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Abstract

Conventional scanning and multiplexing techniques for

hyperspectral imaging suffer from limited temporal and/or

spatial resolution. To resolve this issue, coding techniques

are becoming increasingly popular in developing snapshot

systems for high-resolution hyperspectral imaging. For

such systems, it is a critical task to accurately restore the 3D

hyperspectral image from its corresponding coded 2D im-

age. In this paper, we propose an effective method for coded

hyperspectral image restoration, which exploits extensive

structure sparsity in the hyperspectral image. Specifically,

we simultaneously explore spectral and spatial correlation

via low-rank regularizations, and formulate the restoration

problem into a variational optimization model, which can

be solved via an iterative numerical algorithm. Experimen-

tal results using both synthetic data and real images show

that the proposed method can significantly outperform the

state-of-the-art methods on several popular coding-based

hyperspectral imaging systems.

1. Introduction

Hyperspectral (HS) imaging captures light from any

scene point over tens and hundreds of bands in the spec-

tral domain. Such detailed spectral distribution information

has given rise to numerous applications [1] , including di-

agnostic medicine [2, 3], remote sensing [4, 5], surveillance

[6, 7], and more.

To capture a full HS image, traditional HS imaging meth-

ods [8, 9, 10, 11, 12] need to scan along either the spatial

or the spectral dimension, and they often sacrifice tempo-

ral resolution due to the limitations of hardware in perceiv-

ing light. To enable hyperspectral acquisition of dynamic

scenes, snapshot approaches [13, 14, 15, 16] are developed

to capture the full 3D spectral cube in a single image, which

multiplex the 3D HS image into a 2D spatial sensor, at the

cost of reducing spatial resolution.

Recently, some coding-based HS imaging approaches

[17, 18, 19, 20, 21, 22] have been proposed to overcome

the tradeoff between temporal and spatial resolution, re-
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Figure 1. Illustration of the low-rank matrices from a HS image.

Each cubic patch is reshaped as a 2D matrix, where each row de-

scribes the spectral distribution of each pixel. This low-rank ma-

trix encodes the correlation across spectra. Besides, a set of sim-

ilar patches for each exemplar patch are grouped into a low-rank

matrix, which accounts for the spatial non-local similarities.

lying on the compressive sampling (CS) theory. All these

imaging approaches are under-determined, and their under-

lying restoration methods exploit the l1-norm based sparsity

of HS images. Since the number of measurements is far less

than that of variables in the desired HS image, the l1-norm

based constraints are still insufficient for accurate hyper-

spectral image restoration. This inspires us to better exploit

the intrinsic properties of a HS image, i.e. the high correla-

tion across spectra [23] and the non-local self-similarity in

space [24].

In this paper, we propose an effective coded HS image

restoration method, by exploiting spectral and spatial corre-

lation via low-rank approximation (Figure 1). Specifically,

to utilize the sparsity across spectra, we reshape each ex-

emplar patch as a 2D matrix, where each row describes

the spectral distribution of each spatial pixel, and use the

spectral low-rank constraint on it. To take into account the

non-local self-similarity in space, we group a set of sim-

ilar patches for each exemplar patch and enforce the spa-

tial non-local low-rank regularization on this set. In addi-

tion, we employ the weighted nuclear norm as a smooth

surrogate function for the low-rank regularization, which

can adaptively adjust the regularization parameters. Later,

these two low-rank regularizations are involved into a uni-
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fied variational optimization model, which can be efficiently

solved via an iterative numerical algorithm. The effective-

ness of our method is demonstrated on several coding-based

HS imaging systems, which outperforms the state-of-the-art

methods designed for these systems on synthetic and real

data.

In summary, our main contributions are that we

1. Present an effective and universal method for coded

HS image restoration, and demonstrate it on several

recent coding-based HS imaging systems;

2. Exploit the intrinsic properties of a HS image—the

high correlation across spectra and spatial non-local

self-similarity—via proper low-rank regularizations;

3. Develop an iterative numerical algorithm to efficiently

solve the proposed model and adaptively adjust the

regularization parameters.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews related works. Low-rank approximation for

universal coded HS image restoration is presented in Sec-

tion 3, while the mathematical representation of several rep-

resentative coding-based imaging systems is shown in Sec-

tion 4. We present extensive experimental results in Section

5 and conclude this work in Section 6.

