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Abstract

Previous work on estimating the epipolar geometry of

two views relies on being able to reliably match feature

points based on appearance. In this paper, we go one

step further and show that it is feasible to compute both

the epipolar geometry and the correspondences at the same

time based on geometry only. We do this in a globally opti-

mal manner. Our approach is based on an efficient branch

and bound technique in combination with bipartite match-

ing to solve the correspondence problem. We rely on several

recent works to obtain good bounding functions to battle the

combinatorial explosion of possible matchings. It is experi-

mentally demonstrated that more difficult cases can be han-

dled and that more inlier correspondences can be obtained

by being less restrictive in the matching phase.

1. Introduction

The ability to compute the relative pose between two

cameras is of fundamental importance in multiple view ge-

ometry. Almost all structure from motion systems rely on

this subproblem for building an overall reconstruction. Ef-

ficient minimal solvers [17] as well as globally optimal

branch and bound methods [10] exist. Like most other mul-

tiple view geometry problems, relative orientation is typi-

cally computed from a set of image point correspondences

which are generated using image appearance alone. To ob-

tain reliable correspondences the matching criterion is quite

restrictive and will in practice only allow feature points with

unique appearance. For example, [15] requires that the best

matching score is significantly better than the second best

one. As a consequence the number of available point corre-

spondences can be small in scenes with ambiguous and/or

repeated texture. Despite a restrictive matching criterion

one has to expect that a portion of the feature points are

incorrectly matched due to noise and appearance changes.

Since these mismatches do not obey the Gaussian noise as-

sumption they can be devastating to the reconstruction qual-

ity. To detect and remove such outliers, minimal solvers

[17] in combination with RANSAC [6] are often employed.

While it is very efficient in cases with a relatively low num-

ber of outliers RANSAC does not offer any optimality guar-

antees. Recently it has been shown that in many applica-

Figure 1: Example of two images of the same scene. The

goal is to recover both the relative pose and the correct

matching between the points.

tions RANSAC tends to fail when the number of outliers is

high [13, 4, 7]. To address this problem researchers have

started to consider methods that are guaranteed to find the

largest possible inlier set. In [7] a method for determining

the relative translation that maximizes the number of inliers

is presented. The approach has a worst case complexity of

O(n2 log(n)) where n is the number of putative matches.

In [8] the same problem is addressed in a branch and bound

framework. While the worst case complexity is exponential

it is shown to outperform [7] in practice. For the full rela-

tive pose problem, [5] and [19] propose methods that also

maximize the number of inliers.

While the above approaches all assume unique putative

matches, in this paper, we take a step further and consider

problems with multiple possible matches. In the extreme

case, we consider the search space of all possible matching

pairs. This gives a way to aid the matching in settings with

ambiguous texture by incorporating geometric knowledge

into the matching process. If the camera motion is known

then the search for point correspondences is reduced to a

search over known epipolar lines [16]. On the other hand, if

the motion is unknown then we need to solve for geometry

and point correspondences simultaneously, which is much

harder. We propose a simple technique for solving this

problem. To our knowledge it has previously not been at-

tempted. Compared to regular inlier maximization there are

two difficulties that have to be overcome. First, the space of

matches to search grows quickly when we allow more than

just the best match for each point. Second, with several

feasible matches for each point we need to enforce one-to-

one constraints. Our approach can be seen as a branch and

bound method in two levels. Rather than searching over all
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model parameters like in standard branch and bound, we

first consider only relative translation estimation with un-

known correspondences at the lower level. By solving a

bipartite matching problem we create a bounding function

that can be evaluated very rapidly. The above subproblem

is then used at the higher level in order to estimate rotation

parameters.

From a practical point of view the enlarged space of

possible matches introduces solution ambiguities. Given

an epipolar line any point lying on it is a potential match.

Hence points can switch matches along the epipolar line

without effecting the camera motion yielding multiple so-

lutions.

The literature dealing with geometric vision problems

with unknown matches is sparse. A method for subspace

clustering is proposed in [12]. In [3] a branch and bound

framework is applied to estimate in-plane Euclidean trans-

formations and globally optimal matching solutions. In

[14] a method for estimating 3D-3D rigid transformation

is presented. While the approach effectively searches a

6-dimensional space its applicability is somewhat limited

since it requires that all points in the source and target point-

clouds have a match. An integer programing approach for

geometric problems with linear residuals is presented in [2].

