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Abstract

In this paper a new astrodynamics inspired rigid point

set registration algorithm is introduced — the Gravitational

Approach (GA). We formulate point set registration as a

modified N -body problem with additional constraints and

obtain an algorithm with unique properties which is fully

scalable with the number of processing cores. In GA, a tem-

plate point set moves in a viscous medium under gravita-

tional forces induced by a reference point set. Pose updates

are completed by numerically solving the differential equa-

tions of Newtonian mechanics. We discuss techniques for

efficient implementation of the new algorithm and evaluate

it on several synthetic and real-world scenarios. GA is com-

pared with the widely used Iterative Closest Point and the

state of the art rigid Coherent Point Drift algorithms. Ex-

periments evidence that the new approach is robust against

noise and can handle challenging scenarios with structured

outliers.

1. Introduction

We enter the era of pervasive 3D technologies. This de-

velopment is accompanied by a clear tendency: as 3D ac-

quisition devices become ubiquitous, the need for reliable

point cloud processing algorithms including those for align-

ment grows. Point set registration is an actively researched

area with applications in different domains of computer

science and engineering such as shape recognition, action

transfer, 3D reconstruction and animation, computer-aided

design, industrial quality control and robotics.

In the point set registration problem, the objective is to

find an optimal alignment between two (generally several)

point sets and recover transformation parameters. Thereby

an optimal transformation of the template point set to the

reference point set as well as point affiliations are sought,

so that both point sets coincide in an optimal way. Several

optimality criteria are possible. In the case of rigid point

set registration, a transformation is entirely described by pa-

Figure 1: Point set registration with the Gravitational Approach: template

moves in the gravitational field induced by the reference. Coordinates of

the template points are individually updated by solving equations of par-

ticle motion in a viscous medium, whereupon rigidity constraints are ap-

plied. Left: initial misalignment of the helix point sets [8] and the induced

gravitational field; right: registration result after 150 iterations.

Figure 2: Registration results of ICP [6], CPD [24] and our approach on

real data with introduced clustered outliers. (a) Initialization; template

(shown in blue) is located between the reference human scan and outliers

arranged as a sphere (shown in red). (b) ICP registration result — the

algorithm is trapped into a local minimum; (c) GA registration results (left:

an optimal parameter; right: a suboptimal parameter); (d) CPD registration

results (left: an optimal parameter; right: a suboptimal parameter).

rameters of the rigid body motion, i.e. rotation and transla-

tion applied to all points simultaneously. Often scaling is

15802



also added to this parameter set, though strictly speaking

it makes registration affine. In the non-rigid case, a trans-

formation is described more generally by a point displace-

ment field, since non-rigid deformations imply individual

displacements for every point. Therefore, the problem be-

comes highly ill-posed and regularization of the displace-

ment field is required to obtain a plausible solution.

Point sets can be noisy, contain clustered outliers and dif-

fer significantly; not every template’s point may possess a

valid correspondence in the reference and vice versa. Thus,

3D acquisition devices often output noisy point clouds.

Additional information (normals, manifold structure, point

topology) is not available. Note that algorithms incorporat-

ing such additional information constitute a separate class

of shape registration methods.

The Iterative Closest Point (ICP) [6] is an early iterative

point set registration algorithm. On every iteration, it min-

imizes over all template points the mean squared error of

distances to corresponding closest points. Therefore, non-

linear optimization algorithms are used. The algorithm is

known to perform weakly in presence of outliers and is

strongly dependent on initial alignment of the point sets.

Through its simplicity and despite the disadvantages, it is

one of the most widely used algorithms. The original ICP

engendered a bunch of descendants differing in distance

cost functions and optimization techniques [11, 27]. ICP

is suitable for arbitrary dimensions.

Point set registration was improved by probabilistic ap-

proaches. Robust point matching (RPM) [13] performs bet-

ter on noisy point sets, since correspondences are assigned

softly with probabilities. This can be interpreted as gen-

eralization of the binary 0-1 correspondence assignment.

