
A Paradigm for Building Generalized Models of Human Image Perception

through Data Fusion

Shaojing Fan1, Tian-Tsong Ng2, Bryan L. Koenig3, Ming Jiang1, and Qi Zhao∗1

1National University of Singapore
2Institute for Infocomm Research

3Washington University in St. Louis

Abstract

In many sub-fields, researchers collect datasets of human

ground truth that are used to create a new algorithm. For ex-

ample, in research on image perception, datasets have been

collected for topics such as what makes an image aesthetic

or memorable. Despite high costs for human data collec-

tion, datasets are infrequently reused beyond their own fields

of interest. Moreover, the algorithms built from them are

domain-specific (predict a small set of attributes) and usual-

ly unconnected to one another. In this paper, we present a

paradigm for building generalized and expandable models of

human image perception. First, we fuse multiple fragmented

and partially-overlapping datasets through data imputation.

We then create a theoretically-structured statistical model of

human image perception that is fit to the fused datasets. The

resulting model has many advantages. (1) It is generalized,

going beyond the content of the constituent datasets, and can

be easily expanded by fusing additional datasets. (2) It pro-

vides a new ontology usable as a network to expand human

data in a cost-effective way. (3) It can guide the design of a

generalized computational algorithm for multi-dimensional

visual perception. Indeed, experimental results show that a

model-based algorithm outperforms state-of-the-art methods

on predicting visual sentiment, visual realism and interest-

ingness. Our paradigm can be used in various visual tasks

(e.g., video summarization).

1. Introduction

When it comes to understanding visual perception of

images, studying human judgment remains the leading tech-

nique [1]. Scientists have studied various high-level image

properties that impact human behavior [2, 3, 4, 5, 6, 7, 8].

Such studies are done with psychophysical experiments in

labs or online surveys via crowdsourcing platforms such
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as Amazon Mechanical Turk (AMT). Consequently, each

study creates an isolated set of data mostly used for a

specific research purpose, often containing strong built-in

bias [9]. Furthermore, collecting human data is costly and

time-consuming. The average pay to AMT workers is $2-3

per hour, and doing 40 ratings takes about 5 minutes, so

to have 10 workers rate each of 10K images for merely 40

attributes would cost around $21K [10].

We believe that the reuse of existing datasets can pro-

vide novel insights. Although various datasets were created

with different aims, many are manifestations of a shared

underlying human psychological process [11]. We focus on

perception of visual images, which we hypothesize to have

few dimensions [11, 12]. Indeed, many of the previously

studied visual perceptual attributes are interrelated (e.g., im-

age naturalness is related to interestingness [13]). Based

on the above understandings, we propose to reuse and fuse

existing isolated datasets to statistically and computationally

model visual perception (see Fig. 1 for an overview). Our

contributions are as follows.

1. We report a method to create “big human data” from

smaller datasets. We show how to aggregate heterogeneous

and fragmented human datasets that partially overlap in con-

tent. The non-overlapping parts of dataset are effectively

missing data, whose values we infer using multiple impu-

tation to get a “bigger” dataset. Notably, the fused dataset

outperforms the constituent datasets when predicting image

perceptions (e.g., visual sentiment, visual realism, and in-

terestingness) across more diverse image semantics. Thus,

through data fusion we get extra performance for free. Our

method provides another path in the journey of achieving big

human data – the fused dataset includes all images and all

attributes from the partially overlapping constituent datasets.

2. We propose a paradigm for iteratively increasing the gen-

erality of a model of human image perception. Based on

structure-revealing data fusion and statistical modeling, we
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Figure 1: Overview of our approach. First, we fused partially overlapping datasets to form a larger dataset (a, b). Second,

we built a generalized and expandable human perception model through structural-revealing statistical modeling, which also

informs data fusion (c). Finally, we built a generalized computational algorithm guided by the model, and test its performance

by comparing their predictions of multiple image perceptions with alternatives (d).

build a multi-layered model of human image perception of

digital images. The model incorporates commonly studied

image properties (e.g., aesthetics, interestingness) with prop-

erties seldom studied for digital images, such as familiarity

and scene dynamics (Fig. 3). Unlike computer paradigms,

our theory-based model characterizes human perception in

a more understandable and concise way while reducing the

danger of overfitting. It provides an improved ontology that

can reduce the amount of human data collection needed and

therefore associated costs. Critically, we show that it can

guide the design of a generalized computational predictor,

which is able to predict multiple high level image attributes

simultaneously.