The approach can in principle be applied to relative pose

with affine cameras but with an algebraic error function.

The unknown correspondence problem with known relative

motion is dealt with in [16].

1.1. Introductory example

In this introductory example we study the extreme case

where we use no image information and hence each point

in one image can be matched to every point in the other. In

Figure 1 we show two images of the same scene. Apply-

ing our method to this problem, we are able to recover the

relative pose in an optimal manner, see Figure 2. Although

the global optimum of the estimated relative motion corre-

sponds to the expected (true) camera motion, two of the cor-

respondence pairs are mismatched (red lines). We will later

show that this is due to an inherent ambiguity in the prob-

lem, which cannot be resolved using geometric constraints

alone.

1.2. Problem statement

In this work we use the spherical camera model where

a 3D point X is projected into a camera (R, t) by simply

normalizing the transformed point, i.e.

v =
R(X − t)

‖R(X − t)‖ .

For spherical cameras the most natural error metric is the

angular reprojection error.

Figure 2: The correspondences found by the proposed

method. The inliers have less than 0.1 degrees angular er-

ror. The red lines correspond to incorrectly matched points

(compared to a manually created ground truth matching).

Definition 1. Given an error threshold ǫ ∈ R
+, relative ro-

tation R and translation t, the corresponding image point-

pair (v1,v2) is called an inlier if there exists some X ∈ R
3

such that1

∠(v1,X) ≤ ǫ and ∠(v2, R(X − t)) ≤ ǫ. (1)

The classical relative pose problem can then be stated.

Problem 1. Given a threshold ǫ and a set of putative point

matches between two images find the relative rotation R and

translation t which maximize the number of inliers.

Let I1 be the index set for the image points in the first

image and I2 the index set for the second image. Define

E ⊆ I1 × I2 to be the set of possible correspondences. If

we allow every point in the first image to match to every

point in the other image we have E = I1 × I2.

Definition 2. A set of putative matches M ⊂ E is feasible

if each i ∈ I1 appears in at most one pair (i, j) ∈ M and

each j ∈ I2 appears in at most one pair (i, j) ∈ M .

Now we can state the problem we solve in this paper.

Problem 2. Given a set of possible correspondences E and

ǫ > 0, find the relative rotation R and translation t which

have a maximal set of feasible inlier matches M ⊂ E.

2. Known relative rotation

First we consider the case when the relative rotation is

known and we only want to estimate the relative translation.

1
∠(a, b) denotes the angle between the vectors a and b.
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Problems with known relative rotation occur naturally in ap-

plications such as robotics where rotation is either known to

be fixed or can be estimated through other sensors.

This subproblem will also be used as a building block

when performing branch and bound over the rotation space

in Section 3. Since there is a scale ambiguity we can with-

out loss of generality assume that the translation is of unit

length. Similarly by rotating the image points in the second

image we can assume the rotation to be identity, i.e. R = I .

2.1. Epipolar geometry under translation

The epipolar geometry for known relative rotation has

been thoroughly investigated in prior works such as [10, 7,

8] and we only state the needed results here.

If the camera only has undergone a pure translation, then

the epipolar constraint is reduced to the image points v1

and v2 and the translation t being coplanar with the origin.

Since we assumed t to be of unit length this is equivalent to

requiring that v1,v2 and t lie on a great circle on the unit

sphere. If we allow for a reprojection error ǫ, then the trans-

lation must lie inside a wedge determined by the ǫ-cones

around v1 and v2. This is illustrated in Figure 3.

w

t

v2

v1

Figure 3: The image points v1 and v2 (arrows in the im-

age) determine two wedges on the sphere. The wedges are

formed by constructing great circles tangent to the ǫ-cones

around the image points. If the translation t lies inside the

wedges it will have the image pair is an inlier. Only one

of the wedges correspond to a reconstruction with the 3D

point X in front of both cameras.