2. Related Works

In the following, we will review the most relevant studies

on HS imaging system and low-rank approximation.

2.1. Hyperpectral Imaging System

Conventional HS cameras rely on certain scanning tech-

niques. For example, whiskbroom and pushbroom based

[8, 9] acquisition systems scanned the full scene pointwisely

or linewisely. In contrast, rotating and tunable filters based

systems [10, 11] scanned throughout the spectral dimen-

sion. Spatial variant color filters [12] were also used to cap-

ture different spectra at different points. All these methods

suffer from limited temporal resolution.

To enable dynamic scene acquisition, snapshot ap-

proaches are developed to capture the full 3D HS image in

a single image, which multiplex the 3D HS image into a 2D

spatial sensor by sacrificing the spatial resolution. Exam-

ples include computed tomography imaging spectrometer

[13], the 4D imaging spectrometer [14], the snapshot image

mapping spectrometer [15], and the prism-mask system for

multispectral video imaging [16].

Recently, some coding-based snapshot HS imaging ap-

proaches have been proposed to overcome the tradeoff be-

tween temporal and spatial resolution. The coded aperture

snapshot spectral imager (CASSI) employed two dispersers

[17] (or one disperser later in [18]) with a coding aperture

to uniformly encode the optical signals along space by us-

ing CS-based methods. The performance of CASSI could

be improved by using multiple shots with changing coded

masks [19, 20], or dual camera design (DCD) with another

aligned panchromatic camera [21]. Later, a compressive hy-

perspectral imager (SSCSI) [22] was presented to jointly

encode the spatial and spectral dimensions in a single gray

image.

All these coding-based HS imaging systems rely on the

CS theory and the full HS image is restored by employing

the l1-norm based sparsity of the HS image. In contrast,

we investigate more intrinsic properties of a HS image, i.e.

high correlation across spectra and non-local self-similarity

among space, and develop a unified variational framework

for accurate HS image restoration, which jointly exploits

the redundancy across spectra and space via low-rank regu-

larizations.

2.2. LowRank Approximation

Low-rank approximation seeks to recover the underly-

ing low-rank matrix from degraded observations, which is

shown to be tractable [25] by solving its convex nuclear

norm relaxation. Cai et al. [26] further developed the singu-

lar value thresholding scheme for fast computation. To im-

prove the flexibility of nuclear norm, Fazel et al. [27] used

the logarithm of the determinant as a smooth approximation

of rank, which is a non-convex surrogate of the rank. Gu et

al. [28] showed that weighted nuclear norm minimization

could effectively improve the restoration results by adap-

tively adjusting the weights for each singular value in the

optimization process. Lu et al. [29] studied the generalized

singular value thresholding to solve the general non-convex

surrogate of rank.

Low-rank approximation has been widely used in image

restoration [23, 30], image alignment [31], transform in-

variant texture modeling [32], background modeling [33],

reflection separation [34] and more. In this work, we will

resort to it for coded HS image restoration.

3. Coded Hyperspectral Image Restoration

In this section, we first explore spectral and spatial cor-

relation, and then show how to incorporate it into HS image

restoration via low-rank regularizations. Finally, an itera-

tive numerical algorithm is developed for solving.

3.1. Spectral and Spatial Correlation

It is well known that large sets of spectra can be properly

represented by low dimensional linear models [35]. This

implies that different spectra of realistic scenes assume rich

redundancy. Due to difference in material distribution, the

degree of correlation varies across different patches of the

HS image. To account for this property, we properly divide

the HS image into cubic patches, as illustrated in Figure 1.

