
Longitudinal Face Modeling via

Temporal Deep Restricted Boltzmann Machines

Chi Nhan Duong 1, Khoa Luu 2, Kha Gia Quach 1 and Tien D. Bui 1

1 Computer Science and Software Engineering, Concordia University, Montréal, Québec, Canada
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Abstract

Modeling the face aging process is a challenging task

due to large and non-linear variations present in differ-

ent stages of face development. This paper presents a

deep model approach for face age progression that can effi-

ciently capture the non-linear aging process and automati-

cally synthesize a series of age-progressed faces in various

age ranges. In this approach, we first decompose the long-

term age progress into a sequence of short-term changes

and model it as a face sequence. The Temporal Deep Re-

stricted Boltzmann Machines based age progression model

together with the prototype faces are then constructed to

learn the aging transformation between faces in the se-

quence. In addition, to enhance the wrinkles of faces in the

later age ranges, the wrinkle models are further constructed

using Restricted Boltzmann Machines to capture their vari-

ations in different facial regions. The geometry constraints

are also taken into account in the last step for more con-

sistent age-progressed results. The proposed approach is

evaluated using various face aging databases, i.e. FG-

NET, Cross-Age Celebrity Dataset (CACD) and MORPH,

and our collected large-scale aging database named AginG

Faces in the Wild (AGFW). In addition, when ground-truth

age is not available for input image, our proposed system

is able to automatically estimate the age of the input face

before aging process is employed.

1. Introduction

Face age progression presents the capability to predict

future faces of an individual in input photos. In most cases,

there is only one photo of that individual and we have to pre-

dict the future faces, i.e. age progression, or construct the

former faces, i.e. age regression or deaging, of that subject

[2]. Face aging can find its origins from missing children

when police require age progressed pictures. This problem

Figure 1. Examples of age progression using our proposed ap-

proach. Each subject has three images: the input image (left),

the synthesized age-progressed face (middle), and the ground truth

(right). Our system also can predict the ages of input faces in case

these ground-truths are not available.

is also applicable in cases of wanted fugitives where face

age progression is also required. The predominant approach

to aging pictures involves the use of forensic artists [32].

Although forensic artists are trained in the anatomy and ge-

ometry of faces, they still can suffer from psycho-cognitive

bias that may affect their interpretation of the source face

data. In addition, an age-progressed image can differ sig-

nificantly from one forensic artist to the next. Manual age

progression usually takes lots of time and requires the work

of numerous professional forensic artists. Therefore, au-

tomatic and computerized age-progression systems are im-

portant. Their applications range from very sensitive na-

tional security problems to tobacco or alcohol stores/bars to

control the patron’s age and cosmetic studies against aging.

Synthesizing plausible faces of individuals at different

stages in their life is an extremely challenging task, even for

human, due to several reasons. Firstly, human face aging is
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Figure 2. Processing steps of our proposed method to synthesize the face at ages of 60s given a face at age of 10-14

a complicated process since people usually age in different

ways. It is non-deterministic and greatly depends on intrin-

sic factors, i.e. gender, ethnicity and heredity. Moreover,

extrinsic factors, i.e. environment, living styles and smok-

ing, have also created various effects to the facial changes

and resulted in large aging variations even between people

in the same age group. Secondly, facial shapes and textures

dramatically change over the long periods. Thirdly, it is

very hard to collect a longitudinal face age database that is

generative enough to learn an aging model. Currently exist-

ing aging databases in the research community are small or

unbalanced among genders, ethnicities and age groups. In

addition, they are usually mixed with other variations, e.g.

expressions and illuminations.

Automatic face age progression has attracted huge inter-

est from the computer vision community in recent years.

There are numerous efforts to model the longitudinal ag-

ing process presented in computer vision literature [8, 14,

21, 28, 12]. In most conventional methods, linear mod-

els, e.g. Active Appearance Models (AAMs) and 3D Mor-

phable Model, are usually adopted to interpret the geome-

try and appearance of the faces before the aging rules are

learned. However, the face aging variations are not only

large but also non-linear. It apparently violates the assump-

tion of linear models. Therefore, these age-progression

methods meet a lot of difficulties and limitations to inter-

pret these non-linear aging variations.