For a point pair (v1,v2) the normals of the two great

circles which define the wedge are given by

n
± = sin(β/2)(n×w)± cos(β/2)n (2)

where α is the angle between the image points and β satis-

fies

sin(β/2) = sin(ǫ)/ sin(α/2) (3)

and

w =
v1 + v2

‖v1 + v2‖
, n =

v1 × v2

‖v1 × v2‖
. (4)

Checking if a translation t has the pair (v1,v2) as an inlier

is then simply done by verifying that

n
+ · t ≥ 0 and n

− · t ≥ 0. (5)

2.2. Branch and bound for translation estimation

In [8] the authors perform branch and bound on the unit

sphere to solve the relative translation problem. In their

approach they subdivide the unit sphere into spherical tri-

angles. To compute upper bounds for any triangle on the

sphere they count the number of wedges which either inter-

sect the triangle or completely enclose it. This will of course

be an upper bound for the number of wedges any translation

t inside the triangle can satisfy. Finding the intersection of

the wedges and a triangle is simple due to the fact that the

edges of spherical triangles lie along great circles. The in-

tersection points are easily computed by forming the cross

products of the normals. To find a lower bound they simply

evaluate the center point of the triangle.

2.3. Bounding the optimal feasible inlier set

In the case of multiple potential matches the lower bound

computed in [8] is not valid since it does not guarantee

one-to-one matches. The authors of [8] also presented

a heuristic improvement to address unknown correspon-

dences. However it only guarantees that points in one of

the images are uniquely assigned.

Similarly to [8] we perform branch and bound on the

sphere using spherical triangles representing a set of feasi-

ble translations. For each subdivision of the search space

we need to compute an upper and lower bound for the size

of the largest feasible inlier set any translation within the

triangle can have. To compute the upper bound we find

the largest feasible inlier set under the assumption that all

wedges which either intersect the triangle or completely en-

close it are inliers. Clearly this will be an upper bound for

the largest feasible set for any translation inside the triangle.

To find a lower bound, we check which wedges contain the

center point of the triangle and compute the largest feasible

set for these.

To ensure that we only search feasible matchings that

fulfill the one-to-one constraint we construct a bipartite

graph where the nodes in the graph correspond to the im-

age points. For each possible inlier wedge we add an edge

between the corresponding points. The problem is then re-

duced to finding a maximum-cardinality matching in this

bipartite graph, see Figure 4.

Matching in bipartite graphs is a well studied problem

which can be efficiently solved. In the implementation

we use the Hopcroft-Karp [11] algorithm but any stan-

dard solver can be applied. The Hopcroft-Karp algorithm

has a worst case complexity of O(|E|
√

|V |) but has been

shown for sparse graphs to have an average complexity of

1730



(a) (b)

Figure 4: Computing bounds for a triangle. The left col-

umn of nodes correspond to points in the first image and the

right column to the second image. For each subdivision of

the search space a subset of the wedges are possible inliers.

The possible inlier correspondences are illustrated as solid

lines and the correspondences which can be ruled out are

illustrated as dashed lines. For the solid lines a maximal set

of independent edges are selected. These are illustrated by

the red lines in (b).

O(|E| log |V |) [1]. Typically for small spherical triangles

the number of possible inlier wedges which are contradic-

tory will be small and the matching problem can be solved

extremely quickly.

2.4. Example with multiple matches

It is common practice in structure from motion to in-

clude a point pair in the set of possible correspondences if

the point from the first image has no other good candidates

[15]. This is often a good idea since it removes a lot of con-

tradictory point pairs and decreases the amount of outliers.

Unfortunately in scenes with repeated structures this often

results in few matches between the images, which in turn

could lead to low quality solutions. If we instead include all

matches which are sufficiently good we do not need to dis-

card possibly correct matches. While the problem becomes

more difficult to solve, the optimal solution has the potential

to contain more inliers.

In this example we compare matching with Lowe’s cri-

terion2 with simply including the 10000 best candidate

matches. Note that this means that some points might have

multiple matches in the other image. Figure 5 shows an ex-

ample of an image pair with a lot of windows and the possi-

ble matches found using the two matching approaches. The

inlier matches for the optimal solutions are shown in Figure

6.

2The threshold was set to 0.6.

(a) Point-pairs: 56 (b) Point pairs: 10000

Figure 5: Left: Normal SIFT-matching with Lowe’s crite-

rion 0.6. Right: The 10000 best candidate matches.

(a) Inliers: 27 (b) Inliers: 171

Figure 6: Left: The optimal number of inliers for the normal

SIFT-matching, using [8]. The running time was 20 ms and

Lowe’s criterion 0.6. Right: The optimal number of inliers

when solving the problem using the proposed method on

the 10000 best matches. The running time was 7 s. The

ǫ corresponds to 3 pixels. The incorrect inliers lie on the

epipolar lines and in the model these are indistinguishable

from the correct inliers.