Specifically, let S ∈ R
M×N×B denote the original 3D

HS image, and S ∈ R
MNB be the vectorized form of S , in
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which M , N and B stand for the number of image rows,

columns and spectral bands, respectively. The HS image S
is first divided into overlapping cubic patches of size P ×
P × B, where P < M and P < N . Let vector si,j ∈

R
P 2B denote the vectorized form of a cubic patch extracted

from S and centered at the spatial location (i, j). si,j can

be described as

si,j = Ri,jS, (1)

where Ri,j ∈ R
P 2B×MNB is the matrix extracting patch

si,j from S. Now, we introduce a linear transform operator

T : R
P 2B → R

P 2
×B that reshapes the vectorized cubic

patch si,j as 2D matrix, such that each row of T (si,j) de-

notes the spectral distribution of each pixel. In practice,

T (si,j) may be corrupted by some noise. We thus model

the matrix T (si,j) as T (si,j) = Ai,j + Ni,j , where Ai,j

and Ni,j describe the desired low-rank matrix and the Gaus-

sian noise matrix, respectively. The spectral low-rank ma-

trix Ai,j can be recovered by

Âi,j = argmin
Ai,j

rank(Ai,j), s.t. ‖T (si,j)−Ai,j‖
2
F ≤ σ2

A,

(2)

where ‖ · ‖2F denotes the Frobenius norm and σ2
A is the

variance of the additive Gaussian noise. The minimization

problem in Equation (2) can be solved by its Lagrangian

form,

Âi,j = argmin
Ai,j

β‖T (si,j)−Ai,j‖
2
F + αrank(Ai,j).

(3)

Equation (3) is equivalent to Equation (2), when a proper

parameter for β/α is chosen.

The cubic patches in the HS image also have rich self-

similarity with its neighboring patches [36] in the spatial

domain, which implies that the grouped similar patches for

each exemplar patch assume low-rank structures. We call it

as the spatial non-local low-rankness to distinguish it with

the aforementioned spectral low-rankness.

For each exemplar patch, its similar patches are

searched by k-nearest neighbor method within a

local window centered at (i, j). Let R̃i,jS =
[Ri,j,1S,Ri,j,2S, · · · ,Ri,j,kS] = [si,j,1, si,j,2, · · · , si,j,k]
denote the formed matrix by the set of the similar patches

for the exemplar patch si,j . Each column in R̃i,jS rep-

resents a vectorized similar patch to si,j . Similar to the

description for spectral low-rank approximation, we em-

ploy Bi,j to represent the desired non-local low-rank matrix

and the spatial non-local low-rank matrix approximation

can be described as

B̂i,j = argmin η‖R̃i,jS−Bi,j‖
2
F + γrank(Bi,j).

(4)

Coded HS Iŵage ܇ Low‐RaŶk ApproxiŵatioŶ Restored HS Iŵage ܁
Low‐raŶk across spectra

Spatial NoŶ‐local Low‐raŶk

MeasureŵeŶts: ܇ ൌ ܁

‖ञሺ܁ሻ െ ۴‖ۯ  ሻۯሺܓܖ܉ܚ
܁܀ െ ۰ ۴  ሺ۰ሻܓܖ܉ܚ

Siŵilar Patches

Siŵilar BaŶds

Figure 2. Overview of the proposed method for coded HS image

restoration by using spectral low-rank and spatial non-local low-

rank regularizations.

3.2. Restoration via LowRank Regularization

As will be shown in Section 4, a coding-based HS imag-

ing system can be described in general as Y = ΦS, in

which Y and Φ denote the image observations and the

projection operator, respectively. To exploit the rich re-

dundancy across spectra and non-local self-similarity along

space in the HS image, the coded HS image restoration task

can be achieved by solving the following regularized opti-

mization problem

(Ŝ, Âi,j , B̂i,j) = argmin ‖Y −ΦS‖2F +
∑

i,j

(

β‖T (si,j)−Ai,j‖
2
F + αrank(Ai,j)+

γ‖R̃i,jS−Bi,j‖
2
F + ηrank(Bi,j)

)

.

(5)

The overall framework of the proposed method is shown in

Figure 2.

