIFs have some

unique properties compared to conventional images and

videos: A GIF is short, entirely visual with no sound, ex-

presses various forms of emotions, and sometimes contains

unique spatio-temporal visual patterns that make it appear

to loop forever. The task has some connections to exist-

ing computer vision problems – such as visual interesting-

ness [16, 11], creativity [31], video highlights [35, 40] and

summarization [13, 33] – but differs from them due to the

unique properties described above. Apart from research in-

terest, the task is supported by real-world demand and has

many practical application scenarios including photojour-

nalism, advertising, video sharing and preview, as well as

video promotion on social media.

To handle this task, we propose a novel RankNet that,

given a video, produces a ranked list of segments accord-
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ing to their suitability as animated GIF. Our framework has

several novel components designed to learn what content is

frequently selected for popular animated GIFs. First, to cap-

ture the highly dynamic spatio-temporal visual characteris-

tics of GIFs, we use 3D convolutional neural networks [36]

to represent each segment of a video. Second, to unravel

the complex relationships and learn subtle differences be-

tween segments of a given video, we construct a ranking

model that learns to compare pairs of segments and find

the ones that are more suitable as GIF. Third, to make our

learning task robust to the noisy web data, we design a new

robust adaptive Huber loss function in the ranking formu-

lation. Lastly, to account for different degrees of quality in

user generated content, we encode the popularity measure

of GIFs on social media directly into our loss.

Crucial to the success of our approach is our new large-

scale animated GIF dataset: We collected more than 100K

user generated animated GIFs with their corresponding

video sources from online sources. There are hundreds of

thousands of GIFs available online and many provide a link

to the video source. This allows us to create a dataset that is

one to two orders of magnitude larger than existing datasets

in the video highlight detection and summarization litera-

ture [35, 33, 12]. We use this dataset to train our deep neural

network by making comparisons between more than 500K

GIF and non-GIF pairs. Experimental results suggest that

our model successfully learns what content is suitable for

GIFs, and that our model generalizes well to other tasks,

namely video highlight detection [35].

In summary, we make the following contributions:

1. We introduce the task of automatically generating an-

imated GIFs from video. This is an interesting com-

puter vision research problem that, to the best of our

knowledge, has not been addressed before.

2. We propose a Robust Deep RankNet with a novel

adaptive Huber loss in the ranking formulation. We

show how well our loss deals with noisy web data, and

how it encodes the notion of content popularity to ac-

count for different degrees of content quality.

3. We collect a new, large-scale benchmark dataset of

over 100K user generated animated GIFs and their

video sources. The dataset is one to two orders of mag-

nitude larger than existing video highlighting and sum-

marization datasets. The dataset is publicly available1.

2. Related Work

Our work is closely related to image aesthetics and in-

terestingness, as well as video highlight detection and sum-

marization. We review some of the most relevant work and

discuss the differences. We also review and make connec-

tions to recent efforts on learning deep neural networks for

1https://github.com/gyglim/video2gif_dataset

ranking and trained on large-scale weakly-labeled data.

Image aesthetics and interestingness. Finding the best

images in a collection has been studied from several angles.

Early approaches aimed at predicting the quality [19] or aes-

thetics [4, 5] of an image. More recently, several approaches

for predicting visual interestingness of an image have been

proposed [10, 11, 7]. While interestingness is a subjective

property assessed by the viewer, there is considerable con-

sistency across annotated ratings [11]. This makes it pos-

sible to model interestingness with computational means,

but ground truth is typically noisy. Fu et al. [7] propose an

approach accounting for this, by learning a ranking model

and removing outliers in a joint formulation. Khosla et al.

[20] analyze the related property of image popularity. Us-

ing a large-scale dataset of Flickr images, they analyze and

predict what types of images are more popular than others,

surfacing trends similar to those of interestingness [11]. In

a similar direction is the work of Redi et al. [31], which an-

alyzes creativity. Rather than analyzing images, however,

they focus on Vines videos, whose lengths are restricted to

6 seconds.