Recently, Temporal Restricted Boltzmann Machines

(TRBM) [30, 31, 34] have gained attention significantly

as one of the probabilistic models to accurately model

complex time-series structure while keeping the inference

tractable. As an extension of Restricted Boltzmann Ma-

chines (RBM), the structure of TRBM consists of further

directed connections from previous states of visible and hid-

den units. By this way, the short history of their activations

can act as “memory” and is able to contribute to the infer-

ence step of visible units. In this structure, multiple factors

are learned and interacted to efficiently explain the temporal

data. Therefore, TRBM provides the ability to extract more

complicated and nonlinear structures in time series data.

This work presents a novel deep model based approach

to face age progression. Instead of synthesizing faces di-

rectly from long periods, the long-term aging process is

considered as a set of short-term changes and presented us-

ing a sequence of faces. The TRBM based model is then

constructed to capture the aging transformation between

consecutive faces in the sequence. In addition, to enforce

the model on the capabilities of aging variations, a set of

reference faces that are mainly different in age conditions

is generated and incorporated into the model. Then, a set

of RBMs based wrinkle models is developed to enhance

the wrinkle details in these aging faces. Finally, the facial

geometric information of each age group is extracted and

adopted to adjust the face shapes. Figure 2 illustrates the

main processing steps of our proposed system. The novel-

ties of our approach are :

• The face structure and specific aging features presented

in each age group are modeled using RBM. Compared to

other linear models, the use of RBMs can help to better

interpret the non-linear variations and produce faces with

more aging details. In addition, the high-level features

extracted from hidden layer can be transferred between

RBMs of different age groups for reconstructing a refer-

ence face sequence that can benefit the learning process.

• Together with the reference sequence, the proposed

TRBM based model provides an efficient way to capture

the aging transformation between faces in different age

groups. Similar to RBM, TRBM is more advanced in in-

terpreting the complex and non-linear aging process.

• Far apart from previous approaches where wrinkles are

cloned from an average face or the closest faces of each

age group, we propose a machine learning based ap-

proach to learn these aging rules, i.e. construct a set of

RBMs based wrinkle models for every age group. In this

way, the method is able to learn their distributions and

generate synthetic wrinkles by sampling from these dis-

tributions. As a result, our model is more flexible in pro-

ducing more wrinkle types.

• The geometric differences between face shapes in every

age group are also taken into account in our system.

• A large-scale dataset named AginG Faces in the Wild

(AGFW) is collected for analysing the aging effects.

2. Related Work

Generally, previous age progression approaches can be

divided into two groups, i.e. the anthropology approach
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Figure 3. The proposed age progression approach: (A) Temporal Restricted Boltzmann Machines for learning aging transformation in a

single node; (B) The proposed system using multiple nodes; wrinkle enhancement and shape adjustment.

and example-based approach.

In the first group, the main idea is to simulate the bio-

logical structure and aging process of facial features such

as muscles and facial skins based on theories from anthro-

pometric studies [3, 4, 5]. Inspiring from the ‘revise’ car-

dioidal strain transformation, Ramanathan et al. [23] pro-

posed a physiological craniofacial growth model for age

progression. Ramanathan et al. [24] later introduced an ag-

ing model that incorporates both shape and texture variation

models. To simulate the geometry changes, the shape trans-

formation models are designed to capture the aging vari-

ations of three facial muscles. For the texture model, an

image gradient based transformation function is adopted to

characterize the facial wrinkles and skin artifacts.

In the second group, a straightforward idea is to use the

age prototypes [26] defined by the average faces of peo-

ple in the same age group. Then the age-progressed faces

can be produced by adding the differences between the pro-

totypes of the target and the query age groups to the in-

put face. In recent work of Kemelmacher-Shlizerman et al.

[12], the authors extended this idea with a large-scale col-

lection of images for age prototypes construction. Then illu-

mination normalization and subspace alignment technique

are proposed to better handle images with various light-

ing conditions. Another direction is to represent a face as

a set of parameters and learning aging functions from the

relationships between these facial parameters and age label.

Lanitis et al. [14] proposed to use AAMs parameters and in-

troduced several aging functions to model both generic and

specific aging processes. Pattersons et al. [21] also used

AAMs and aging function in their system. However, they

put more efforts on simulating the adult aging stage. The

genetic facial features of siblings and parents were also in-

corporated to age progression in [18].

Geng et al. [8] proposed an AGing pattErn Subspace

(AGES) approach for both age estimation and age synthesis.

Tsai et al. [33] then extended the AGES with the guidance

faces corresponding to the subject’s characteristics for more

stable results. Suo et al. [29] proposed to decompose a

face into smaller components (i.e. eyes, mouth, etc.) and

learning the aging process for each component. A three-

layer And-Or graph is adopted for face representation. Then

the changes in face aging are modeled by a Markov chain on

parse graphs. Similarly, in [28], Suo et al. further employed

this decomposition strategy in temporal aspects where long-

term evolution of the graphical representation is learned by

connecting sequences of short-term patterns.