The rank function rank(Ai,j) (or rank(Bi,j)) in Equa-

tion (5) is non-convex, which is proven to be NP-hard and

all known algorithms for exactly solving it are doubly expo-

nential [25]. A tractable approach is to optimize its convex

envelope, i.e. nuclear norm ‖ · ‖∗, and thus solve it via con-

vex optimization [25]. The nuclear norm of Ai,j is defined

as the summation of all singular values, i.e. ‖Ai,j‖∗ =
∑nA

r=1 σr(Ai,j). Similarly, ‖Bi,j‖∗ =
∑nB

r=1 σr(Bi,j).

To improve the flexibility of nuclear norm, Gu et al. [28]

showed that weighted nuclear norm can effectively improve

the restoration results by adaptively adjusting the weight

for each singular value in the optimization processing. The

weighted nuclear norm of matrix Ai,j is formulated as

‖Ai,j‖w,∗ =

n
∑

r=1

wArσr(Ai,j), (6)

where wAr ≥ 0 is a non-negative weight for σr(Ai,j).

For natural images, we have the general prior knowledge

that larger singular values are more important, and should

be less shrunk. Therefore, it is reasonable to set the weight
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wAr to be inversely proportional to σr(Ai,j), i.e.

wAr =
1

σr(Ai,j) + ǫ
, (7)

where ǫ is a small constant value. Similar definition applies

to Bi,j .

Therefore, the optimization problem for coded HS image

restoration in Equation (5) can be further relaxed as

(Ŝ, Âi,j , B̂i,j) = argmin ‖Y −ΦS‖2F +
∑

i,j

(

β‖T (si,j)−Ai,j‖
2
F + α‖Ai,j‖w,∗+

+ γ‖R̃i,jS−Bi,j‖
2
F + η‖Bi,j‖w,∗

)

.

(8)

3.3. Numerical Algorithm

The proposed model in Equation (8) has three sets of

variables, i.e. the full HS image S, the spectral low-rank

matrices Ai,j and the spatial non-local low-rank matrices

Bi,j . To solve Equation (8), we adopt an alternating mini-

mization scheme to split the original problem into three sim-

pler subproblems as follows.

Update Ai,j . Given an initial estimate of the latent high

resolution HS image S, we first extract patch si,j and re-

shape it as 2D matrix T (si,j), as described in Section 3.1.

Each matrix Ai,j can be recovered by

A
(t)
i,j = argminβ‖T (s

(t−1)
i,j )−Ai,j‖

2
F+α‖Ai,j‖w,∗, (9)

where a(t) represents the t-th iteration of any variable a.

Substituting Equation (6) into Equation (9), we can ob-

tain

A
(t)
i,j =argmin

1

2
‖T (s

(t−1)
i,j )−Ai,j‖

2
F

+
α

2β

nA
∑

r=1

w
(t−1)
Ar σr(Ai,j),

(10)

where nA = min{P 2, B}. According to [28][30], Equation

(10) can be optimized by

A
(t)
i,j = UA

(

ΣA −
α

2β
diag(w

(t−1)
A )

)

+

V
T
A , (11)

where UAΣAV
T
A is the SVD of T (s

(t−1)
i,j ), w

(t−1)
A =

[w
(t−1)
A1

, w
(t−1)
A2

, · · · , w
(t−1)
An

] is the vectorized representa-

tion of the weight in (6) and is calculated by Equation (7),

and (x)+ = max{x, 0}.

Update Bi,j . With the known latent HS image, we group

similar patches for the exemplar patch si,j , as described in

Section 3.1. Each matrix Bi,j can be obtained by optimiz-

ing

B
(t)
i,j = argmin γ‖R̃i,jS

(t−1) −Bi,j‖
2
F + η‖Bi,j‖w,∗.