Video summarization. A thorough discussion of earlier

research can be found in [37]. Here, we discuss two recent

trends, (i) using web-image priors [21, 20, 33, 27] and (ii)

supervised learning-based methods [25, 8, 13, 27]. Methods

using web-image priors are based on the observation that

web images for a specific topic or query are often canonical

visual examples for the topic. This allows one to compute

frame scores as the similarity between a frame and a set of

web images [21, 20, 33]. Learning-based methods, on the

other hand, use supervised models to obtain a scoring func-

tion for frames [25, 8, 27] or segments [13]. Lee et al. [25]

learn a regression model and combine it with a clustering

approach to diversify the results. Instead, [8, 13] directly

learn an objective function that scores a set of segments,

based on relative importance between different aspects of a

summary (e.g. balancing highlights and diversity). Crucial

to these learning-based methods is some notion of impor-

tance or interestingness of a segment. Next, we will discuss

methods focusing only on this part while ignoring diversity

and information coverage.

Video highlights. The definition of highlight is both sub-

jective and context-dependent [37]. Nevertheless, it has

been shown that there exists some consistency among hu-

man ratings for this task [33, 12]. Several methods ex-

ploit, for example, that close-ups of faces are generally of

interest [37, 25, 12]. But these approaches are limited in

that they rely on a few hand-crafted features for capturing

highlights in highly diverse settings. Instead, several ap-

proaches for domain-specific models have been proposed.

In particular, in sport games highlight is more clearly de-

fined (e.g. scoring a goal) which has been exploited in many

works (see [37] for an overview). Recently, Sun et al. [35]
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and Potapov et al. [30] proposed a more general approach.

Based on annotated videos for a specific topic (e.g. surf-

ing), they use machine learning on top of generic features to

train a highlight predictor. In order to train their model, [30]

uses a large, manually annotated dataset for action recogni-

tion. Instead, [35] use a smaller dataset obtained by crawl-

ing YouTube data. They find pairs of raw and edited videos,

used in training, by matching all pairs of videos within a

certain category (e.g. gymnastics). The size of their dataset

is, however, limited by the availability of domain-specific

videos in both raw and edited forms.

Obtaining a large-scale video highlight dataset is diffi-

cult. Thus, Yang et al. [40] propose an unsupervised ap-

proach for finding highlights. Relying on an assumption

that highlights of an event category are more frequently

captured in short videos than non-highlights, they train an

auto-encoder. Our work instead follows a supervised ap-

proach, introducing a new way to obtain hundreds of thou-

sands of labeled training videos (10x larger than the unla-

beled dataset of [40]), which allows us to train a deep neural

network with millions of parameters.

Learning to rank with deep neural networks. Sev-

eral works have used CNNs to learn from ranking labels.

The loss function is often formulated over pairs [27, 9] or

triplets [38, 39, 14, 23]. Pairwise approaches typically use

a single CNN, while the loss is defined relatively over the

output. For example, Gong et al. [9] learn a network to

predict image labels and require the scores of correct labels

to be higher than the scores of incorrect labels. Triplet ap-

proaches, on the other hand, use Siamese networks. Given

an image triple (query, positive, negative), a loss function

requires the learned representation of the query image to be

closer to that of the positive, rather than the negative image,

according to some metric [38, 39, 14, 23].

Supervised deep learning from noisy labels. Several pre-

vious works have successfully learned models from weak

labels [18, 38, 27]. Liu et al. [27] considers the video search

scenario. Given click-through data from Bing, they learn

a joint embedding between query text and video thumb-

nails in order to find semantically relevant video frames.