Later, probabilistic approaches were formulated in terms

of the Gaussian Mixture Models (GMM), where template

points determine positions of the GMM centroids and ref-

erence points serve as covered data. To find transformation

parameters, Expectation-Maximization (EM-) algorithm for

the likelihood function optimization is used. Several meth-

ods introduce an extra term to cope with outliers explic-

itly [37, 24] while making an additional assumption on the

type of the noise distribution. The idea of probabilistic as-

signments was further evolved in the Coherent Point Drift

(CPD) [24]. The authors provide a closed-form solution to

the M-step of the EM-algorithm which makes the algorithm

applicable in multidimensional cases. CPD was extended in

[35] with an additional term for outlier modelling. A uni-

fied framework for probabilistic point set registration with

a closed-form expression was shown in [17].

Tsin and Kanade introduced the point set registration tech-

nique known as kernel correlation (KC) [34] further ex-

tended with GMM in [18]. The method is a multiply-linked

algorithm, i.e. all reference points influence all template

points. Being less sensitive to noise compared to ICP, KC is

not widely used due to the high computational complexity.

A subclass of the probabilistic algorithms takes advantage

of particle filters [21, 28]. Only the latest particle filter-

ing approach to point set registration [28] can be seen as a

general-purpose point set registration algorithm, as it makes

no assumptions on the point set density and is more accu-

rate by a moderate computational cost. This method was

developed to cope with partial rigid registrations. However,

it is not able to resolve scaling and includes ICP as an inter-

mediate step. Another class of methods developed to over-

come the shortcomings of ICP constitute spectral methods

(e.g. [29]). Operating on proximity matrices with distance

measures between the points, they are generally computa-

tionally expensive. This circumstance narrows their scope.

In this paper we present a novel physics based rigid

point set registration algorithm — the Gravitational Ap-

proach (GA). Inspired by astrodynamics, it does not pos-

sess a direct ancestor. We couple N -body simulation with

rigid body dynamics. In an N -body simulation, future tra-

jectories of n bodies with the specified initial coordinates,

masses and velocities are estimated. Thus, the main idea

of GA consists in dynamics modelling of rigid systems of

particles under gravitational forces in a viscous medium

(see Fig. 1). Particle movements are expressed by differ-

ential equations of Newtonian mechanics. In our model,

every point from both a reference and a template point set

is treated as a particle with its own position, velocity and

acceleration (in text, the terms point and particle are used

interchangeably). GA is a multiply-linked algorithm, as all

template points are moving in the superimposed force field

induced by the reference. To impose rigidity constraints,

laws of rotational and translational motion of rigid bodies

are employed. To resolve rotation, a formulation based on

singular value decomposition (SVD) for finding an optimal

rotation matrix is used [19, 23]. This method was exten-

sively applied to recover rotation matrixes in computer vi-

sion applications [39, 24, 26, 7]. Similar to ICP and CPD,

GA can operate in multiple dimensions. GA also supports a

basic form of including prior correspondences into the reg-

istration procedure by assigning different masses to regu-

lar and matching points. Embedding the prior correspon-

dences is not trivial, especially in the case of probabilistic

approaches Thus, for this class of algorithms it was only

recently shown in the literature, for the non-rigid case [14].

Motivation for a conceptually new registration algorithm

is manifold. Firstly, because of a new formulation, an al-

gorithm with unique properties among point set registration

algorithms is obtained. Thus, GA can take an initial veloc-

ity of the template as a parameter. There are application sce-

narios where such velocity can be estimated (e.g. from an

optic flow between frame pairs in simultaneous localization

and mapping (SLAM) systems). Secondly, registration al-

gorithms are sensitive to noise and improving performance
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of the rigid point set registration is a fundamental task in

computer vision. In fact, GA can perform better than the

state of the art CPD in some scenarios with structured out-

liers and in presence of noise (see Fig. 2 and Sec. 4 for a

detailed description). Thirdly, we place parallelizability of

operations to the foreground, because many existing meth-

ods (e.g CPD and KC) contain a significant portion of serial

code. Fourthly, in GA point set registration is formulated as

an energy minimization. In this paper, one possible mini-

mization through forward integration is proposed, but many

other minimization techniques can be tried out (non-linear

optimization of the gravitational potential energy function,

simulated annealing for a globally optimal solution). Be-

sides, a new algorithm is, of course, interesting both from

the theoretical and practical point of views and can encour-

age further ideas in the area. To the best of our knowledge,

formulating point set registration problem as a modified N -

body simulation was not shown in the literature so far. We

also did not find any evidence for interpreting the problem

as an object moving in a force field, considering early and

pre-ICP works in the field 1.