2. Related work

Predicting high-level image properties: A common ap-

proach is to link lower-level image attributes with higher-

level properties, such as aesthetics [14, 15], interesting-

ness [2], memorability [16], visual realism [3, 8], and e-

motions [17]. Most relevant is [4], which proposed a visual

sentiment ontology together with a set of sentiment descrip-

tors. Although these studies generated algorithms with con-

siderable prediction performance on specific attributes, few

insights were provided to explain why the algorithms work.

Furthermore, most of the studies are isolated. Despite the

exploration in [16] on correlations between memorability

and other image properties, there is no clear framework that

explains the correlational structure of various perceptions.

Instead of isolated goal-specific tasks, we propose a com-

prehensive ontology that can guide the design for predicting

various human perceptions based on an intuitively under-

standable theory-based model of human perception.
Visual perception datasets: Two datasets with extensive

human annotations are the Visual Realism Dataset [3] and

the Memorability Dataset [5] (See Sec. 3.1 for details). One

related dataset consists of affective images datasets [17]; an-

other is the Sentiment Dataset [4]. There are other datasets

built for specific goals, such as aesthetics [14] and interest-

ingness [2]. However, they either have a single rating or

binary labels only, and thus are insufficient for visual percep-

tion modeling. These datasets are much smaller than popular

image datasets (e.g., ImageNet [18]) due to high costs of hu-

man data collection. Our work fuses some of these datasets

into larger sets, to get a more general understanding of hu-

man image perception.

Visual perception structure: The human nervous system

processes visual information both hierarchically and in par-

allel [19, 20, 21]. The levels of this processing can be clas-

sified as early, intermediate, and late vision [22, 23]. The

basic features of the image itself, like orientation and color,

are processed during the early vision stage in the occipital

lobe’s visual processing areas [24, 25]. Intermediate vision

segregates visual elements to form coherent regions in what

would otherwise be a chaotic and overwhelming sensory ar-

ray [26]. Late vision selects which of these coherent regions

to scrutinize and evokes emotions and memories from which

objects are recognized and meanings attached [20]. Some

studies suggest visual perception is low dimensional [12, 11].

Data fusion and inference: In many disciplines, from

computer vision to neuroscience, data from multiple sources

are acquired and jointly modeled for enhanced knowledge

discovery [27], but joining data often results in missing data.

A visual synsets was proposed in [28] to infer missing at-

tributes through Linear SVM prediction. In psychology and

sociology, multiple imputation (MI) is a common method

for handling missing data [29]. It estimates multiple values

for missing data to account for the uncertainty surrounding

missing values, thus providing unbiased estimates and more

validity to missing data [30]. We believe our work is the

first to apply MI to visual perception for computer vision

applications. Our MI was guided by comprehensive data ex-

ploration and theory-based understanding of the underlying

structure of human perception.
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Table 1: Human annotated attributes from two datasets, used for perception modeling. Attributes that are similar across

datasets share the same non-black color.

Visual Realism Dataset [3] Memorability Dataset [5]

Spatial layout: Clean scene? Close-range vs. Distant-view;

Neat Space?∗†; Common perspective?∗ Empty space vs. Full

space

Enclosed space vs. Open space∗; Perspective view vs. Flat

view; Mirror symmetry vs. No mirror symmetry; Empty space

vs. Cluttered space

Aesthetics and presentation: Sharp vs. Blurry∗; Expert

photography? Lighting effect natural∗? Color appearance

natural∗? Colors go well together? Colorful∗? High quality vs.

Low quality; Attractive to you?

Post-card like? Is aesthetic? Pleasant vs. Unpleasant scene∗ ;

Boring vs. Striking colors; Unusual or strange vs. Routine or

mundane; High quality (expert photography) vs. Poor quality

photo; Attractive vs. Dull photo

Feelings: Familiar with the scene? Familiar with the objects?∗

Unusual or Strange?; Mysterious?; Makes you happy?; Makes

you sad?†; Exciting?