In contrast, [18, 38] use labels obtained through automatic

methods to train neural networks. Karpathy et al. [18] train

a convolutional neural network for action classification in

videos. Their training data is obtained from YouTube where

it is labeled automatically by analyzing meta data associ-

ated with the videos. Wang et al. [38] learn a feature rep-

resentation for fine-grained image ranking. Based on ex-

isting image features they generate labels used for training

the neural network. Both approaches obtain state-of-the-art

performance, showing the strength of large, weakly-labeled

datasets in combination with deep learning.

Property Quantity

Total number of animated GIFs 121,647

Mean GIF duration 5.8 sec

Total number of videos 84,754

Total video duration 7,379 hr

Mean video duration 5.2 min

Total number of videos (CC-BY) 432

GIFs used in experiment 100,699

Videos used in experiment 70,456
Table 1. Statistics on the Video2GIF dataset. We show numbers

for the complete dataset and for the one after discarding too short

or too long videos (see text). We also show the number of videos

that come with the Creative Commons license (CC-BY).
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Figure 2. Length distribution of the input videos.

3. Video2GIF Dataset

Inspired by the recent success with large, weakly-labeled

datasets applied in combination with deep learning, we har-

vest social media data with noisy, human generated annota-

tions. We use websites that allow users to create GIFs from

video (Make-a-GIF and GIFSoup). Compared to edited

videos used in [35], GIFs have the intriguing property that

they are inherently short and focused. Furthermore they ex-

ist in large quantities and typically come with reference to

the initial video, which makes alignment scale linearly in

the number of GIFs. Aligning GIFs to their source videos

is crucial, as it allows us to find non-selected segments,

which serve as negative samples in training. In addition,

videos provide a higher frame-rate and fewer compression

artifacts, ideal for obtaining high quality feature representa-

tions.

Using these GIF websites, we collected a large-scale

dataset with more than 120K animated GIFs and more than

80K videos, with a total duration of 7,379 hours. This is

one to two orders of magnitude larger than the highlight

datasets of [40] and [35]. We will show further statistics on

the dataset after discussing the alignment process.

Alignment. We aligned the GIFs to their corresponding

videos using frame matching. In order to do this efficiently,

we encoded each frame with a perceptual hash based on

the discrete cosine transform [41]. The perceptual hash is
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Figure 3. Most frequent video tags on the used dataset. We can observe that not all tags are equally informative. While several describe a

specific visual concept ( e.g. cat or wrestling) others describe abstract concepts that cannot be expected to help the task at hand.
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Figure 4. Distribution over video categories. Note how the categories are highly imbalanced and often not specific. e.g. Entertainment is

an extremely broad category with strong visual and semantic variation.

fast to compute and, given its binary representation, can be

matched very efficiently using the Hamming distance. We

matched the set of GIF frames to the frames of its corre-

sponding video. This approach requires O(nk) distance

computations, where n, k is the number of frames in the

video and GIF, respectively. Since the GIFs are restricted

in length and have a low frame-rate, they typically contain

only a few frames (k < 50). Thus, this method remains

computationally efficient while it allows for the alignment

to be accurate.

In order to test the accuracy of our alignment process,

we manually annotated a small random set of 20 GIFs

with ground-truth alignments and measured the error. Our

method has a mean alignment error of 0.34 seconds (me-

dian 0.20 seconds), which is accurate enough for our pur-

pose. In comparison, Sun et al. [35] aligned blocks of 50

frames (≈ 2 seconds), i.e. on a much coarser level.

Dataset Analysis. We analyze what types of video are of-

ten used to create animated GIFs. Figure 3 shows the most

frequent tags of videos in our dataset, and Figure 4 shows

the category distribution of the videos. Several tags give a

sense of what is present in the videos, which can potentially

help GIF creation, e.g. cute and football. Others are not

visually informative, such as 2014 or YouTube. Figure 2

shows a histogram of video lengths (median: 2m51s, mean:

5m12s). As can be seen, most source videos are rather short,

with a median duration of less than 3 minutes.