The rest of the paper is organized as follows. In the next sec-

tion an overview of the classic N -body problem is given.

In Sec. 3 we introduce GA and discuss acceleration tech-

niques followed by experiments, discussion and conclu-

sions in Secs. 4 and 5 respectively.

2. N -body problem

In N -body problems, numerical solutions to the mo-

tion equations for n particles interacting gravitationally are

sought [10]. First N -body problems emerged in astro-

physics where movements of celestial bodies under influ-

ence of other celestial bodies are studied. A superimposed

gravitational field induced by individual particles exerts

gravitational force ~F to every particle i ∈ {1, . . . , n} in

the system [33]:

~Fi = −Gmi

∑

i 6=j

mj(~ri − ~rj)

‖~ri − ~rj‖
3 −∇φext(~ri) , (1)

where G is the gravitational constant determining the grav-

itational strength between two bodies of unit masses sep-

arated by a unit distance, mi, mj and ~ri, ~rj are particle

masses and position vectors respectively, φext is an external

gravitational potential, ∇ denotes the gradient operator and

‖.‖ denotes the L2-norm. Newton’s second law of motion

relates the force exerted on a particle with its acceleration.

Thus, an N -body problem can be described by the second-

order ordinary differential equations (ODE):

~̈ri =
~Fi

mi
, (2)

1as a starting point for pre-ICP works we used [6]

where ~̈ri is a particle’s acceleration. There exists a unique

solution to the system in Eq. 2 as long as initial conditions

are specified, i.e. an initial position and velocity of every

particle. A solution is obtained by means of numerical in-

tegration, since no analytical solution for n > 3 exists. De-

pending on the assumptions and objectives, N -body simula-

tions can be classified as collisional or collisionless. While

the former class allows the particles (the bodies) to merge,

the latter prohibits merging. For more details on classical

N -body problems the reader may refer to [2, 3].

3. Gravitational Approach

In a point set registration problem, two D-dimensional

point sets XN×D = (X1, . . . , XN )T (a reference) and

YM×D = (Y1, . . . , YM )T (a template) are given. We

search parameters of the rigid transformation, i.e a tuple

(R, t, s) which optimally aligns the template point set to

the reference point set.

Since we target an efficient point set registration, we adopt

the N -body problem while abstracting from a realistic phys-

ical model and alter the simulation objective. Specifically,

the following assumptions and modifications are made:

i. every point represents a particle with a mass condensed

in an infinitely small area of space

ii. a reference X induces a constant inhomogeneous grav-

itational field

iii. particles Yi move in the gravitational field induced by

the reference and do not affect each other

iv. Y moves rigidly, i.e. transformation of the template

particle system is described by the tuple (R, t, s)

v. a collisionless N -body simulation is performed, since

the number of particles cannot be changed according

to the problem definition

vi. astrophysical constants (e.g. G) and units are consid-

ered as algorithm parameters

vii. a portion of kinetic energy is dissipated and drained

from the system — the physical system is not isolated.

Modification (ii) reflects that the reference point set remains

idle. Physically, it is said to be fixed by an external force.

Modification (vii) — introduction of an energy dissipation

or viscosity term — arises through the physical analogy of

movement with friction in a viscous medium (gas, fluid),

whereby a part of the kinetic energy transforms to heat.

In GA, potential and kinetic energy are continuously

redistributed. Second-order ODEs in Eq. (2) without an

external stimulus describe endless oscillatory phenomena.

If a part of the kinetic energy which has been converted

from the potential energy under the influence of the gravita-

tional field is dissipated, the system gradually converges to

its most stable state with locally minimal potential energy.

This state corresponds to a locally optimal solution to the

point set registration problem. Moreover, the viscosity term
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is necessary to assure the algorithm’s convergence. Without

viscosity, it would be difficult to refine the solution, as Y

may have a high speed close to a local minimum.