Frightening∗ ? Arousing∗†? Funny? Engaging? Peaceful?

Interesting∗? Striking? Strange? Mysterious? Makes you

happy? Makes you sad?† Exciting?

Semantics: Contain fine details∗? Object appearance natural∗?

Naturally-occurring objects combinations?∗ Dynamic or ener-

getic scene? Is there a storyline?

Action going on? Something moving in scene? About to

happen? Lot going on? Have a lot to say; Length of description;

Dynamic scene? Static scene?∗ Picture tells a story?

∗ Attributes for imputation in Sec. 4. † Selected as auxiliary variables [30] in data fusion in Sec. 4.

3. Empirical modeling on separate datasets

Our goal was to fuse multiple datasets to get a broader

picture of human perception. To prepare for data fusion, we

first separately explored two datasets with human annota-

tions to get partial pictures of human image perception. We

built human perception models from each dataset through

statistical modeling to identify common and distinctive fac-

tors across datasets, as well as their latent structures. Such

structures also guide data fusion in Sec. 4.1.

3.1. Datasets with human perception

We used the following two datasets in empirical modeling,

and the data fusion in Sec. 4.

Visual Realism Dataset [3] was collected to study image

visual realism. It includes 2520 images of diverse scenes,

half of which are computer generated graphics and the rest

are photographs. Each image has 40 human annotations

(hereafter referred to as attributes).

Memorability Dataset [5] was collected to study image

memorability. It includes 2222 images of general scenes.

Each image has 127 human-annotated attributes.

For both datasets, attributes were collected using AMT.

Those used for perception modeling are shown in Table 1.

The complete lists are shown in the supplementary material.

3.2. Model Structure

We designed our model structure based on previous find-

ings in psychology, neuroscience, and linguistics. Human

visual perception occurs in a hierarchical fashion [19]. Cor-

respondingly, we hypothesized that the human perception

model is hierarchically structured with three layers. The

first layer includes “basic perceptual features” of the im-

age itself, such as texture and shape, that are analogous

to those processed in the visual cortex [31]. The second

layer integrates the lower-level information. For example,

determining whether the scene in the image is familiar. The

third layer corresponds to effective (liking) reactions to im-

ages [12]. Our model emphasizes the structure of the upper

two layers, which are higher-level human perception. For

the lower level we merely used attributes from the datasets

to feed into the second, inferred layer. The structure is also

inspired from WordNet [32], in which the vocabulary of a

language is mapped to a set of concepts. In the next few

sections, we conducted statistical modeling to fit the data to

the three-level model and test the goodness of fit.

3.3. Statistical modeling

Based on the hierarchical structure, we created statistical

models of human perception separately for each dataset. We

first conducted exploratory factor analysis to determine the

number of latent variables (factors) present in the human data

and identify a compact set of attributes that underlie latent

variables. We then performed confirmatory factor analysis

to test relations between latent and observed variables and

assess the reliability and validity of measures. Finally, path

analysis was conducted to determine standardized regression

weights (γ) and correlations (φ) among latent variables [33]

Attribute pruning: Our aim was to build a model that

reflects human perception, so we excluded non-subjective at-

tributes, such as “sky present?”. We also excluded attributes

that were unrelated to perception or likely biased by personal

experiences such as “recognize place?”. The final number

of attributes used to create human perception models for the

two datasets were 25 and 32 respectively (see Table 1).

Exploratory and confirmatory factor analysis: To mea-

sure how observed variables (attributes) are related to la-

tent variables (higher-level perceptions and reactions), we

performed exploratory factor analysis (EFA) followed by

confirmatory factor analysis (CFA) [33]. Factor analysis

(FA) is similar to principal components analysis (PCA); both
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(a) Visual Realism Dataset
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.87
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(b) Memorability Dataset

Figure 2: Human perception models built on two separate datasets. Standardized regression weights (γ) are in bold italic

font. Although collected for different research purposes, the two datasets shared two latent factors (weird and artistic),

indicating that common perceptual processes were measured in different datasets. The 25 and 32 attributes in each dataset

were encapsulated by 5 dimensions respectively (four layer-1 factors in the lower layer and one layer-2 factor in the upper

layer, liking), suggesting the multidimensionality and low dimensionality of visual perception.