Splits. From the full dataset we used videos with a maximal

length of 10 minutes. Longer videos are discarded as the

selected GIF segments become too sparse and the videos

are more affected by chronological bias [33]. We split the

data into training and validation sets, with about 65K and

5K videos, respectively. For the test set, we use videos with

Creative Commons licence, which allows us to distribute

the source videos for future research. As the task is trivial

for videos shorter than 30sec we only consider videos of

longer duration. The final test set consists of 357 videos.

Table 1 shows the statistics of the dataset we used in our

experiments.

4. Method

This sections presents our approach to the Video2GIF

task, with a novel adaptive Huber loss in the ranking for-

mulation to make the learning process robust to outliers; we

call our model the Robust Deep RankNet.

4.1. Video Processing

We start by dividing a video into a set of non-overlapping

segments S = {s1, · · · , sn}. We use the efficient shot

boundary detection algorithm of Song et al. [33], which

solves the multiple change point detection problem to de-

tect shot boundaries.

The segments are not necessarily aligned perfectly with

the boundaries of the actual animated GIF segments. We

determine whether a segment s belongs to GIF segment s⋆

by computing how much of it overlaps with s⋆. A segment

is considered as a GIF segment only if the overlap is larger

than 66%. Segments without any overlap serve as nega-

tives. The segments are then fed into our robust deep rank-

ing model, described next.

4.2. Robust Deep RankNet

Architecture overview. Figure 5 illustrates the architecture

of our model. During training, the input is a pair of GIF

and non-GIF segments. The model learns a function h :
R

d → R that maps a segment s to its GIF-suitability score

h(s). This score is of course unknown even during training;

we learn the function by comparing the training segment

pairs so that a GIF segment gets a higher score than a non-

GIF segment. During testing, the model is given a single
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Figure 5. The architecture of our Robust Deep RankNet. We train

the green-colored layers from scratch. Each hidden layer is fol-

lowed by a ReLu non-linearity [29]. The final scoring layer is a

linear function of the last hidden layer. The rank loss acts on pairs

of segments and is non-zero, unless s+ scores higher than s
− by a

margin of 1. To emphasize that the loss acts on pairs of segments,

we show the two passes separately, but we use a single network.

.

segment and computes its GIF-suitability score using the

learned scoring function. We compute the score h(s) for all

segments s ∈ S and produce a ranked list of the segments

for their suitability as an animated GIF.

Feature representation. Animated GIFs contain highly

dynamic visual content; it is crucial to have feature rep-

resentation that captures this aspect well. To capture both

the spatial and the temporal dynamics of video segments,

we use C3D [36] pretrained on the Sports-1M dataset [18]

as our feature extractor. C3D extends the image-centric

network architecture of AlexNet [22] to the video domain

by replacing the traditional 2D convolutional layers with a

spatio-temporal convolutional layer, and has been shown to

perform well on several video classification tasks [36].

Inspired by previous methods using category specific

models [35, 30], we optionally add contextual features to

the segment representation. These can be considered meta-

information, supplementing the visual features. They have

the potential to disambiguate segment rankings and allow a

model to score segments conditioned on the semantic cat-

egory of a video. The features include the category label,

a semantic embedding of the video tags (mean over their

word2vec representation [28]) and positional features. For

positional features, we use the timestamp, rank and the rel-

ative position of the segment in the video.

Problem formulation. A straightforward way to formu-

late our problem is by posing it as a classification problem,

i.e., treat GIF and non-GIF segments as positive and neg-

ative examples, respectively, and build a binary classifier

that separates the two classes of examples. This formula-

tion, however, is inadequate for our problem because there

is no clear cut definition of what is a good or a bad segment.