(12)

Substituting Equation (6) into Equation (12), we can obtain

B
(t)
i,j =argmin

1

2
‖R̃i,jS

(t−1) −Bi,j‖
2
F

+
η

2γ

nB
∑

r=1

w
(t−1)
Br σr(Bi,j),

(13)

where nB = min{P 2B, k}. Similar to Equation (10),

Equation (13) can be optimized by

B
(t)
i,j = UB

(

ΣB −
η

2γ
diag(w

(t−1)
B )

)

+

V
T
B , (14)

where UBΣBV
T
B is the SVD of R̃i,jS

(t−1).

Update S. After solving for each Ai,j and Bi,j , the la-

tent HS image can be reconstructed by solving optimization

problem

S
(t) =argmin ‖Y −ΦS‖2F +

∑

i,j

(

β‖T (si,j)−A
(t)
i,j‖

2
F

+ γ‖R̃i,jS−B
(t)
i,j‖

2
F

)

.

(15)

Equation (15) is a quadratic minimization problem and we

use a conjugate gradient algorithm to solve it.

In our implementation, the spatial size P of the cu-

bic patch is chosen to be 6. The search region for sim-

ilar patches is in [−20, 20] × [−20, 20], and the nearest

45 patches are used. As for the weighting parameters in

Equation (8), we have chosen β = γ = 10−1 ∼ 1 and

α = η = 10−4 ∼ 10−3.

4. Representative Coding-based Imaging Sys-

tems

Here, we show the mathematical representation for three

representative coding-based HS imaging systems, including

CASSI [18], DCD [21] and SSCSI [22]1.

In the CASSI system, as shown in Figure 3(a), the scene

is first projected into the coded aperture, which plays a spa-

tial modulation. Then, the spatially modulated information

is spectrally dispersed by the prism and captured by a gray

camera. The imaging process for the (i, j)-th pixel can be

described by the following integral over the wavelength λ

Y h(i, j) =

∫

s(i+ ψh(λ), j, λ)f(i+ ψh(λ), j)c(λ)dλ,

(16)

where s(i, j, λ) denotes the spectral distribution of the

(i, j)-th pixel of the latent HS image. ψh(λ) is the

wavelength-dependent dispersion function for the prism

[18]. f(i, j) is the transmission function of the coded aper-

ture. c(λ) represents the response function of the detector.

1Our method can also be used for other coding-based HS imaging sys-

tems as well, like the multiple snapshot capture system [19, 20].
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Figure 3. Illustration of the three representative imaging systems.

In the DCD system, as shown in Figure 3(a), the incident

light from the scene is firstly split by a beam splitter. The

light in one direction is captured by CASSI, while the light

in the other direction is captured by a panchromatic cam-

era. The captured image by the panchromatic camera can

be described as

Y p(i, j) =

∫

s(i, j, λ)c(λ)dλ. (17)

In the SSCSI system, as illustrated in Figure 3(b)2, a

diffraction grating is applied to disperse the light into spec-

trum plane and a coded attenuation mask is inserted be-

tween the spectrum plane and the sensor plane to perform

spatial-spectral modulation. The coded image can be for-

mulated as

Y s(i, j) =

∫

s(i, j, λ)f(i+ ψs(i, λ), j)c(λ)dλ, (18)

where ψs(i, λ) is the spatial location and wavelength de-

pendent dispersion function [22].

Generally, the spectral dimension can be discretized into

B bands. Let Yh, Yp and Y
s be the vectorized represen-

tation of the image captured by CASSI Y h(i, j), image di-

rectly captured by the panchromatic camera Y p(i, j) and

image captured by SSCSI Y s(i, j) , respectively. The ma-

trix representation of the three systems can be written as

Y
h = Φ

h
S+ n

h,

Y
p = Φ

p
S+ n

p,

Y
s = Φ

s
S+ n

s,

(19)

where Φ
h is the projection matrix of the CASSI system

and jointly determined by f(i, j), ψh(λ) and c(λ). Φ
p is

2This figure shows the simplified imaging system. The full system can

be found in [22].

the projection matrix of the panchromatic camera and de-

termined by c(λ). Φ
s is the projection matrix of the SS-

CSI system and jointly determined by f(i, j), ψs(i, λ) and

c(λ). nh, np and n
s are the additive noise from CASSI, the

panchromatic camera and SSCSI, which are usually mod-

eled as Gaussian noise.