are variable reduction techniques. However, in PCA, the

components are orthogonal linear combinations that maxi-

mize the total variance, whereas in FA, the factors are linear

combinations that maximize the shared portion of the vari-

ance underlying “latent constructs”. We applied maximum

likelihood in EFA with oblique transformation (where the

new axes can be non-orthogonal, thus allowing factors to

correlate [34]), as we hypothesized that visual perception is

multidimensional. A CFA [33] performed after EFA tested

how well the measured variables represent the number of

constructs identified in FA. Attributes with poor loadings or

fits were eliminated. Detailed results are reported in supple-

mentary material.

Path analysis: Guided by the designed model structure in

Sec. 3.2, we divided the latent factors from previous CFA

into two layers (Fig. 2). The final model was created through

a path analysis predicting the liking latent construct from

the lower-level perception latent constructs. Path analysis

is a straightforward extension of multiple regression, which

aims to provide concurrently estimated magnitudes of hy-

pothesized causal connections between sets of variables [35].

Readers can refer to [36] for its detailed formulae and deriva-

tion. The final models for each dataset are shown in Fig. 2.

For all models in the paper, detailed estimates are reported

in supplementary material.

We applied two common metrics to measure the fitness

of the model to the data. The first is Comparative Fit Index

(CFI), which compares a chi-square for the fit of a target

model to the fit of an independent model–one in which the

variables are uncorrelated. Higher CFI indicates greater ex-

tent to which the model of interest is better than the indepen-

dence model. Values that approach .90 indicate acceptable

fit [33]. Another model fit metric is Root Mean Square Error

of Approximation (RMSEA), which estimates the amount

of error of approximation per model degree of freedom and

takes sample size into account. Smaller RMSEA values

suggest better model fit. A value of .10 or less is indicative

of acceptable model fit [33]. Our models had acceptable fit,

CFIs ≥ .93, RMSEA ≤ .092.

Familiar

Liking

Artistic

Dynamic

Weird

Natural

Objects_Combo_Natural

Objects_Natural

Common_Perspective

Exciting

Interesting

Image_Sharp

Image_Quality

Dynamic_Scene

Storyline

Static

Mysterious

Strange

Light_Natural

Color_Natural

Cluttered

Open_space
Space

.67

.82

.89

.95

.96

.85

.48

.68

.77

.86

.83

.80

.44

-.91

.41

-.07

.07

-.41

.06

-.03

.12

-.06

.19

-.44

.39

.14

.85

.15

.27

.46

.14

.44

-.10

.35

.14

.82

.91

Figure 3: Human perception model (fused model 1) based

on the fusion of two datasets. Those with purple borders

are from Visual Realism Dataset, those with green borders

are from Memorability Dataset. Similar attributes from both

datasets have orange borders.

4. Data fusion

To develop a more general human perception model, we

fused the two datasets. Data fusion was enabled by shared

perceptions across the datasets.

4.1. Inferring missing data

Some attributes are in both datasets, but the attributes

in only one dataset result in missing values on the images

from the other dataset. One common approach for inferring

missing values is to replace them with the mean, the median

or the modal value [37]. However, we hypothesized that

human perception has a low-dimentional structure, and we

expected components to be highly correlated, so we chose

MI which utilizes all available data to preserve sample size

and statistical power.

We started with attributes pruning: we collapsed 10 simi-

lar attributes from the datasets (color-paired in Table 1). We

further included 16 additional attributes that showed up in

separate models (4 of which were used as auxiliary vari-
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ables1 [30]). We did not include all attributes as doing so

would introduce excessive missing data [30]. Attributes for

imputation are marked with ∗ in Table 1.

We performed MI using the Markov Chain Monte Carlo

method with a noninformative prior and a single chain [38].

The multivariate normal model was used for all imputations.