Rather, there are various degrees of GIF suitability that can

1.5 1.0 0.5 0.0 0.5 1.0

(s+−s− )

0.0

0.5

1.0

1.5

2.0

2.5

l(
s
+

,s
−
)

L1 rank loss

L2 rank loss

Huber rank loss

Figure 6. Rank loss comparison. Ours Huber rank loss combines

the robustness w.r.t. to small margin violations of the l2 loss with

the robustness to outliers of the l1 loss.

only be inferred by comparing GIF and non-GIF pairs.

A natural formulation is therefore posing it as a rank-

ing problem. We can define a set of rank constraints over

the dataset D, where we require GIF segments s+ to rank

higher than non-GIF segments s−, i.e.

h(s+) > h(s−), ∀
(

s+, s−
)

∈ D.

This formulation compares two segments even if they are

from different videos. This is problematic because a com-

parison of two segments is meaningful only within the con-

text of the video, e.g., a GIF segment in one video may not

be chosen as a GIF in another. To see this, some videos con-

tain many segments of interest (e.g. compilations), while in

others even the selected parts are of low quality. The notion

of GIF suitability is thus most meaningful only within, but

not across, the context of a single video.

To account for this, we revise the above video-agnostic

ranking formulation to be video-specific, i.e.

h(s+) > h(s−), ∀
(

s+, s−
)

∈ S.

That is, we require a GIF segment s+ to score higher than

negative segments s− that come from the same video only.

Next we define how we impose the rank constraints.

Loss function. One possible loss function for the ranking

problem is an lp loss, defined as

lp(s
+, s−) = max

(

0, 1− h(s+) + h(s−)
)p

, (1)

where p = 1 [17] and p = 2 [35, 24] are the most popular

choices. The lp loss imposes the ranking constraint by re-

quiring a positive segment to score higher than its negative

counterpart by a margin of 1. If the margin is violated, the

incurred loss is linear in the error for the l1 loss, while for

the l2 loss it is quadratic. One drawback of the l1 loss, com-

pared to the l2 loss, is that it over-penalizes small margin

violations. The l2 loss does not have such problem, but it

quadratically penalizes margin violations, and thus is more

affected by outliers (see Figure 6).
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Our dataset contains animated GIF contents created by

online users, so some of the contents will inevitably be of

low quality; these can be considered as outliers. This mo-

tivates us to propose a novel robust rank loss, which is an

adaption of the Huber loss formulation [15] to the ranking

setting. This loss gives a low penalty to small violations of

the margin (where the ranking is still correct), and is more

robust to outliers compared to the l2 loss. We define our

loss as

lHuber(s
+, s−) =

{

1
2 l2(s

+, s−), if u ≤ δ

δl1(s
+, s−)− 1

2δ
2, otherwise

(2)

where u = 1− h(s+) + h(s−). Thus, if the margin is vio-

lated, the loss corresponds to a Huber loss, which is squared

for small margin-violations and linear for stronger viola-

tions. The parameter δ defines the point at which the loss

becomes linear. We illustrate the three different forms loss

functions in Figure 6.

Considering the source of our dataset (social media),

not all GIFs are expected to be of equal quality. Some

might be casually created by beginners and from mediocre

videos, while others are carefully selected from a high qual-

ity source. Thus, some GIFs can be considered more reli-

able as positive examples than others. We take this into ac-

count by making the parameter δ GIF dependent: We assign

a higher value to δ to more popular GIFs. Our intuition be-

hind this adaptive scoring scheme is that popular GIFs are

less likely to be outliers and therefore do not require a loss

that becomes linear early on.

Objective function. Finally, we define our objective as the

total loss over the dataset D and a regularization term with

the squared Frobenius norm on the model weights W:

L(D,W) =
∑

Si∈D

∑

(s+,s−)∈Si

lHuber(s
+, s−)+λ||W||2F , (3)

where λ is the regularization parameter.

4.3. Implementation Details

We experimented with various network architectures.