3. Our Proposed Age Progression Approach

Our proposed age progression system (as shown in Fig-

ure 3(B)) consists of five main steps: (1) Preprocessing, (2)

Reference sequence generation; (3) Texture age progres-

sion; (4) Wrinkles enhancement; and (5) Shape adjustment.

3.1. Data Collection

In order to train the model and to analyze the aging ef-

fects, a large-scale dataset named AginG Faces in the Wild

(AGFW)1 is first collected. Moreover, to ensure the con-

sistency of the collected data, the tag names and the age-

related information of these images are also considered.

The resulting dataset consists of 18,685 images with the age

ranging from 10 to 64 years. It is then decomposed into 11

age groups with the age span of 5 years. On average, each

age group consists of 1700 images of different people in the

same age group. The Productive Aging Laboratory (PAL)

Face database [19] is also included in our collected dataset.

3.2. Preprocessing

Face Alignment: In order to align all face images in the

dataset, a reference shape is extracted from a selected sub-

set of 2,000 face images in the passport style photos, i.e.

frontal faces without expressions. All face images in the

1This dataset will be published online for later research uses.
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AGFW dataset are then warped to the texture domain cor-

responding to this reference shape. The warping step aims

to remove the effects of shape variations during the texture

modeling step. Finally, we obtain the dense correspondence

between all faces in the training data. The DLIB tool [13]

is employed to extract 68 landmarks for each face and the

Procrustes Analysis is used to align these face images.

Expression Normalization: The expressions in the im-

ages of each age group are further normalized using the Col-

lection Flow technique [11].

3.3. Reference Sequence Generation

This section presents how to generate the set of reference

faces that are mainly different in age conditions.

Baseline: A straightforward approach to construct the

reference sequence is to order the mean faces of all age

groups chronologically. The advantage of using mean faces

is that several variations such as identity, occlusion can be

removed. However, due to the averaging property, the aging

variation is also smoothed out in the mean faces. Therefore,

mean faces usually look younger than those from their own

age groups. Moreover, it is noted that the lighting presented

in the mean faces could be remarkably different from that

of the input face. Figure 4(A) shows the unmatched tones

between the sequence of mean faces and the input faces.

Our Improvement using RBMs:

Given an input face I at a particular age, instead of us-

ing the set of mean faces in all age groups as the reference

sequence, a set of RBMs is constructed to model faces in

different age groups. The high-level features are then trans-

ferred among RBMs to generate the reference faces for I .

In particular, for each age group k, all images collected

at that age group are used to construct an RBM to model

the distributions of texture features presented in this age

group. Since the texture data is real-valued, the Gaussian-

Bernoulli RBM (GRBM) is employed. Once RBMs of all

age groups are constructed, given an input face image, its

high-level features are first extracted using the RBM of the

corresponding age group. These features are then trans-

ferred to the hidden layers of other RBMs to reconstruct

the faces of other age groups. Gibbs sampling technique is

used for this reconstruction stage.

There are several advantages of using RBMs in this step.

Firstly, RBMs can help to model faces in more details com-

paring to mean faces. Secondly, since each RBM is built

for a particular age group, it has the ability to generalize the

faces with specific aging features. Therefore, transferring

the high-level features between RBMs can generate new

faces that consist of both original subject and new aging

features. Thirdly, the lighting has implicitly corrected dur-

ing the reconstruction process. Figure 4(A) illustrates the

sequence of mean faces and the RBMs reconstructions by

transferring features in six age groups.

3.4. Modeling the Aging Transformation via TRBM

In order to learn the aging transformation between faces

in the sequence, we employ a TRBM with Gaussian visible

units. As illustrated in Figure 3(A), the model consists of

two sets of visible units (i.e. vt,vt−1) encoding the tex-

ture of current face at age group t and previous face at age

group t− 1; and a set of binary hidden units ht that are la-

tent variables. In addition, the faces in reference sequence,

s<=t = {st, st−1}, at age group t and t − 1 are also incor-

porated by the connections to both hidden and visible units.
The energy of the joint configuration {vt,ht} is formu-

lated as follows.