Convergence and independence of imputed values were as-

sessed with time series and autocorrelation plots of means

and variances [29]. Specifically, we denote the variables with

missing values for observation i by Y
(i)
mis

and the variables

with observed values by Y
(i)
obs

, the iteration goes as follows:

with a current parameter estimate θ(t) at the tth iteration, a

first step will draw Y
(t+1)
mis

from p(Ymis|Yobs, θ
(t)) and a sec-

ond step draws θ(t+1) from p(θ|Yobs, Y
(t+1)
mis

). This creates

a Markov chain

(Y
(1)
mis

, θ
(1)), (Y

(2)
mis

, θ
(2)), . . . (1)

which converges in distribution to p(Ymis, θ|Yobs).

We ran MI five times to minimize standard errors [39],

resulting in five datasets with both observed and imputed

values. We refer to those datasets as multiple fused datasets.

4.2. Empirical modeling

The model structure and modeling steps were the same as

in Sec. 3.3. Overall estimates were the means of each fused

dataset’s estimates [29, 30]. This averaging was done for all

subsequently reported results of imputed datasets. The result-

ing perception model (hereafter, fused model 1) is shown in

Fig. 3. It had acceptable fit, CFI = .92, RMSEA = .089.

Figure 4: Frequency distribution (by normal fitting) of ob-

served and imputed values of the first six attributes in fused

model 1. For a complete list see supplementary material.

1Auxiliary variables are observed variables that correlate with the miss-

ing values but are not part of any factors used in the model itself. They can

improve missing data imputation [30]. Their selection was based on prior

modeling of separate datasets (see Sec. 3.3).

4.3. MI evaluation

The validity of MI was evaluated four ways. First we

compared frequency distributions of the observed attribute

values to those generated by MI. This is the most common

evaluation approach [30]. The observed and imputed data

had similar distributions (Fig. 4), suggesting consistency

from imputation. Second, we compared estimates produced

by the MI model with those produced by models using only

the observed variables. The estimates were consistent (see

supplementary material), indicating that MI retained the

model structure. We further compared MI by replacing

missing values by means. Although they produced similar

predictions for the layer-2 factor, the attributes from MI are

more normally distributed thus better for path analysis [35].

Finally, we compared cross-factor correlations for factor

combinations present in only one of the separate models

with their correlations in fused model 1. Such correlations

were highly consistent (see Fig. 3 and 2). The coefficients

of different factors to liking were also consistent in terms

of strength and sign. This indicates that the fused model is

largely similar to the constituent models, except it is better

than either because it includes attributes from both. In other

words, data fusion allows more latent factors to be included,

thus generating a visual perception model more gerneral

than its constituents.

4.4. Discussion

Generality and expandability: Fused model 1 and the

separate models shared latent structure comprised of a small

number of common factors, which indicates generality and

low dimensionality of the model. Similarly, research has

suggested that human emotions [4] and brain structures for

perceiving visual stimuli [12] are low dimensional. Notably,

our model can be extended easily by adding new nodes or

latent factors whenever new datasets are available.

Digging deeper into the model: We compare our findings

with three commonly studied human perceptions:

1. Liking: In psychology, several factors have been found to

influence interpersonal attraction, namely proximity, famil-

iarity, similarity, and physical attractiveness [40, 41]. This is

reminiscent of our model of visual perception, in which the

factors familiarity, naturalness, and artistic are analogous

to familiarity, similarity, and physical attractiveness, respec-

tively. The strong weights from familiarity to liking is also

consistent with previous psychological studies [42, 43]. In-

terestingly, the weight of familiarity to liking is significantly

stronger than that of artistic, whereas it is comparable with

that of weird (Fig. 3). This suggests that visual preference of

an image is more influenced by the specific feelings aroused

in humans rather than its aesthetic value per se. What’s

more, liking has a strong loading node, exciting, which ac-

cords with previous psychological findings that exciting is a

combination of pleasure and arousal [44].
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2. Artistic: Image sharpness and image quality strongly

loaded on artistic. This provides support to previous studies

which used similar features, such as image contrast and

edge distribution in aesthetics evaluation [14, 15]. Artistic

strongly correlated with familiarity and naturalness (Fig. 3).

This again supports [15] in which familiarity was used as

one feature dimension for image aesthetics.