2.5. Comparison to other methods

In this section we evaluate our method for translation es-

timation on the dataset of Fredriksson et al. [7]. The dataset

contains 136 image pairs taken without any relative rota-

tion. For each image pair we selected the best candidate

matches. We ran the translation estimation multiple times

with increasing amounts of matches included.

The minimal case for translation estimation requires two

points,

t = (v1 × v2)× (v′

1 × v
′

2). (6)

We compare our method against two different versions of

RANSAC. In the first version we randomly select two point

correspondences and evaluate the number of inlier match-

ings without regard for the feasibility requirement. In the

other version (RANSAC-bpt) we compute the number of

actual inliers by solving a bipartite matching problem in

each iteration. For the two RANSAC algorithms we run 500

and 50000 iterations, which corresponds to a 99% chance of

finding at least one minimal case where both point pairs are

inliers in situations with 90% and 99% outliers respectively.

We also compare with the method from Fredriksson et
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al. [8]. In [8] the authors also presented a heuristic im-

provement for dealing with unknown correspondences. We

include results both with and without this heuristic. Ta-

ble 1 shows the average inlier count for different number

of matches included. Figure 7 shows the running times for

all methods.

Matches 1k 5k 10k 20k 50k

Our 143 289 385 511 724

RANSAC-500 139 262 332 410 515

RANSAC-50k 142 284 375 469 559

RANSAC-500 (bpt) 140 267 336 434 617

RANSAC-50k (bpt) 143 287 383 507 716

[8] (without heuristic) 142 285 375 472 562

[8] (with heuristic) 143 288 383 509 715

Table 1: The average number of inliers over the 136 image

pairs for different number of included matches. Note that

our result is optimal.

0 10000 20000 30000 40000 50000
0

50

100

Point pairs

T
im

e
(s

)

Our

RANSAC-500

RANSAC-50k

RANSAC-500 (bpt)

RANSAC-50k (bpt)

[8] (without heuristic)

[8] (with heuristic)

Figure 7: The average running times for different number

of point pairs included.

3. Full relative pose

Now we consider the the full relative pose problem with

unknown correspondences. The method we propose is

based on performing a branch and bound over rotation space

similarly to [10]. For each subdivision of rotation space we

compute the bounds using the method presented in Section

2.

3.1. Branch and bound over rotation space

To handle the full relative pose problem we use the ro-

tation bounds derived by Hartley and Kahl in [10]. They

optimally solve the relative pose problem without outliers

by using branch and bound over the space of rotations.

Each rotation can be represented by the axis of rotation

and the angle. This allows the set of rotations to be param-

eterized by the set {r ∈ R
3, ‖r‖ ≤ π} where the rotation

angle is represented by the length of the vector. For ease of

implementation [10] uses this parametrization but searches

over the cube [−π, π]3. To obtain bounds the following

result is used.

Lemma 1. Let r1 correspond to the rotation R1 and r2 to

R2. Then3

d(R1, R2) ≤ ‖r1 − r2‖. (7)

This means that if we have a cube inside [−π, π]3 with

side length σ centered at Rc then any rotation R inside the

cube satisfies

d(Rc, R) ≤
√
3

2
σ. (8)

To find bounds for any relative pose with a rotation inside

this cube [10] transforms the image points in the second

image by RT

c
and search for the translation while allowing

for a larger error in the second image,

ǫ2 = ǫ+

√
3

2
σ. (9)

This additional error accounts for the uncertainty in the ro-

tation. Note that this larger threshold is only used for the

second image point. In [10] the bounds are computed by

solving a linear program to determine the optimal transla-

tion. This is possible since correspondences are known with

no outliers.

3.2. Extension to unknown correspondences

We extend the framework of [10] to handle unknown cor-

respondences. The idea is to perform branch and bound

over rotation space similarly to [10] but to compute the

bounds using the method presented in Section 2. This is

possible since the translation estimation can be solved very

quickly.

During the outer branch and bound (over rotations) we

need to compute the bounds for a given rotation cube in

[−π, π]3. To find the upper bound we perform an inner

branch and bound over translation space where we account

for the uncertainty in rotation. Figure 8 shows a wedge

where we allow for a larger error in the second image point

(as in (9)). In [10] it is shown that the normals to the wedges

where the image points have different ǫ are given by

n
± = sin(β/2)(n×w)± cos(β/2)n (10)

where α is the angle between the image points,

w =
sin(ǫ2)v1 + sin(ǫ1)v2

‖ sin(ǫ2)v1 + sin(ǫ1)v2‖
, n =

v1 × v2

‖v1 × v2‖
(11)

and β satisfies

sin2(β/2) =
sin2(ǫ1) + 2 sin(ǫ1) sin(ǫ2) cos(α) + sin2(ǫ2)

sin2(α)
.
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v1

v2

Figure 8: The wedges of possible translations when we al-

low for larger reprojection error in the second image point.