E(vt
,h

t|vt−1
, s

<=t;θ) =
∑

i

(vti − bti)
2

2σ2
i

−
∑

j

h
t
ja

t
j

−
∑

i,j

vti

σi

Wijh
t
j

(1)

where θ = {W,A,B,P,Q,σ2,bt,at} are the model pa-
rameters. In particular, {W,A,B,P,Q} are the weights
of connections as illustrated in Figure 3(A); {σ2,bt,at}
are the variance, bias of the visible units and bias of the hid-
den units, respectively. Notice that the form of this energy
function is very similar to the original form of an RBM.
However, the bias terms are redefined as:

b
t
i = bi +Biv

t−1 +
∑

l

Plis
<=t
l (2)

a
t
j = aj +Ajv

t−1 +
∑

l

Qljs
<=t
l (3)

where l is the index of reference faces in sequence s<=t.
The probability of vt assigned by the model is given by

p(vt|vt−1
, s

<=t;θ) =
∑

ht

p(vt
,h

t|vt−1
, s

<=t;θ)

=
1

Z

∑

ht

e
−E(vt,ht|vt−1,s<=t;θ)

(4)

where Z is the partition function. The probability of a se-
quence with T faces given the first face and the reference
sequence s1:T is defined as Eqn. (5).

p(v2:T |v1
, s

1:T ;θ) =

T
∏

t=2

p(vt|v
t−1

, s
<=t;θ) (5)

The conditional distributions over vt and ht are given as

p(ht
j = 1|vt

,v
t−1

, s
<=t) = σ

(

∑

i

Wij

vti

σi

+ a
t
j

)

v
t
i |h

t
,v

t−1
, s

<=t ∼ N

(

σi

∑

j

Wijh
t
j + b

t
i, σ

2
i

) (6)

Model Properties: With this structure, two types of infor-

mation can be learned from the model:
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Figure 4. A comparison between (A) two approaches to generate reference sequences and (B) synthesized aging faces using these two

reference sequences. Faces in the red box: the sequence of mean faces in several age groups. Faces in the green box: reference faces gen-

erated by transferring features among RBMs of these age groups. Given input images in the age range of 10-14, our system automatically

synthesizes a sequence of age-progressed images in various age ranges respectively.

1. The temporal information presented in the relationship

between previous face vt−1 and the current face vt.

2. The aging information provided by the reference se-

quence. This type of information acts as guidance in-

formation enforcing the model to learn the aging differ-

ences rather than other variations.

Moreover, in order to transfer the information between

faces, both linear and nonlinear interactions are employed

in this model. In particular, vt−1 and vt are connected via

two pathways: (1) the linear and direct connections using

weight matrix B; and (2) the nonlinear connections through

the latent variables ht with the weight matrices A and W.

Similar to the relationship between vt and s<=t , the di-

rect (with weight matrix P) and indirect (with weights Q

and W) connections allow both linear and nonlinear inter-

actions. Notice that except the undirected connections be-

tween hidden units ht and visible units vt, all connections

are directed.
Model Learning: The learning process is to find the model
parameters that maximize the log-likelihood:

θ
∗ = argmax

θ

T
∑

t=2

log p(vt|v
t−1

, s
<=t;θ) (7)

The optimal parameter values can then be obtained via a
gradient descent procedure given by

∂

∂θ
E
[

log p(vt|v
t−1

, s
<=t;θ)

]

=

T
∑

t=2

Edata

[

∂E

∂θ

]

−Emodel

[

∂E

∂θ

]

(8)

where Edata [·] and Emodel [·] are the expectations with re-

spect to data distribution and distribution estimated by the

TRBM model. The Contrastive Divergence technique [9] is

used for the learning process.

3.5. RBM based Wrinkle Modeling

Since facial muscles play an important role on the

changes of wrinkle appearance during aging process, we

make use of the anatomical evidence for wrinkles enhance-

ment. In particular, inspiring from the analysis on the be-

haviors of facial muscles [24], we select the muscles that

are more relevant to wrinkle appearance and use their phys-

ical positions to extract the wrinkle subregions from the face

image. Three chosen subregions are shown in Figure 5. A

set of RBMs is then employed to learn the distributions of

wrinkle appearance for every age group.

Once RBMs for all subregions and age groups are

learned, the wrinkles are enhanced via a two-step process:

(1) Generating the wrinkles through a Gibbs sampling pro-

cess with the learned distributions; and (2) Wrinkle render-

ing by blending the generated wrinkles with the synthesized

faces obtained from the TRBM based texture progression

step. The Poisson blending technique [22] is used for seam-

less fusion results. Figure 6 shows the wrinkles enhance-

ment results in three wrinkle regions.