3. Naturalness: Colorfulness, image sharpness, reproduction

of shadow detail, and absence of washed-out appearance

were found to be important factors for naturalness [45]. This

is in line with our model, in which naturalness is strongly

loaded by lighting naturalness and color naturalness. Our

model suggests that naturalness strongly correlates with

familiarity (φ = .85). Thus the nodes of familiairy (natural

objects combination and appearance, common perspective)

also contribute to naturalness. Similarly, [13] suggests that

image semantics such as object combination and viewing

perspective are crucial for naturalness.

In summary, our model summarizes and visualizes multi-

dimensional human perception in a concise and understand-

able way. It provides a new ontology for studies that predict

high-level image properties, while also corroborating previ-

ous findings in visual perception.
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Figure 5: Human perceptual model (fused model 2) based on

the fusion of three datasets. In Sentiment Dataset, attributes

with blue borders were collected from survey on AMT, other

attributes were derived through imputation.

5. Predicting visual sentiment, visual realism,

and interestingness

In this section, we demonstrate how to build a general-

ized computer algorithm based on the model and data fusion.

We incorporate a new dataset into a fused dataset for the

purpose of predicting multiple perceptions: visual sentiment,

visual realism, and interestingness. We show that our per-

ception model can be used to guide both survey design and

building machine algorithms for predicting various human

perceptions.

5.1. Data fusion

Sentiment Dataset: We used the Sentiment Dataset in all

our experiments on perception prediction. It includes 603

tweets with photos and was originally collected to evalu-

ate the performance of an automatic sentiment prediction

method. Ground truth of binary sentiment values were ob-

tained by human annotation using AMT [4].

Model structure: To leverage of our fused model, we

mapped sentiment onto liking. Two observations validate

this mapping. First, the makes happy attribute is central to

positive sentiment [4]. Second, the average Spearman’s rank

correlation between exciting and interesting (which strong-

ly loaded on liking) with makes happy on Visual Realism

and Memorability datasets was .71, suggesting that exciting

and interesting were highly indicative of positive sentiment.

So we regarded the liking factor as positive sentiment and

reused our previous model structure.

Human survey: The Sentiment Dataset had only binary

labels so we could not fuse it into our perception model.

Therefore, we conducted a survey on AMT, to collect human

annotations for the dataset. Our perception model guided

the design of the survey: we wanted to restrict our survey

questions to the observed attributes in our model because

these attributes enable us to predict perceptual factors other

than sentiment. We randomly selected a child node of each

layer-1 factor in Fig. 3, resulting in a six-question survey

which had no direct connection to liking in fused model 1

(see Fig. 5 for selected questions). We will show that using

multiple imputation and the empirical models enables these

6 questions not only to predict sentiment, but also to predict

multiple perceptual factors in our network.

Perception model based on fusion of three datasets:

The fusion and modeling procedures were the same as in

Sec. 4. The result, fused model 2 (Fig. 5) has acceptable

fit, CFI = .93, RMSEA = .089. Its estimates are highly

consistent with fused model 1 (Fig. 3).

Figure 6: Sentiment prediction using human attribute ratings

(left) and machine features (right) as inputs.
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5.2. Computational algorithm design

To build a generalized computational predictor, we com-

puterized the empirical model by designing computational

features to predict its layer-1 factors (see Fig 5 for the fac-

tors). We modeled natural and familiar (which were highly

correlated, φ = .83) using [46], in which scale invariant nat-

ural image patterns were modeled through high-order image

patch statistics. Primarily meant for image quality assess-

ment, we used it here to quantify naturalness. We used Ke’s

method on aesthetics rating [14] for the artistic factor, which

includes perceptual motivated features such as image compo-

sition, blur, and contrast. We applied GIST descriptors [47]

to model space. They provide a statistical summary of the

spatial layout properties (e.g. openness, expansion) of the

scene. Finally, we detected global outliers as for weird factor

by applying the Local Outlier Factor (LOF) algorithm [48]

to global image descriptors (GIST and SIFT [49]).