To find a lower bound we solve the translation problem

again but with the original wedges (same ǫ for both images).

This corresponds to finding the optimal translation for the

rotation in the center of the cube.

3.3. Evaluation on synthetic data

In this section we evaluate the method for full relative

pose on synthetic data. In these experiments we see how

different error thresholds affect the quality of the solution.

We also compare stopping the algorithm when some spe-

cific optimality gap (difference between upper bound and

lower bound) is achieved. The optimality gap gives a bound

for the maximum difference in inliers between the returned

solution and the optimal solution.

3.3.1 Narrow field of view

In this experiment we test the method on problems with nar-

row field of view. Since the image points are closer together,

the narrow fields of view are more difficult to solve using

branch and bound based algorithms. We synthesize 50 dif-

ferent 3D points, located uniformly in a cube of side length

four around the origin. The cameras are placed randomly

at distance four to the origin, resulting in about 60◦ field

of view. We add Gaussian noise with standard deviation

0.033◦ to the image points. In Table 2 and Table 3 the re-

sults can be seen for ǫ = 0.5◦ and ǫ = 0.25◦.

3.3.2 Narrow field of view: Planar scene

In this experiment we use the same experimental setup as

above, but all the points are now in the same plane, defined

by the square (±1,±1,
√
6). The first camera is located in

the origin and the the second at the the unit circle parallel

to the plane. We use 50 synthesized 3D points, randomly

3Here d(·, ·) denotes the angle between the rotations.

ǫ = 0.5◦

Gap Rotation Translation Mean time Median time

5 81◦ 35◦ 71s 66s

3 20◦ 13◦ 128s 68s

0 3.6◦ 3.4◦ 686s 68s

Table 2: The results for the proposed method on 10 syn-

thetic narrow field of view instances. The synthetic data

contains 50 3D points. The error threshold ǫ is 0.5◦.

ǫ = 0.25◦

Gap Rotation Translation Mean time Median time

5 3.7◦ 2.6◦ 879s 189s

3 2.9◦ 1.8◦ 881s 189s

0 2.2◦ 1.5◦ 1015s 201s

Table 3: The results for the proposed method on 10 syn-

thetic narrow field of view instances. The synthetic data

contains 50 3D points. The error threshold ǫ is 0.25◦.

distributed in the plane. Noise are added to the image points

as in the previous case. In Table 4 and Table 5 the results

can be seen for ǫ = 0.5◦ and ǫ = 0.25◦.

ǫ = 0.5◦

Gap Rotation Translation Mean time Median time

5 31◦ 28◦ 43s 45s

3 31◦ 28◦ 42 45s

0 10◦ 12◦ 83s 45s

Table 4: The results for the proposed method on 10 syn-

thetic narrow field of view instances, where all points are

located in the same plane. The synthetic data contains 50

3D points. The error threshold ǫ is 0.5◦.

ǫ = 0.25◦

Gap Rotation Translation Mean time Median time

5 12◦ 16◦ 91 94s

3 8◦ 12◦ 137s 103s

0 5◦ 9◦ 218s 161s

Table 5: The results for the proposed method on 10 syn-

thetic narrow field of view instances, where all points are

located in the same plane. The synthetic data contains 50

3D points. The error threshold ǫ is 0.25◦.
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3.3.3 Omni-directional

In this synthetic experiment we instead use omni-directional

cameras. We again use 50 points, this time they are ran-

domly distributed on the sphere of radius two. The camera

centres are randomly distributed on the unit sphere. The

added noise here is the same as in the narrow field of view.

The result for ǫ = 1◦ and ǫ = 0.5◦ can be seen in Table

6 and Table 7. Note that for the same error threshold and

gap, the solution to the omni-directional problem has much

higher quality then the narrow field of view.

ǫ = 1◦

Gap Rotation Translation Mean time Median time

10 72◦ 31◦ 121s 125s

5 3.2◦ 3.4◦ 167s 130s

3 2.5◦ 2.1 167s 133s

0 1.7◦ 2.0◦ 168s 133s

Table 6: The results for the proposed method on 10 syn-

thetic omni-directional instances. The problem has 50

points.