3.6. Shape Adjustment

To further take into account the changes of shape during

aging process, for each age group, we compute the average

face shape using the same pipeline as in Section 3.2 with

the AGFW dataset. Then the synthesized faces obtained

from the previous step are warped to the corresponding face

shapes for the final age-progressed result.

4. Experimental Results

In this section, we evaluate the efficiency and flexibility

of our proposed system in both age progression and regres-
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Figure 5. Wrinkle Model Construction Steps.

sion applications. We next demonstrate the generality and

robustness of our model with “in the wild” data.

4.1. Databases

For the training phase, we use two databases: the AGFW

dataset collected as presented in section 3.1 and a subset of

the Cross-Age Celebrity Dataset (CACD) [6]. Then two

public face aging databases: FG-NET [1] and MORPH [25]

are employed for evaluation.

Cross-Age Celebrity Dataset (CACD) provides a large-

scale dataset with 163446 images and the age ranging from

14 to 62. This dataset is collected from the Internet us-

ing keywords formed by the names of 2000 celebrities and

the year (i.e. from 2004 to 2013). The annotations for this

database are limited with 16 landmarks.

FG-NET contains 1002 face images of 82 subjects with

the age ranging from 0 to 69. In addition, each facial image

is annotated with 68 landmark points.

MORPH provides a large-scale dataset with two albums

of passport style images. The MORPH-I includes 1690 im-

ages from 515 subjects and the age ranges from 15 to 68.

The MORPH-II contains 55134 photos of 13000 subjects.

In our experiments, MORPH-I is used for evaluation.

4.2. Age Progression

In order to train the RBMs for reference sequence gener-

ation, the AGFW dataset is decomposed into 11 age groups

with the age span of 5 (i.e. age 10-14, 15-19, ..., 60-64). On

average, each age group consists of 1700 images. These im-

ages are then used for constructing the set of RBMs as rep-

resented in Section 3.3. For training the TRBM based age

progression component, we select a subset of 572 celebri-

ties from the CACD dataset and also classify their images

into 11 age groups with the age span of 5. Then for each

person, one image per age group is randomly selected. This

process results in a training data with 572 sequences. Since

Figure 6. Wrinkle Enhancement. From top to bottom: the synthe-

sized images from the previous step, the results after enhancing

eye; eye and cheek; eye, cheek and mouth regions.

Figure 7. Age progression results. Given an input image in age

range 10-19, the system automatically reconstructs age-progressed

images in various age ranges.

the images are collected from 2004 to 2013, the longest se-

quence consists of only three images.

All training images are then aligned and normalized as

presented in section 3.2. The size of the normalized image

is set to 95× 95 pixels based on the reference shape gener-

ated in the alignment step. The TRBM based age progres-

sion model is then employed to learn the aging transforma-

tion between faces. After all components are trained, we run

our system on every face over 10 years old of FG-NET and

MORPH databases. Figure 7 illustrates the age-progressed

faces reconstructed by our model. Notice that both FG-NET

and MORPH databases are not part of our training data.

Our age-progressed sequences are also compared with

the recent age progression work, Illumination-Aware Age

Progression (IAAP) [12] against FG-NET database in Fig-
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Figure 8. Comparisons between our appproach and other age progression approaches: IAAP [12], EAP [27] and CG [23].

Figure 9. Comparisons between our approach and IAAP [12]. For

each case, the input face image (1st column) is aligned and normal-

ized to frontal face (2nd column). From the 3rd to the 7th column:

the progressed images corresponding to several age groups using

our approach (the row above) and IAAP (the row below).

ure 9. From these sequences, one can see that IAAP ap-

proach synthesizes very similar faces among different age

groups. Moreover, since the texture difference between av-

erage faces is used as the main source for aging process,

the synthesized faces usually look younger than those from

their own age groups. Meanwhile, more nonlinear aging

features in each age group are still kept in the reconstructed

results of our approach. In addition, one can easily see

that our age-progressed sequences are able to better reflect

the face changes during the aging process (i.e. the appear-

ance of beard in the middle stages and wrinkle in the later

stages). For further evaluations, we compare our proposed

Figure 10. Age progression “in the wild” with other variations in

the input images such as poses, illuminations, expressions.

model with other approaches including IAAP; Exemplar

based Age Progression (EAP) [27] and Craniofacial Growth

(CG) model [23] in Figure 8. The ground truth images are

also provided for comparisons. It should be noted that since

our model is trained using the collected data with ages rang-

ing from 10 to 64, in cases where the IAAP uses input im-

ages at ages less than 5, we choose images of the same in-

dividuals with age close to 10 as input for our system.