While the loss function turned out to be crucial, we em-

pirically found that performance remains relatively stable

for different depths of a network. Thus, we opt for a simple

2 hidden layer fully-connected model, where each hidden

unit is followed by a ReLu non-linearity [29]. We use 512

units in the first and 128 in the second hidden layer. The

final prediction layer, which outputs h(s), is a simple single

linear unit, predicting an unnormalized scalar score. The

final network has 2,327,681 parameters.

We minimize the objective in Eq. 3 using mini-batch

stochastic gradient descent with backpropagation [32]. We

use mini-batches of 50 pairs. In order to accelerate conver-

gence, we apply Nesterov’s Accelerated Momentum [2] for

updating the weights. The momentum is set to 0.9 and λ =
0.001 (weight decay). We initialize training with a learning

rate of 0.001 and reduce it every 10th epoch. The learning

is stopped after 25 epochs. We apply dropout [34] regu-

larization to the input (0.8) and after the first hidden layer

(0.25). Dropout is a simple, approximate way to do model

averaging that increases robustness of the model [34].

We obtain the training set segment pairs (s+, s−) by us-

ing all positive segments, randomly sampling k = 4 nega-

tives per video, and combining them exhaustively. We limit

the negatives in order to balance the positive-negative pairs

per video. Finally, we obtain 500K pairs for training. For

the Huber loss with a fixed δ we set δ = 1.5 based on the

performance on the validation set. For the adaptive Huber

loss, we set δ = 1.5 + p, where p is normalized viewcount

proposed in [20].

In order to further decrease the variance of our model,

we use model averaging, where we train multiple mod-

els from different initializations and average their predicted

scores. The models were implemented using Theano [3]

with Lasagne [6].

5. Experiments

We evaluate our method against several state-of-the art

methods on our dataset. In Section 5.3 we further evaluate

cross-task performance on the highlight dataset of [35].

Evaluation metrics. Two popular performance metrics

used in video highlight detection are mean Average Preci-

sion (mAP) [35] and average meaningful summary duration

(MSD) [30]. Both mAP and MSD are, however, sensitive

to video length: the longer the video is, the lower the score

(think about finding the needle in the haystack). To com-

pensate for a variety of video lengths in our dataset (see

Figure 2), we propose a normalized version of MSD.

The normalized MSD (nMSD) corresponds to the rela-

tive length of the selected GIF at a recall rate of α. We

define it as:

nMSD =
|G∗| − α|Ggt|

|V| − α|Ggt|
, (4)

where |.| denotes the length of a GIF or video, and G∗ is

the GIF with α recall w.r.t. the ground truth GIF Ggt. The

score is normalized with the length of the ground truth GIF

and the video V , such that it is 0 if the selection equals to

Ggt (is perfect), and 1 if the ground truth has the lowest

predicted score. The added normalization helps make the

scores of different videos more comparable, in contrast to

mAP, which is strongly affected by the length of the ground

truth GIF, relative to the video. To account for inaccuracies

in segmentation we set α = 0.5. For videos with multi-

ple GIFs we use their mean nMSD as the video score. In

addition to nMSD, we also evaluate performance using the

traditional mAP.
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5.1. Compared Methods

We compare our method to three state-of-the-art meth-

ods in highlight detection. We also provide an approximate

upper bound that puts the results in perspective.

Domain-specific highlights [35]. We learn a domain-

specific rankSVM per video category. Sun et al. [35] use

an EM-like approach to handle long, loosely selected high-

lights. For our dataset, this problem does not occur because

the GIFs are already short and focused. We therefore sim-

ply train a rankSVM [24] per video category using C3D

features. We set C = 1 for all models.

Deep visual-semantic embedding [27]. We train a

network using triplets of segment, true and random titles

(s+, t+, t−). The titles are embedded into R
300 using

word2vec [28]. In contrast to our method, the loss of [27] is

defined over positive and negative titles and uses only posi-

tive segments (or images in their case) for training.

Category-specific summarization [30]. This approach

trains a one-vs-all SVM classifier for each video category.