We find the force exerted on a particle Yi by all particles

of the reference X:

~FY i = −GmY i
N
∑

j=1

mXj

‖rY i − rXj‖
2 n̂ij , (3)

where mY i (mXi) and rY i (rXi) denote mass and ab-

solute coordinates of a particle Yi (Xi) respectively and

n̂ij =
(rY i−rXj)
‖rY i−rXj‖

is a unit vector in the direction of force.

Note that we depart from the notations used in Sec. 2, as

we deal with two non-overlapping particle sets. Besides,

instead of position vectors absolute point coordinates are

used. The gravitational force in Eq. (3) can lead to a singu-

larity during a collisionless simulation, since two or more

particles can be pushed infinitely close to each other. The

singularity can be avoided by revising gravitational interac-

tion at small scales. Thus, we introduce the softening length

ǫ — a threshold distance, below which gravitational inter-

action does not increase severely. The force acting on a

particle takes the form of a cubic spline [33, 1]:

~FY i = −GmY i
N
∑

j=1

mXj

(‖rY i − rXj‖
2
+ ǫ2)3/2

n̂ij . (4)

The dissipation term is expressed by a drag force acting in

the opposite to the particle’s velocity direction with a mag-

nitude proportional to its speed:

~F d
Y i = −η vY i, (5)

where the dimensionless constant parameter η jointly re-

flects properties of the particle Yi and the viscous medium.

Thus, the resultant force exerted on a particle Yi reads

~fY i = ~FY i + ~F d
Y i . (6)

Using Euler’s method for second order ODEs we perform

forward integration, i.e. solve the system in Eq. (2) and get

updates for an unconstrained velocity and displacement of

every particle Yi:

~vt+1
Y i = ~vtY i +∆t

~fY i

mYi
(velocity), (7)

~dt+1
Y i = ∆t ~vtY i (displacement). (8)

Unconstrained velocities and displacements can be com-

bined into the velocity and displacement field matrices

VM×D and DM×D:

V =
[

~vt+1
Y 1 ~vt+1

Y 2 . . . ~vt+1
Ym

]T
, (9)

D =
[

~dt+1
Y 1

~dt+1
Y 2

... ~dt+1
Ym

]T

. (10)

V and D are subjects to further regularization which de-

pends on the type of point set registration.

3.1. Rigidity constraints

In the rigid case, rigidity constraints on the displacement

field D must be imposed and rigid body physics takes effect.

Resolving translation. Since distances between points are

preserved, several simplifications can be carried out. First,

the resultant force exerted on a rigid body is equal to the

sum of the forces exerted on individual particles:

~F t+1
Y

=
M
∑

i=1

~f tY i. (11)

Second, the resultant velocity changes depending on the ac-

tion of the resultant force on the total mass of the template

mY per unit of time as

~vt+1
Y

= ~vt
Y
+∆t

~F t+1
Y

mY
. (12)

From the resultant velocity ~vt+1
Y

, the resultant translation

can be computed as

~tt+1 = ∆t ~vt+1
Y

. (13)

Resolving scale. We find a scale s in the least-square sense.

s relates the current position of a template Yt with the pre-

dicted position Yt+1 = Yt +D as

Yt+1 = Yts. (14)

Suppose Ŷt and Ŷt+1 are column vectors of length DM

with vertically stacked entries of Yt and Yt+1 respectively.

In that case, the following proposition holds.

Proposition 1. In Eq. (14) the optimal scaling factor s in

the least-squares sense is equal to the ratio of two vector

dot products
Ŷ

T
t ·Ŷt+1

Ŷ
T
t ·Ŷt

.

A proof can be found in the supplementary material.

Resolving rotation. Rigorously, rotation can be inferred

from a torque acting on a rigid body. A torque (a moment

of force) is a physical quantity reflecting the tendency of

the force to change the angular momentum of the system,

i.e. to rotate an object. Resolving rotation rigorously apply-

ing physics of rotational motion introduces to GA an addi-

tional parameter ω (angular velocity) and generates a bunch

of new intermediate quantities (see supplementary material

for details on the rigorous rotation resolving).

Thus, computing R using torque requires several non-trivial

steps. Instead, a different method is used in this paper.