The imaging system can be generally expressed as

Y = ΦS+ n. (20)

For CASSI, Y = Y
h, Φ = Φ

h and n = n
h. For DCD,

Y = [Yh;Yp], Φ = [Φh;Φp], and n = [nh;np]. For SS-

CSI, Y = Y
s, Φ = Φ

s and n = n
s. For each system, the

projection matrix Φ can be calibrated in system construc-

tion. Given Φ, our goal is to recover the full 3D HS image

S from the incomplete measurements Y.

The number of measurements isMN in both CASSI and

SSCSI, while 2MN for DCD. Obviously, the restoration

task is severely under-determined, since the number of mea-

surements from these imaging systems is far less than that

of variables in the desired HS image. The coding mecha-

nism for these systems relies on the CS theory, and can be

decoded by adding sparsity regularization. CASSI [18] and

DCD [21] adopt the total variation regularization on the la-

tent HS image. SSCSI [22] learns the dictionary by using

K-SVD method [37] from HS image datasets, and adds the

sparse constraint by l1-norm on the coefficients of the latent

HS image. [22] shows that the restoration results are sensi-

tive to the dictionary learning method. In our method, we

use low-rank approximation for CS recovery, and exploit

the intrinsic correlation properties of HS images along both

spectral and spatial dimension. Our method does not need

to learn the dictionary, and is thus immune to the drawbacks

arising from dictionary learning.

5. Experimental Results

In this section, we evaluate our method for coded HS

image restoration on synthetic data and real images.

5.1. Synthetic Data

The HS images in Columbia Multispectral Image

Database [38] are used to synthesize data. To show the

effectiveness of our proposed method, we use 10 differ-

ent scenes and compare the restoration results on different

imaging systems, including CASSI, DMD and SSCSI.

As for the competing restoration methods, we consider

the two-step iterative shrinkage/thresholding along with the

total variation (TV) regularization [39], which is used in

[18] and [21]. To compare with the restoration method in

[22], we generate the results using the basis pursuit denoise

optimization [40] with the learned over-complete dictionary

by K-SVD, which is named as the dictionary-based recon-

struction (DBR). All the parameters involved in the compet-

ing algorithms are optimally set or automatically chosen as
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(a) CASSI (b) SSCSI (c) Original (d) TV-CASSI [18] (e) TV-DCD [21]

(f) TV-SSCSI (g) DBR-SSCSI [22] (h) Ours-CASSI (i) Ours-DCD (j) Ours-SSCSI

Figure 4. Visual quality comparison for the HS image beans on CASSI, DCD and SSCSI imaging systems. (a) and (b) show the synthesized

coded 2D image for CASSI and SSCSI, respectively. (c) shows the original image at 620nm. Restoration results at this band are shown in

(d-j).

(a) CASSI (b) SSCSI (c) Original (d) TV-CASSI [18] (e) TV-DCD [21]

(f) TV-SSCSI (g) DBR-SSCSI [22] (h) Ours-CASSI (i) Ours-DCD (j) Ours-SSCSI

Figure 5. Visual quality comparison for the HS image chart and stuffed toy on CASSI, DCD and SSCSI imaging systems.

described in the references. We implement our method on

these three imaging systems as well. To accelerate conver-

gence, we use the restoration results from the TV method as

initialization for our method. We use method-system to de-

note the combination of a restoration method and an imag-

ing system, i.e. TV-CASSI, TV-DCD, TV-SSCSI, DBR-

SSCSI, Ours-CASSI, Ours-DCD and Ours-SSCSI.

In Figure 4 and 5, we show the restored results for the

beans and chart and stuffed toy scenes in one spectral band

for different methods and imaging systems. As can be seen

in Figure 4 and 5, restorations from TV-CASSI and TV-

SSCSI suffer from obvious spatial blurring. The restoration

quality is improved by DBR-SSCSI, but with more noise.