Thus, the classifier learns to separate one semantic class

from the others. At test time it uses the classifier confidence

to assign each segment an importance score, which we use

to obtain a ranked list.

Approximate upper bound. This bound provides a ref-

erence for how well an automatic method can perform. To

obtain the upper bound, we first find all videos in our dataset

that have animated GIFs from multiple creators. We then

evaluate the performance of one GIF w.r.t. the remaining

ones from the same video. Thus, the approximate upper

bound is the performance users achieve in predicting the

GIFs of other users. And it allows us to put the performance

of automatic methods in perspective. We note, however,

that this bound is only approximate because it is obtained in

a very different setting than other methods.

5.2. Results and Discussions

Table 2 summarizes the results. Figure 7 shows quali-

tative results obtained using our method. As can be seen,

our method (“Ours” in Table 2) outperforms the baseline

methods by a large margin in terms of nMSD. The strongest

baseline method is domain-specific rankSVM [35]. Their

learning objective is similar to ours, i.e., they use pairs

of positive and negative segments from the same video for

training. In contrast, two other baselines [30, 27] use a

“proxy” objective, i.e., learn semantic similarity of seg-

ments to video category [30] or segments to video title [27].

We believe this different training objective is crucial, allow-

ing both our method and rankSVM [35] to significantly out-

perform the two baselines.

Domain-specific rankSVM [35] with C3D features per-

forms fairly well; but our method outperforms it. We be-

lieve the reason for this performance difference is two-fold:

(1) the l2 loss in [35] is not robust enough to outliers; and

Method nMSD ↓ mAP ↑

Joint embedding [27] 54.38% 12.36%

Category-spec. SVM [30] 52.98% 13.46%

Domain-spec. rankSVM [35] 46.40% 16.08%

Classification 61.37% 11.78%

Rank, video agnostic 53.71% 13.25%

Rank, l1 loss 44.60% 16.09%

Rank, l2 loss 44.43% 16.10%

Rank, Huber loss 44.43% 16.22%

Rank, adaptive Huber loss 44.58% 16.21%

Rank, adaptive Huber loss

+ context (Ours)
44.19% 16.18%

Ours + model averaging 44.08% 16.21%

Approx. bounds 38.77% 21.30%
Table 2. Experimental results. A lower nMSD and higher mAP

represent better performance.

(2) the learning capabilities of [35] are limited by the use

of a linear model, compared to highly nonlinear neural nets.

Next, we analyze different configurations of our method in

greater detail and discuss impacts of each design choice.

The configurations differ in terms of used inputs, network

architecture and objective.

What loss function is most robust? We analyze perfor-

mance with different loss functions and training objectives

discussed in Section 4.2. As expected, classification models

always performs poorly compared to ranking models. Also,

using video agnostic training data performs poorly. This

indicates that the definition of a highlight is most meaning-

ful within the video. When comparing l1 loss and l2 loss,

we find that l1 loss penalizes small margin violations (i.e.,

0 < h(s+) − h(s−) < 1) too strongly, while the l2 loss

is affected by outliers. Our Huber rank loss avoids the two

issues by combining the robustness to outliers (l1 loss) and

the decrease in the gradient for small margin violations (l2
loss); it thus performs better than the other losses.

The role of context. Inspired by previous methods using

category specific models [35, 30] we used contextual infor-

mation as input to our model (category label, a semantic of

the video tags and positional features). When comparing

the performance with and without context, we find that they

perform similarly (Table 2). We believe that most of the

information about the context is already present in the seg-

ment representation itself. This is supported by [26] who

show that the context can be extracted from the segment it-

self with high accuracy.