To recap the initial conditions, in every iteration the start-

ing and final position vectors of M points are given and

the task is to find a rotation matrix which optimally aligns

both vectors. This can be efficiently addressed by solving
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a corresponding Generalized Orthogonal Procrustes Prob-

lem. The disadvantage is the loss of ω, since no angular

acceleration from previous iterations is considered. The so-

lution in a closed-form is given in Lemma 1. It resembles

the Kabsch algorithm [19] and is provided without a proof.

Lemma 1. Given are point matrices Y and YD = Y +
D. Let µY and µY D be the mean vectors of Y and YD

respectively, Ŷ = Y−1µT
Y and ŶD = YD −1µT

Y D point

matrices centered at the origin of the coordinate system and

C = ŶD
T
Ŷ a covariance matrix. Let USÛ

T be SVD of

C. Then the optimal rotation matrix R reads

R = UΣÛT , (15)

where Σ = diag(1, . . . , sgn(|UÛ
T |)).

The covariance matrix C has dimensions 3×3. Thus, the se-

quential code portion dedicated to the (parts of) SVD com-

putation is negligible.

Finally, having resolved the translation, scale and rota-

tion it is possible to update the template’s pose as

Yt+1 = sYtR+ t. (16)

Note that the center of mass of Yt must coincide with the

origin of the coordinate system for the rotational update.

The Gravitational Approach is summarized in Alg. 1. As

an optional parameter a non-zero template’s velocity ~v0
Y

can

be provided. Following the rigorous approach to resolve

rotation would require an additional parameter ω as well as

a modification of line 7 in Alg. 1. As stated so far, GA has

complexity O(MN), since every particle of the reference

perturbs every template’s particle. The stopping criterion

is formulated in terms of the difference in the gravitational

potential energy (GPE) which reads

E(R, t, s) = −G
∑

i,j

mY i mXj

‖R rY i s+ t− rXj‖+ ǫ
. (17)

See supplementary material for the detailed explanation of

the GPE expression.

3.2. Acceleration techniques

Acceleration techniques from both areas of N -body sim-

ulations and point set registration can be adopted for GA.

They enable a drop in computational complexity to at least

O(N logM) as well as a speedup in a corresponding com-

plexity class in terms of the number of operations.

Various techniques to accelerate N -body simulations were

developed in the past three decades [33]. Ahmad-Cohen

(AC) neighbour scheme employs two time scales for each

particle [4]. Thereby, force evaluations for neighbouring

particles occur more frequently than for distant particles.

Algorithm 1 Gravitational Approach

Input: a reference XN×D and a template YM×D

Output: parameters (R, t, s) aligning Y to X optimally

Parameters: G ∈ (0, 1], ǫ ∈ (0; 0.5), η ∈ (0; 1], mXj , mY i,

j ∈ {1, . . . , N}, i ∈ {1, . . . ,M}, ~v0Y , ρE , ∆t, K

1: Initialization: R = I, t = 0, s = 1, Ecurr = E(R, t, s),
Eprev = 0

2: while |Ecurr − Eprev| < ρE do

3: update force~fY i for every particle Yi (Eqs. (4)–(6))

4: update velocity and displacement matrices V and D

(Eqs. (7)–(10) )
5: compute translation tk according to Eqs. (11)–(13)

6: compute scale sk as stated in Proposition (1)

7: update rotation Rk (Eq. (15))

8: Yt+1 = skYtRk + tk (Eq. (16))

9: R = RRk, t = t+ tk, s = ssk (optimal parameters)

10: Eprev = Ecurr , update Ecurr according to Eq. (17)

11: if the current iteration number k exceeds K then

12: break

13: end if

14: end while

For smaller time steps, contributions from the distant points

are approximated. Various strategies for neighbourhood

selection were proposed [3]. Though the AC scheme al-

lows to achieve a speedup, the complexity class remains

O(n2). Barnes and Hut [5] introduced a recursive scheme

for the force computation based on the space subdivision

and particle grouping in an octree. The algorithm achieves

O(n log n) for an N -body simulation. Adopting it for GA

will decrease the complexity to O(M logN). Fast multi-

pole methods (FMM) [15] also employ hierarchical space

decomposition, but additionally take advantage of multipole

expansions. Thus, adjacent particles in the near-field tend

to accelerate similarly under forces exerted by particles in

the far field. This class of algorithms exploits the idea of

rank-deficiency of the n × n interaction matrix consider-

ing the nature of the far-field interactions. This results in

an O(n log n) algorithm, whereby a multiplicative constant

depends on the approximation accuracy. An O(n) algo-

rithm is also possible, but requires a lot of additional effort

accompanied by an increase in the multiplicative constant.