4.3. Age Progression “in the Wild”

In order to validate the robustness of our model, in this

experiment, we focus on input images that include dif-

ferent variations such as poses, expressions, illuminations.

Blurry images are also considered. Figure 10 illustrates age-

progressed images that are automatically reconstructed by

our model. From these results, one can see that although

other non-linear variations also present in the input images,
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Figure 11. Age regression results. For each case, the input image

(1st row) is normalized to frontal face (2nd row). From the 3rd row

to 5th row: the age-regressed images generated by our model (left)

and the ground truth images with the corresponding ages (right).

remarkable results can still be achieved by our model in

terms of fine aging details without any quality reduction.

4.4. Age Regression

We next emphasize the flexibility of our proposed model

by evaluating its capability to generate the younger faces of

an individual given his/her current appearance. The results

of this application can be easily obtained using our model

by simply keeping the same training process as in previous

experiments except the training sequences are reversed. The

faces at younger ages are represented in Figure 11.

4.5. Automatic Age Estimation

One challenge of the face data “in the wild” comes from

the age labels of the input images. In most cases, this in-

formation is incorrect or unavailable. Thus, it causes lots

of difficulties for age progression process in later stage. Far

apart from previous age progression systems, the effective-

ness and scalability of our proposed model is further in-

creased by integrating an age estimation system to the pro-

posed framework. In this way, given a face image, our sys-

tem can do age progression without any further information.

Besides some other previous age estimation approaches

[7, 10, 15, 17], in this work, we re-implement the method

in [16] which is among the state-of-the-art age estimators

reported in [20]. Moreover, this approach is modified with

three-group classification in the first step (youths, adults,

and elders) before constructing three Support Vector Re-

gression (SVR) based aging functions. In order to train this

age estimator, we randomly select 802 images from FG-

NET and 1000 images from MORPH as the training data.

The remaining images of these two databases are used for

testing. The Mean Absolute Errors (MAEs) achieved are

5.86 years for FG-NET and 4.84 years for MORPH. By in-

Table 1. The MAEs (years) of Age Estimation System on Ground

Truth and Age-progressed Results

Inputs Dataset MAEs

Ground Truth faces (set A) FGNET 5.89

Synthesized faces (set B) FGNET 5.96

IAAP ’s synthesized faces (set B’) FGNET 6.29

Ground Truth faces (set C) MORPH 4.84

Synthesized faces (set D) MORPH 5.17

corporating this age estimator to our age-progression frame-

work, the need for age label is alleviated and, therefore,

making the whole framework fully automatic.

4.6. Age Accuracy of Age­progressed Results

This section illustrates the accuracy of our synthesized

results in term of age perceived. In other words, this exper-

iment aims at assessing whether the age-progressed faces

are perceived to be at the target ages. In this evaluation, the

trained age estimation system in the previous experiment

is adopted to compare the accuracies on the ground-truth

and age-progressed faces. From the testing set of FG-NET

database, we select all images above 10 years old and con-

sider them as the ground truth images. This forms the set

A consisting of 135 images. Each photo of an individual in

set A is then progressed to the later ages where the ground

truth faces are available. This process results in the set B of

194 age-progressed images. In order to compare with IAAP

method, we apply this process using IAAP and obtain the

set B’. For a large scale evaluation, we further generate a

test set using MORPH database. Let the test set of MORPH

as in section 4.5 be set C. For each individual in the testing

data, we synthesize four aged images accross three decades.

This gives us 1421 images that compose set D. The MAEs

of the age estimation system on these test sets are listed in

Table 1. These results show that the age estimation accura-

cies of our age-progressed images are comparable to those

of ground truth images. Therefore, our proposed model is

able to generate the age-progressed faces at the target ages.

5. Conclusion

This paper has developed a novel deep model based ap-

proach for face age progression that can operate “in the

wild”. With the deep structured models for both face repre-

sentation and aging transformation modeling, the proposed

model can efficiently capture the non-linear aging changes

as well as robustly handle other variations such as pose, ex-

pressions, and illuminations. The aging rules in terms of

wrinkle appearance and geometric constraints are also taken

into account for more consistent progression results. Exper-

imental results in both age progression and age regression

applications have shown the efficiency, generality and flex-

ibility of our proposed model.
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