Table 2 shows the list of our features. The detailed design

is reported in supplementary material. We did not find niche

features for the dynamics factor, as it is highly abstract. How-

ever, scene dynamics is somewhat captured by the Spatial

Envelope Model in the GIST descriptor, and the blur com-

ponent in artistic features. We then combined the features

in later fusion according to the weights of the links towards

liking in fused model 2 (Table 2).

Table 2: Features for computational prediction.

Perception factor Weights Computer feature Dim

Natural, Familiar .511 Natural image statistics [46] 72

Artistic .20 Ke’s method [14] 12

Space .17 GIST [47] 512

Weird .37 LOF [48] 3

1 Sum of the absolute weights of natural and familiar.

5.3. Predicting sentiment with human data

First of all, we hoped to test the effects of data fusion.

We used human ratings of attributes to predict visual senti-

ment. We did three experiments. In experiment 1, we used

all attributes—observed and imputed—in fused model 2 (14

nodes on the left in Fig. 5). In experiment 2, we only used

observed attributes—the 6 survey questions. In experiment

3, to see if fusing more datasets made a difference, we built

the perception models for fusions of only pairs of dataset-

s (i.e., Sentiment and Visual Realism Dataset, Sentiment

and Memorability Dataset). The models’ structures were

the same as Fig. 5 except that their coefficients differed. In

each experiment, human attribute ratings were used to train

SVM [50] for binary sentiment classification. We used grid

search to select cost, RBF kernel parameter γ, and ǫ hyper-

parameters. We split the data into 80% as a training set and

20% as a test set. We used area under ROC curve (AUC)

as an evaluation metric. As shown in Fig. 6a, using all the

attributes based on the fusion of three datasets produced the

best performance, suggesting the advantage of data fusion.

5.4. Predicting sentiment with machine features

We tested our model-based algorithm on binary classifi-

cation of sentiment with the same SVM settings as Sec. 5.3.

Late fusion was performed as weighted average of the regres-

sion outputs for respective perceptual factors. We compared

the result with four baselines, namely dense SIFT [51, 49],

GIST [47], dense HOG2x2 [52, 53], and LBP [54]. Our

method outperformed all the baselines (Fig. 6b).

We further compared our algorithm with two state-of-the-

art algorithms: SentiBank descriptor [4] and unsupervised

feature learning. First, we replicated the experiment in [4]

using the same set of features on the same Twitter Dataset.

Second, we constructed an unsupervised feature learning

framework with a single-layer triangular K-means encod-

ing [55] on image patches preprocessed by local intensity

and contrast normalization, as well as whitening. We s-

canned each image with 16-by-16 pixel receptive field and 1

pixel stride, before mapping the preprocessed image patch-

es to 512-dimensional feature vectors. Again our method

excelled (Fig. 6b).

5.5. Predicting visual realism and interestingness

Being generalized and expandable, our model can be

applied to predict other perceptual factors such as visual

realism (the degree an image appears to be a photo rather

than computer generated [3]) and interestingness, by modi-

fying the layer-2 factor to the corresponding perception (see

supplementary material for modified models). We used the

same human attributes and computer algorithm as Sec. 5.3

and 5.2, respectively. We performed both support vector

regression and binary support vector classification, using

the same setting as Sec. 5.3. Features were fused through

weighted kernel sum based on their corresponding loadings

to layer-2 factors. Ground-truth ratings for visual realism

and interestingness were collected using AMT. For binary

classification, images with ground-truth realism score > .50,

and interestingness score > .75 ([2]) were separately taken

as positive, negative otherwise.

As shown in Table 3, our complete attributes set from

data fusion (1st row) performed the best among all evalua-

tion metrics. Our computational features motivated by the

perception model (3rd row) produced consistently better re-

sults than the state-of-the-art algorithms (4th row). Sample

images with computational predictions are shown in Fig. 7.

5.6. Discussion

Power of data fusion: Using all data in fused datasets was

consistently better than using only observed data, and the

performance based on the fusion of three datasets was better

than that based on fusions of two datasets (Fig. 6a, Table 3,).
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Table 3: Experiment results for visual realism and interest-

ingness. ρv and Av are the Spearman’s rank correlation

and AUC for visual realism, respectively. ρi and Ai are for

interestingness.