When adopting FMM for GA, the complexity can theoreti-

cally drop to O(M logN) and O(M +N) respectively. In-

terestingly, CPD employs the Fast Gauss Transform (FGT)

to approximate sums of Gaussian kernels in O(M + N)
time. FGT was developed by Greengard and Strain follow-

ing the principles of FMM [16].

Common acceleration techniques from the area of point set

registration can be applied to GA. Firstly, both the reference

and the template can be subsampled. Assume sX and sY are

corresponding subsampling factors. The speedup amounts

to ∼sXsY is this case. Subsampling has to be used with

caution, since it can cause loss of information. Secondly, a
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coarse-to-fine strategy can be applied — starting on a rough

scale, the solution is refined while involving more and more

points for the registration. Thirdly, dedicated data structures

such as kd-tree for nearest neighbour search can be used.

Such data structures, hierarchically reordering the points ac-

cording to their spatial positions also find their application

in tree codes and FMM.

Furthermore, parallel hardware can be used to speedup GA,

since the algorithm is inherently data- and task-parallel with

the portion of parallel code > 99%. Though, with decrease

in computational complexity of a GA variant (e.g. from

O(MN) to O(M logN)), memory complexity and the ef-

fort to parallelize the algorithm may increase. In 2007, Ny-

land et al. reported a fiftyfold speedup of the GPU imple-

mentation of an all-pairs N -body simulation compared to a

tuned serial implementation [25]. Later, a first GPU imple-

mentation of the Barnes-Hut octree was presented. It allows

to simulate interactions of 5 · 106 particles with 5.2 seconds

per time step [9]. A recent tendency is to unify tree codes

and FMM with automatic parameter tuning for heteroge-

neous platforms [38]. Using an efficient implementation, it

should be possible to run GA for point sets with 107 points

on a single GPU in reasonable time.

Apart from the abovementioned techniques, a further one

is conceivable for GA. Since only the template point set is

moving and its particles do not affect each other, the force

field induced by the reference can be precomputed once in

a grid. Thereby, the gravitational force field can be sam-

pled with a higher density in the proximity to the reference

points. This can be especially advantageous when many

templates are registered with the same reference and there

is no memory restriction to achieve the desired accuracy.

This technique exhibits resemblance with the particle-mesh

class of methods in the area of N -body simulations (see e.g.

[3]). In the particle-mesh methods, particles interact with

each other through a mean force field changing over time.

The methods achieve complexity O(n log n). In the case

of GA, the technique raises the algorithm’s memory com-

plexity and preprocessing time, but reduces computational

complexity to O(M), since the gravitational force field re-

mains constant and does not need to be recomputed.

4. Evaluation

In this section we focus on the qualitative evaluation of

the first GA implementation and compare it with ICP and

CPD in synthetic and real-world scenarios. The Matlab

implementations of the ICP and CPD algorithms are taken

from [20] and [22] respectively. GA is implemented in C++

and runs on a system with 3.5 GHz Intel Xeon E5-1620 pro-

cessor and 32 GB RAM.

Experiments on synthetic data. In the first experiment

we compare ICP, CPD and GA in a registration scenario

with the Bunny point cloud from the Stanford 3D Scanning

Figure 3: Registration results from the experiment on synthetic data (Stan-

ford Bunny [31]). The reference is shown in red, the noisy template in blue.

(a) Initialization, template contains 40% of uniformly distributed noise; (b)

result with a uniformly distributed noise; (c) initialization, template con-

tains 40% of a Gaussian noise; (d) result with a Gaussian noise. GA is

more robust to Gaussian noise in terms of the mean distance and RMSE,

but it resolves rotation more often under uniformly distributed noise.

Figure 4: Results of the experiment on synthetic data: reference is the

Stanford Bunny [31], template is a randomly transformed copy of it with

5%, 10%, 20%, 40% and 50% added uniformly distributed and Gaussian

noise. Metrics are calculated over 500 runs for every noise level and type.