5.3. Cross Dataset Performance

As discussed, automatic GIF creation is related to video

highlight detection. Of course, they are not identical: GIFs

have a different focus and often depict funny or emotional

content rather than highlights only. Nonetheless, it is inter-
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Figure 7. Qualitative results. Examples of top 3 and bottom 3 predicted segments. Our approach picks up aspects that are related to GIF

suitability. For example, it learns that segments with people in motion are suitable for GIFs (e.g., (a) and (c)), while low contrast segments

without any (main) objects are not (e.g., (a) the 4th image). It also scores segments showing the goal area of soccer games higher than the

crowd in the stadium (b). We show a failure case (d): the network scores the segments with people on the ground higher than the landing

plane (4th image). We provide more examples in GIF format on http://video2gif.info

esting to see how well our method generalizes to this task.

We evaluate our model on the dataset of [35], which con-

tains videos from hand-selected categories such as surfing

and skiing. We also evaluate the best performing baseline,

domain-specific rankSVM [35], trained on our dataset and

tested on the highlight dataset. The results are summarized

in Table 3 (we borrow previously reported results [40, 35]).

Our method outperforms rankSVM by a large margin,

which suggests that our model generalizes much better than

the baseline method. It also significantly outperforms the

method of Yang et al. [40], which trains an auto-encoder

model for each domain. Sun et al. [35] tops the perfor-

mance, but they use video category labels (which are hand-

picked) and learn multiple models, one per category, di-

rectly on the highlight dataset. Instead, our method learns

a single global model on the GIF data, with much more di-

verse video categories. Nonetheless, it shows competitive

performance.

6. Conclusion

We introduced the problem of automatically generating

animated GIFs from video, and proposed a Robust Deep

RankNet that predicts the GIF suitability of video segments.

Our approach handles noisy web data with a novel adaptive

Huber rank loss, which has the advantage of being robust

to outliers and able to encode the notion of content quality

directly into the loss. On our new dataset of animated GIFs

we showed that our method successfully learns to rank seg-

Category Ours rankSVM Yang [40] Sun [35]

skating 55.4% 26.2% 25% 61%

gymnastics 33.5% 25.5% 35% 41%

surfing 54.1% 45.0% 49% 61%

dog 30.8% 47.3% 49% 60%

parkour 54.0% 44.7% 50% 61%

skiing 32.8% 35.6% 22% 36%

Total 46.4% 37.9% 41.2% 53.6%
Table 3. Cross-dataset results (mAP). We train on our dataset and

test on the video highlight dataset of [35]. Our method outper-

forms rankSVM and [40], which learns an unsupervised model for

each domain. Sun et al. [35] performs best, but it is directly trained

on their dataset and learns multiple models, one per category. In-

stead, we learn a single global model for GIF suitability.

ments with subtle differences, outperforming existing meth-

ods. Furthermore, it generalizes well to highlight detection.

Our novel Video2GIF task, along with our new large-

scale dataset, opens the way for future research in the direc-

tion of automatic GIF creation. For example, more sophis-

ticated language models could be applied to leverage video

meta data, as not all tags are informative. Thus, we be-

lieve learning an embedding specifically for video tags may

improve a contextual model. While this work focused on

obtaining a meaningful ranking for GIFs, we only consid-

ered single segments. Since some GIFs range over multiple

shots, it would also be interesting to look at when to com-

bine segments or even do joint segmentation and selection.

1008

http://video2gif.info


References

[1] S. Bakhshi, D. Shamma, L. Kennedy, Y. Song, P. de Juan,

and J. J. Kaye. Fast, cheap, and good: Why animated GIFs

engage us. In CHI, 2016. 1

[2] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Ad-

vances in optimizing recurrent networks. ICASSP, 2013. 6

[3] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.

Theano: a CPU and GPU math expression compiler. In Pro-

ceedings of SciPy, 2010. 6

[4] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Studying aesthetics

in photographic images using a computational approach. In

ECCV. 2006. 2

[5] S. Dhar, V. Ordonez, and T. Berg. High level describable at-

tributes for predicting aesthetics and interestingness. CVPR,

2011. 2
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