Feature type
Regression Classification

ρv ρi Av Ai

All attributes .70 .71 .90 .75

Only observed attributes .69 .70 .84 .64

Our method .54 .31 .82 .71

[3], [2] 1 .51 .27 .77 .59

1 In the same row, ρv and Av are based on the algorithm in [3],

ρi and Ai are based on the algorithm in [2].

Figure 7: Sample images with computational predictions.

Images with green border have positive sentiment, red border

for negative sentiment. The bottom right image with blue

border was misclassified as positve sentiment (due to our

algorithm’ inability to understand text). The four images in

lower right quadrant (with grey background) are misclassi-

fied as being interesting (partly due to the high threshold of

ratings (.75) for being interesting). The rest are correctly

classified on interestingness, visual realism, and sentiment.

This suggests that data imputation boosts performance. Re-

call that we only collected 6 attributes, each from one latent

factor, and after imputation we had 14 attributes which pre-

dicted better than the 6 attributes. In other words, we got the

extra performance for free out of a representative subset of

human annotation through data fusion.

Does the performance gain come from information gain

due to data imputation? The answer is probably no according

to the data processing inequality of information theory [56].

The information gain most likely comes from the expan-

sion of observables due to the data fusion per se, and data

imputation makes the usage of off-the-shelf classifiers pos-

sible. Nevertheless, the inferred perception model provides

effective guidance for human data collection, if needed, to

achieve true information gain.

Power of the perception model: We have already shown

how the perception model guided the human survey design

and data fusion. More importantly, the model is able to

guide the design of a generalized computer algorithm for

various image perceptions. Our algorithm was consistently

better than its alternatives in sentiment prediction (Fig. 6b)

and visual realism and interestingness estimation (Table 3).

Notably, our algorithm outperformed the original algorithms

built from the constituent datasets. This suggests that our

perception model can guide the design of a generalized com-

putational predictor, which produces more human-consistent

results. Note that for sentiment prediction, the closest two

methods were dense SIFT and SentiBank. However, dense

SIFT was sampled at multiple scales and learned a dictionary

of codewords, which finally generated a feature of 3000 dim-

s. SentiBank detectors were trained on about 500k Flicker

images [4]. In contrast, our algorithm is based on a fused

dataset of only 4603 images and sparse features (599 dim).

In short, our approach based on the structure of human per-

ception beats both a highly data-driven and a dense pooling

approach that lack of a visual perception model.

Holistic perception: By simply changing the weights of

the features, the same algorithm can be used to simultaneous-

ly predict visual sentiment, interestingness and realism while

holding a consistent correlation among these properties. This

provides a holistic computation in which different dimen-

sions of human perception share a consistent latent structure.

More attributes can be computed by expanding our percep-

tion model (e.g., persuasiveness [6], trustworthiness [57]).

6. Conclusion and future work

In this paper, we propose a paradigm for building gener-

alized and expandable models of human image perception.

Our approach sheds new light on creating “big human data”.

The resulting model provides a novel ontology for design

of both human surveys and generalized computer algorithm

design for multiple visual perceptions. One limitation of our

approach is that we used only linear modeling but human

perception might be non-linear. Therefore, direct prediction

from MI and SEM are inferior to non-linear SVM (see sup-

plementary materials for detailed experiments). Our future

work will include non-linear models such as Isomap [58],

hoping to get better prediction results from the model itself

and boost performance through fusing larger scale datasets.
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ei A Efros. Learning a discriminative model for the percep-

tion of realism in composite images. arXiv preprint arX-

iv:1510.00477, 2015.

[9] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A

Efros, and Antonio Torralba. Undoing the damage of dataset

bias. In ECCV, pages 158–171. Springer, 2012.

[10] Hao Su, Jia Deng, and Li Fei-Fei. Crowdsourcing annotations

for visual object detection. In Workshops at the Twenty-Sixth

AAAI Conference on Artificial Intelligence, 2012.

[11] Bolei Zhou and Liqing Zhang. A hierarchial model for visual

perception. In Advances in Cognitive Neurodynamics (II),

pages 607–613. Springer, 2011.

[12] Bilal H Fadlallah, Sohan Seth, Andreas Keil, and José C
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