Repository [31]. We copy the downsampled version of the

Bunny (1889 points), translate it and change its orientation

(angle φ ∈ [0; π
2 ]). The resulting point set serves as a tem-

plate and the original one as a reference. We also introduce

uniformly and Gaussian distributed noise so that for each

noise type 5%, 10%, 20%, 40% or 50% of points in the

resulting point cloud represent noise. In the case of the uni-

form distribution, noise is added to the bounding box of the

3D scan. In case of Gaussian noise, the mean value in the

center of the bounding box is taken. For every noise com-
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bination out of ten, 500 random transformations are applied

resulting in 500 random initial misalignments. For every

initial misalignment and noise combination, rigid registra-

tions with ICP, CPD and GA are performed. To assure the

highest accuracy, a CPD version without FGT is used. CPD

takes one parameter, i.e the estimated amount of noise in

a data set which is set to the corresponding noise level in

every run. For GA, G = 6.67 · 10−5 is set. We mea-

sure mean distance and root-mean-square error (RMSE) be-

tween the reference and a registered template. The noise is

removed while computing the metrics, since we are inter-

ested in the quality of data alignment and exact correspon-

dences are known in advance. For all algorithms, failed reg-

istrations are not considered in computation of the metrics.

Instead, the amount of failures is reported separately. A cri-

terion for registration failure is defined in terms of a thresh-

old on RMSE. We observe that in the experiment with the

3D Bunny, RMSE is either < 0.2 or > 0.4. In the former

case point clouds always appear to be registered correctly, at

least approximately well, whereas in the latter case they are

never registered correctly. Thus, we set the failure thresh-

old to 0.3. In Fig. 3, exemplary results of GA are shown

(40% noise level). Running time of GA ranges from 1.5 to

10 minutes per run depending on the noise level. The algo-

rithm converges at most after 100 iterations when possible

oscillations around the local minimum attenuate. Results of

the experiment are summarized in Fig. 4.

GA shows intermediate performance between ICP and

CPD. In average, it fails more rare than ICP and more of-

ten than CPD when resolving rotation. The angle of initial

misalignment causing GA to fail lies in the range [π4 ;
π
2 ],

whereby the higher the angle, the smaller the probability

to resolve rotation correctly. CPD starts to fail when the

angle of initial misalignment exceeds 65◦. Results of the

experiment confirm the tendency — since the set of initial

misalignments is equal for all algorithms, direct angle com-

parison in failure cases is performed. All three algorithms

are stable against Gaussian noise while resolving rotation

(the number of failures does not correlate with the level of

Gaussian noise). CPD and GA are also stable to uniformly

distributed noise. In case of 50% of uniformly distributed

noise, GA outperforms CPD both in terms of the mean dis-

tance, RMSE and amount of correct registrations. Here, the

difference between a probabilistic approach and our method

comes to light: in the case of GA, more distant points con-

tribute more significantly (hyperbolic expression) than in

the case of CPD (Gaussian vicinity) allowing for more ro-

bust cumulative compensation.

Experiments on real data. We evaluate GA with several

experiments on real data. Fig. 2 depicts the course of the

first one. We take a human body scan (4.2 · 104 points)

and a template (3 · 103 points) reconstructed on a multi-

view system with an algorithm described in [12]. We add

Figure 5: Experiment with prior correspondences as applied to image reg-

istration. Pictures are converted into 2D point sets, whereby pixel intensi-

ties determine point masses. (a) Reference image [32] and (b) the corre-

sponding point set; (c) template image [30] and (d) the corresponding point

set; (e) initial alignment of the point sets; (f) recovered transformation by

GA; (g) registration result of CPD.

synthetic clustered outliers (forming a sphere) to the refer-

ence. Initially, the template is located exactly between the

human scan and the sphere (Fig. 2-a). Both point sets are

registered with ICP, CPD and GA. ICP fails to associate the

human scan with the human template. Being influenced by

direct nearest neighbours, it converges to the sphere (if the

template is located closer to the human scan, ICP resolves

rotation less accurate than CPD and GA) (Fig. 2-b). GA and

CPD, provided appropriate parameters are chosen, resolve

registration correctly (Fig. 2-c,-d). If the corresponding pa-

rameter is set suboptimally (either G for GA or the weight

w for CPD), result of GA is not as accurate, whereas CPD

may fail to resolve the example. The experiment demon-

strates the gravitational nature of GA — subspaces with a

higher total mass win against outliers, even if they are clus-

tered.