In comparison, TV-DCD produces more details of underly-

ing scene, e.g. the edges of beans and the clothes of the toy

(Figure 4 and 5(e)). Compared with all these methods, our

method offers much better restoration results. We can see

that Ours-CASSI can recover more details than TV-CASSI

does, but the restoration results still have some blurring.

Ours-DCD improves the results over TV-DCD, and recov-

ers nice texture/edge features with rich details. Besides, our

method on SSCIS, i.e. Ours-SSCSI, significantly outper-
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Figure 6. (a) and (c) show the absolute difference from 400nm to 700nm between the ground truth and the restoration results at the center

pixel of the labeled lines in Figure 4(a) and 5(a), respectively, for different restoration methods and imaging systems. (b) and (d) show the

corresponding RMSE of spectral distribution at all 21 pixels in the labeled lines of Figure 4(a) and 5(b), respectively.

Table 1. Restoration results (PSNR(dB)/SSIM/SAM) of the 10 HS images for different methods and imaging systems.

Methods Metrics

TV-CASSI

PSNR 20.62 24.10 34.46 22.92 27.99 32.92 26.64 26.71 28.41 27.32

SSIM 0.5467 0.7998 0.9247 0.4633 0.8836 0.9012 0.6805 0.7975 0.9203 0.8084

SAM 0.3165 0.1981 0.2118 0.1713 0.1918 0.2978 0.1845 0.1839 0.0888 0.2181

TV-DCD

PSNR 27.68 34.22 40.87 30.84 40.44 43.10 33.38 34.14 35.22 38.12

SSIM 0.8569 0.9609 0.9533 0.8781 0.9695 0.9851 0.8797 0.9366 0.9769 0.9591

SAM 0.2481 0.1425 0.1648 0.1212 0.1299 0.1483 0.1291 0.1174 0.0664 0.1265

TV-SSCSI

PSNR 21.99 27.01 35.10 22.80 35.99 36.92 29.98 33.50 32.86 31.06

SSIM 0.7507 0.9148 0.9021 0.6350 0.9582 0.9663 0.7804 0.9261 0.9706 0.9128

SAM 0.3230 0.1642 0.2389 0.2205 0.1737 0.1991 0.1733 0.1253 0.0826 0.1977

DBR-SSCSI

PSNR 24.20 32.28 28.18 28.24 33.21 39.65 32.33 29.49 26.22 34.20

SSIM 0.7871 0.9503 0.8306 0.8196 0.9074 0.9826 0.9152 0.8885 0.8561 0.9370

SAM 0.3641 0.1678 0.3954 0.1860 0.2552 0.2558 0.1959 0.2131 0.1914 0.2927

Ours-CASSI

PSNR 24.52 32.12 40.64 26.56 35.74 37.62 30.87 34.61 40.51 34.08

SSIM 0.7410 0.9286 0.9405 0.7894 0.9307 0.9131 0.7604 0.9034 0.9799 0.8779

SAM 0.2552 0.1878 0.2129 0.1407 0.1432 0.1920 0.1209 0.0969 0.0491 0.1665

Ours-DCD

PSNR 32.37 45.06 51.00 35.47 48.20 48.40 38.13 43.09 47.92 46.86

SSIM 0.9389 0.9935 0.9916 0.9403 0.9948 0.9909 0.9619 0.9817 0.9935 0.9909

SAM 0.1449 0.0757 0.1572 0.0789 0.0714 0.1283 0.0859 0.0860 0.0252 0.0841

Ours-SSCSI

PSNR 30.55 39.48 41.93 32.67 39.66 41.12 35.25 38.14 41.90 41.03

SSIM 0.9252 0.9844 0.9874 0.9573 0.9486 0.9512 0.9161 0.9606 0.9900 0.9739

SAM 0.1812 0.1422 0.1843 0.1163 0.1218 0.1860 0.1198 0.0843 0.0506 0.1358

forms TV-SSCSI and DBR-SSCSI.