ǫ = 0.5◦

Gap Rotation Translation Mean time Median time

10 1.6◦ 2.5◦ 266s 241s

5 1.2◦ 1.4◦ 264s 241s

3 1.1◦ 1.0 264s 241s

0 0.9◦ 1.0◦ 266s 249s

Table 7: The results for the proposed method on 10 syn-

thetic omni directional instances. The problem has 50

points.

3.4. Ambiguities along epipolar lines

We now again consider the image pair shown in Figure 1

(Section 1.1). For this image pair there exist multiple opti-

mal solutions and Figure 9 shows another optimal solution

with the same relative rotation and translation but with dif-

ferent point matches. This ambiguity occurs since there can

be multiple possible matches along the epipolar lines for the

optimal rotation and translation. See Figure 10.

3.5. Evaluation on the KITTI benchmark dataset

Next we evaluate our method on the KITTI dataset

[9]. The dataset consists of images taken from a camera

mounted on the roof of a car. Since the car typically only

moves in a plane we can restrict our search to rotations

around the y-axis.

The dataset also contains ground truth poses obtained

through other sensors. We consider four image sequences

Figure 9: Another optimal solution. Note that the solution

has the same rotation and translation as in Figure 2 but dif-

ferent point matches.

Figure 10: The epipolar lines in the second image. The

ambiguous matches in Figure 9 are along the epipolar lines.

which were taken 2011-09-26. Some example images from

one of the sequences can be seen in Figure 11.

For each sequence all image pairs in the sequence which

differed by ten frames were used. We consider two types of

matching strategies.

The first strategy is a standard symmetric matching strat-

egy where for each point we find the best match in the other

image. The match is kept if it is sufficiently good4, it is suf-

ficiently better than the next best match (Lowe’s criterion)

and the match was symmetric. The symmetry requirement

ensures that there are no ambiguous matches.

If there is repeated texture in the scene a point might

have multiple good matches in the other image. Due to the

ambiguous matching such points are discarded in the first

4Determined by a threshold on the angle between the SIFT descriptors.
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Figure 11: Example images from the KITTI vision dataset.

For the experiment the grayscale images were used.

matching strategy. In the second strategy we instead allow

points to have multiple matches in the other image. For each

point we include all matches that are sufficiently good and

such that the worst of the included matches satisfy Lowe’s

criterion to the next best match. In Table 8 some statistics

for the sequences and matching strategies can be found.

I II

Sequence images matches matches amb. matches

0001 108 65.4 82.2 9.1

0005 154 62.4 79.3 9.3

0015 297 61.9 83.2 12.9

0048 22 137.8 179.6 33.4

Table 8: The number of images and the average number

of matches generated by the two strategies. For the second

strategy we show also the average number of ambiguously

matched points.

Using the proposed method we estimated the rotation

and translation for the matches generated by both strate-

gies. The resulting errors can be seen in Table 9 and Table

10. For comparison we show the result from 100 iteration

of RANSAC using the 3 point solver from [18].

Note that for the second sequence (0005) we see a sig-

nificant improvement when allowing for multiple matches.

For the other sequences the results are comparable. The

average running time for our method for the two strategies

were 1.3 seconds and 2.1 seconds.

I II

Sequence Our RANSAC Our RANSAC

0001 1.97 0.53 1.20 0.53

0005 5.31 5.23 2.87 4.62

0015 1.71 0.45 0.97 0.48

0048 0.62 0.75 0.61 0.81

Table 9: The average rotation error in degrees for the two

matching strategies for the different sequences.

I II

Sequence Our RANSAC Our RANSAC

0001 7.79 2.16 4.77 2.10

0005 13.81 21.61 9.99 20.21

0015 9.99 4.00 5.87 4.23

0048 2.17 4.19 2.13 3.75

Table 10: The average translation error in degrees for the

two matching strategies for the different sequences.

4. Conclusions

In this paper, we have demonstrated that it is possible

to optimally compute the relative pose with unknown cor-

respondences. We also show that keeping ambiguous point

matches can improve the accuracy of the estimated cam-

era motion and increase the number of inliers. We have

also shown that problem instances can be very different in

nature, ranging from very hard instances with ambiguous

solutions and long running times, to well-posed situations

where our algorithm returns a solution within a couple of

seconds.
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