The second experiment on real data is selected to demon-

strate performance of GA in presence of structured outliers

and with missing parts. We use two scans of the guardian

lions reconstructed with the multi-view algorithm [12]. The

reference (Fig. 6-a) represents a processed 3D model. We

register it with a rough reconstruction of the lion with 7%
of contiguous points removed from the area of the head

(Fig. 6-b). Fig. 6-b,-c show initialization and the regis-

tration result respectively. During the registration, a 30x

subsampling of both point clouds is used and the recovered

transformation is applied to the initial template. Results are

highly accurate despite of outliers and missing parts.

In the third experiment on real data, the influence of differ-

ent particle masses is evaluated. The point sets are obtained

from two different images of the Orion constellation. For

every point, a weight according to the grayscale pixel inten-

sity is set. Fig. 5 depicts the course of the experiment. The
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Figure 6: Results of the experiment with structured outliers and missing parts. (a) the processed reference 3D model, 1.45 · 105 points; (b) recon-

struction with removed 7% of the points, 1.34 · 105 points. (c) initialization; (d) GA registration result; (e) cloud-to-cloud distance visualized with a

Blue<Green<Yellow<Red color scale; the mean distance amounts to 0.109, the RMSE to 0.63; outliers and missing parts explain the high RMSE.

template and the reference contain 324 and ∼104 points re-

spectively, whereby the template contains ∼95% noise in-

cluding clustered outliers. GA downweights darker points

corresponding to the noise and emphasizes star clusters with

the higher weights. It successfully accomplishes the task

and the corresponding star clusters are aligned correctly, as

can be observed in Fig. 5-f. CPD is not able to incorporate

weighting information and fails, although the noise weight

w is set to 0.95. This example shows an advantage of GA

against CPD — incorporating weights — which can influ-

ence the registration procedure in a favourable way. Differ-

ent masses can be also assigned to particles if prior corre-

spondences between point sets are known in advance.

An additional experiment on the SLAM benchmark datasets

— the Stanford 3D Scene Dataset [40] and CoRBS [36] —

is placed in the supplementary material. The experiment

shows that GA can potentially be used in a SLAM system

to register point clouds captured by a depth sensor.

Discussion. The experiments confirm our hypothesis — it

is possible to register point sets through modelling a rigid

system of particles in a force field. The results evince suit-

ability of the proposed method to cope with real-world sce-

narios. In the above experiments GA performs robustly in

presence of large amounts of noise, especially uniformly

distributed noise. We believe that the unique properties such

as embedding of prior correspondences through different

point masses and outlier suppression need to be further in-

vestigated. In the experiments G ∈ [6.67·10−6; 6.67·10−5]
and η ∈ [0.2; 0.9] were chosen and the step size ∆t was

fixed to 1. G and η counterbalance each other and should

be set depending on the scale and the total mass of the points

involved in the registration. Higher values of η might lead

to a faster convergence, but might also hinder the algorithm

to find a solution. The current limitation of the proposed

approach consists in its limited capability to resolve scale

which requires a special parameter tuning. If the parame-

ters are set suboptimally, the template may shrink to a single

point. Also in the current implementation, GA can handle

large point sets through subsampling.

5. Conclusions

In this paper, a novel multiply-linked rigid point set reg-

istration algorithm is introduced — the Gravitational Ap-

proach — which is based on the concept of the particle

movement in a force field. The new approach is well

parallelizable and allows to embed prior correspondences

through inhomogeneous point weights. Various accelera-

tion techniques can be adopted for GA reducing the com-

putational complexity or providing a speedup in a respec-

tive complexity class. Experiments on synthetic and real

data show that GA is robust against clustered outliers. The

new method outperforms ICP in terms of the ability to re-

solve rotation and in the mean distance and RMSE metrics.

In scenarios with especially large amount of a uniformly

distributed noise, GA may also outperform CPD. In future

work, we will focus on the stable scale resolving as well as

finding an efficient mixture of acceleration techniques for

GA. We also plan to generalize it to the non-rigid case.
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