As for quantitative comparison, we use three image qual-

ity metrics to evaluate the performance, including peak

signal-to-noise ratio (PSNR), structural similarity (SSIM)

[41], and spectral angle mapping (SAM) [42]. PSNR and

SSIM are calculated based on each 2D spatial image, which

measure the spatial fidelity between the restored HS image

and the ground truth. A larger value of these two metrics

suggests better restoration. SAM is calculated based on the

1D spectral vector, which measures the spectral fidelity. A

smaller value of this metric implies better restoration. All

these metrics are averaged across the evaluated dimension.

The quantitative results for these imaging systems and

methods for all 10 scenes are shown in Table 1. The best

two results for each HS image are highlighted in bold. We

first compare the results from different imaging systems un-

der the same restoration method. We can see that SSCSI

usually has better performance than CASSI, which demon-

strates the advantages of the coding mechanism of SSCSI.

The DCD system acquires twice as many measurements as

in CASSI and SSCSI, and thus the restoration quality is bet-

ter.

Compared with the TV and DBR methods, our method

provides substantial improvements over all these imaging

systems in terms of PSNR, SSIM and SAM. Besides, our

method does not need to learn the dictionary, which is ob-

viously affected by different learning methods and datasets

[22].

To further analyze the spectral performance of our

method, we select a line consisting of 21 consecutive pixels,

as labeled in Figures 4(a) and 5(a) (red lines). The absolute

differences in the spectral distributions between the ground

truth spectrum and the restoration results of all competing

methods at the center of the labeled lines are shown in Fig-
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(a) CASSI (b) TV-CASSI (c) TV-DCD

(d) Pan (e) Ours-CASSI (f) Ours-DCD

Figure 7. Reconstruction results of 3 spectral bands in 596nm, 619nm and 648nm. (a)CASSI input. (d) Panchromatic input. (b) CASSI

recovery [18]. (c) DCD recovery [21]. (e) Ours for CASSI recovery. (f) Ours for DCD recovery.

ure 6 (a) and (c). It is obvious that the recovered spectral

distribution from our method is much closer to the ground

truth in the same imaging system. In addition, we also show

the spectral restoration accuracy of each pixel in the labeled

lines by the root mean square error (RMSE) in Figure 6 (b)

and (d). It is easy to see that our method obtains the best

approximation to the true spectral distributions of the origi-

nal HS image, which is in accordance with our quantitative

evaluation.

5.2. Real Images

We also capture some real images by using the CASSI

and DCD systems3. A Ninja scene with complex texture is

used for test. The coded 2D gray image captured by CASSI

is shown in Figure 7(a), while the panchromatic image for

DCD is in Figure 7(d). We show the restoration results at

596nm, 619nm and 648nm. By comparing Figure 7(b,e)

and (c,f), we can see that DCD performs better than CASSI

in terms of the visual quality, which demonstrates again the

advantage of the dual setup. As for the restoration methods,

our proposed method significantly outperforms TV on both

systems. Specifically, the spatial blurring introduced by the

TV method in both CASSI and DCD has been dramatically

alleviated in our restoration results, e.g., the ’Ninja’ letters

in the scene. We observe this improvement in the restoration

results at other spectral bands, which will be presented in

the supplementary material.

3Implementation details on these two systems can be found in [18, 21].

6. Conclusion

In this paper, we present an effective method for coded

hyperspectral image restoration, which is shown to be gen-

erally applicable to several popular coding based imaging

systems, without affecting their snapshot advantage. We

exploit both sparsity across spectra by a spectral low-rank

constraint and structure sparsity in the space via a spatial

non-local low-rank regularization. We employ the weighted

nuclear norm as a smooth surrogate function for the rank,

which can adaptively adjust the regularization parameters.

Besides, these two low-rank regularizations are involved

into a unified variational framework, which can be effi-

ciently solved by an iterative numerical algorithm.

Our work focuses mainly on exploiting the strong corre-

lation in spectral and spatial domain. [43] showed that tem-

poral correlation can be helpful in accelerating hyperspec-

tral video imaging. To explore correlations among these

three factors is left as our future work.
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